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Summary
Several techniques of income distribution analysis assume that the income shares of the
classes into which the income range has been partitioned are known. These shares are
often omitted from the income data and must be interpolated. The purpose of this article is
first, to review three procedures for piecewise interpolation of income shares; and second,
to compare their performances with a set of observed distributions. The results suggest
that a spline function of loglogistic densities provides plausible estimates of income shares
also with a very limited amount of information.
.
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1. Introduction
A common way to describe the size distribution of income is the frequency table

{[ai-1,ai), ni; i=1,2,...,h}                                         (1)

where {ai,i=0,1,2,...,h; ai-1 < ai} are the boundaries, set in advance, of h exhaustive and
mutually exclusive classes. The symbol ni indicates the number of units whose income
falls in the i-th class.

Many techniques for analyzing a size distribution of incomes (particularly, the study
of its Lorenz curve and the derivation of bounds for the Gini and other measures of in-
equality) require the availability of the income share attributable to each class. These are
often omitted from the income data and must be interpolated. Haytovsky (1983) d i d
not include such an important econometric problem in his fine summary on grouped data.

Traditionally, it is assumed that the midpoints are reasonable approximators of the
class means (provided that the classes are closed and that the class widths are adequately
small). However, because of the skewness of the income density, estimation of the class
means (and thus of the income shares) will be biased to some extent. In addition, mid-
points underestimate the true inequality level by assuming perfect equality within classes
(the effect of this error on some inequality measures has been studied by Seiver (1979)).

To improve the accuracy of calculation for the income shares I consider the method
of piecewise interpolation i.e. the approximation of the true model by a sequence of
submodels each joined to its neighbors at the boundaries delimiting that region of the
income variate corresponding to a single submodel.

The underlying idea is that the distribution of income is a heterogeneous phenom-
enon behaving differently at different income levels; thus it cannot, in general, be de-
scribed by a single density function. In this sense Mandelbrot (1960) remarked “... it is
unlikely that a single empirical formula could ever represent all the data”; Budd (1 970)
wrote “We know that it is virtually impossible to describe empirical distributions accu-
rately by just one function”. Yet the research on income distribution deals almost exclu-
sively with the specification of single models to fit the whole range of income (see, for
example, Dagum (1984)).

The primary contribution of the present paper is to propose a new method for esti-
mating the income shares of a grouped frequency distribution of incomes. The method,
based on a spline of density functions, possesses several advantages over the usual meth-
ods:

1) Provides a framework for modeling heterogeneity across the income classes.
2) Does not assume perfect equality within classes.
3) Expresses both the midpoints and the fitting of a single distribution in a unified

manner.
The plan of the paper is as follows: in section 2, I present a new formulation of the

income model. In section 3, I discuss the selection of submodels and in section 4 three
families of submodels (LogLaplace, Loglogistic, and Lognormal) are introduced. Finally,
in the fifth section, the results of the various procedures are compared to the income quan-
tiles contained in six published sources



A new formulation of the income model.
The fitting of a particular density function to the frequency table (1) has rarely produced
acceptable approximations over the entire income domain. In this section I develop a
more flexible approach centered upon the use of possibly different density functions for
different income levels.

First, classes {[ai-1,ai), ni; i=1,2,...,h} are assembled into the intervals {[Ai-

1,Ai),i=1,2,...,k} with A0=a0, Ak=ah, and k≤h. The i-th interval is the union of ki adjacent

classes so that Ai= ari with

 r ki j
j

i
= ∑

=1

Figure 1 and table 1 illustrate the idea.

i  ki      ri Interval          Class                              Composition
Limits            Limits

1 3       3
2       5
1       6
2       8

A1                  a3                    [A0,A1)=[a0,a1)     [a1,a2)      [a2,a3)
2 A2                  a5                    [A1,A2)=[a3,a4)     [a4,a5)
3 A3                  a6                    [A2,A3)=[a5,a6)
4 A4                  a8                    [A3,A4)=[a6,a7)     [a7,a8)

∪∪

∪

∪

Table 1. Class and interval boundaries

If k=1, i.e. if k1=h then we deal with the observed income range [a0,ah) as a whole and if
k=h then each class is separately treated. These are the cases most frequently encountered,
but other arrangements could be found.  The “optimal” aggregation of classes in interval is
an important aspect of piecewise interpolation, but it will not be discussed in the present
paper (see Bellman (1969) for a dynamic programming approach to this problem).

a0 a1 a2 a3 a4 a5 a6 a7 a8

Figure 1- A partition of the income range



Next, I suppose that the behavior of the income variate y over the i-th interval, can be
described by the density fi(y) about which I assume

f A f Ai i i i− − −( ) = ( )1 1 1                                                 (2)
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is the fraction of units whose income falls in [Ai-1,Ai). It follows that the density of y over
the entire income range [A0,Ak) is
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Conditions (2) and (3) ensure that (5) is a continuous density function (5) is a finite mix-
ture of the fi’s formed by truncating fi(y) outside [Ai-1,Ai) and splicing together the various
components. From another point of view f(y) can be considered a spline function (see
Wold ,1974) whose components are density functions instead of the usual polynomials.

The cumulative distribution function and the incomplete first moment distribution
function corresponding to (5) are
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where s is an index such that As=min{Ai| Ai ≥ y} and with
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In (9) µ is the total mean income whereas µi and F1i(y) are, respectively, the complete and
incomplete first moment of the i-th submodel. Such a formulation allows us to take het-
erogeneity into account across the income intervals. In fact, we now have the possibility to
select the fi’s either from a family indexed by a vector of parameters or from different
families (LogLaplace, Lognormal, etc.).

Furthermore, several techniques of piecewise interpolation can be considered as
particular cases of (5). For instance, Leibenberg and Kaitz (1951) applied a parabolic
density for the first classes, straight line density for middle classes and the Pareto curve in
the last classes; Aigner (1968) assumed k=h and that fi(y) was a parabola through the i-th
interval; Budd (1970) used k=2, 1(y) polynomial and f2(y) exponential; Campa and Visco
(1973) studied a combination of a Lognormal with a Pareto; Petersen (1979) discussed
k=4, and fi(y)=aiy + bi; Krieger (1983) fitted uniform densities separately in each class.
Mehran (1975a) and Spiers (1978) applied a Pareto density in all the classes.
Formula (5) is not a succinct description of a size distribution of income in Bartels and
Vries (1977) terms. Potentially, it has a greater number of parameters than any other speci-
fication currently used. However, the number of parameters in itself is not an obstacle to
interpolation and simulation.

3. Choice of a submodel and estimation of its parameters
The choice of a submodel must take several factors into account. Ideally, it would be
desirable to have a definite, hopefully simple expression of the general income model (6).
Therefore, the fi’s should be able to indicate whether representing the size distribution of
income by a single functional form is appropriate or not. This could be achieved by impos-
ing

f y f y i ki i( ) = ( ) = …,       , , ,β 1 2                                        (10)

which implies that all the k submodels belong to the same system of frequency curves. If
the parameters turn out to be stable across the intervals, then a single parametric curve
f(y,b) should be fitted over the whole range. If this is the case, the associated density
should have the usual shape of a size distribution of incomes: unimodal, highly leptokur-
tic, and with a positive skewness.

In addition, the cumulative distribution function F(y,ßi) must have high
contact with its upper asymptote. Specifically, it is required that

y

m
iLim y F y i k

→∞
− ( )[ ] = = …1 1 2,     , , ,β constant                           (11)

for some integer m>0.
Condition (11) has two important implications (Kendall and Stuart (1977), p. 333).

First, the distribution F(y,βi) has no moments of order m and, second, the proportional
failure rate
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tends to the finite limit m as income becomes larger. In order to compute income shares we
need mean income; thus we must choose models for which m > 1. According to (11)
models like the Gamma and the Lognormal should not be applied to the last class. Once
the fi’s are specified, the only elements that need to be estimated are the parameters βi.
Given the interval [Ai-1,Ai), conditions (2) and (3) can be restated in the following form

F a p j k i kr j i ji− +( ) = = … = …
1

1 2 2,    , , , ;   , , ,β                              (13)

where pi=
πj

j

i

=
∑

1
 is the cumulative fraction of units whose income is at most Ai.

System (13) contains ki equations. Therefore, βi must contain no more than ki independent
parameters. Note, incidentally, that piecewise interpolation allows a maximum of 2*h
parameters.  If the number of equations is greater than the number of parameters then
several techniques of estimation could be considered (McDonald,1979). The case k=h and
known group means has been treated by Cowell and Mehta (1982). The present paper
focuses on the same case but assumes that the available information for a class is just the
number of observations falling into it. As a result, our choice for the fi’s must be limited to
a two-parameter density function.

By solving system (13) we obtain the quantile estimates for the βi’s, and the method
of quantiles will be our method of estimation although, for k=h, there is no possibility for
optimum spacing. Properties of quantile estimators are discussed in Bury (1975).

4. The submodels
In this section I examine three types of submodels and the quantile estimates of their

parameters. The submodels are based on the method of Edgeworth-D’Addario (see
Chipman, 1985).

Let u denote a measure of aptitude with density function g(u) and let y be the income
derived by a continuous monotonic translation of aptitudes y=T(u). The density of the
income variate is given by

                                         dF y( ) = ( )[ ] ( )g r y r y dy'                                                    (14)

where r(y)=T-1(y). For this article I have chosen the exponential translation

                                      T u( ) = β β
1

2e

u
                                                            (15)

and a standard (i.e. which does not include unknown parameters symmetric density for
aptitude. Specifically, I selected the Laplace, the Normal, and the Logistic model. Other
alternatives can be derived from the generalized Gaussian model (see Vianelli, 1982).

g u( ) = +( )[ ]+ −
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The LogLaplace
The i-th cumulative distribution function is
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with β1i>0 and β2i>1 and where  µe is the median income.
The PFR of (17) increases for incomes lower than β1i and becomes constant and

equal to β2i for incomes greater than β1i. Mehran (1975a) observed that the first branch of
(17) gives good approximations for the poor classes whereas the second branch performs
well for the rich classes. However, the LogLaplace model should not be used if the histo-
gram of the observed data has one or more submode(s).The incomplete first moment dis-
tribution is
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After inserting (18) in system (13) we obtain the estimates for the parameters of the first
branch
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where Ai
+=Ln(Ai) and ti=Log(2pi)/Log(2pi-1),and for the second branch
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where ti
*=Ln[2(1-pi-1)]/Ln[2(1-pi)]. Usually, the median class [Am-1,Am), has to be split

into two subclasses: [Am-1,µe) and [µe,Am). I applied (19) to the former and (20) to the
latter. In both cases ß1m=µe.

Since β2i>1, model (18) cannot be used unless the following conditions
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are satisfied. The selection of the appropriate branch for a given class and the estimation
of the income shares requires the knowledge of µe and µ. Usually their values are given as
auxiliary information of table (1).

The Loglogistic
The i-th cumulative distribution function is
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with β1i>0 and β2i>1. It is universally claimed that the Loglogistic model provides a close
approximation of the income distribution for all the intervals. The PFR of (22) is an in-
creasing function of income and tends to the limit β2i as income goes to infinity. The
incomplete first moment distribution is
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with Fi=F(y;βi). In (23) B(a,b) and IB(y;a,b) are, respectively, the Beta function and the
Beta function ratio (which can be computed by using the algorithm designed by Majumbder
and Bhattacharjee,1973).

The quantile estimates of the parameters are
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with Si=pi/(1-pi) and di= Ai
+ / Ai−

+
1. An immediate check for the applicability of the

Loglogistic is the relation: SiAi-1 > Si-1Ai . If this is not true, model (22) cannot be used.



It is worth noting that to compute (24) the knowledge of median income is superflu-
ous; also, if an estimate of F1(y,β1) is required, the additional problem of A0 unknown can
be skipped.

The Lognormal
The cumulative distribution function over the i-th class is
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where Φ(.) is the standard normal integral and β1i,β2i>0.
The Lognormal model has a PFR that does not tend to a finite limit as income in-

creases; thus the Lognormal violates condition (11). However, according to well estab-
lished empirical findings, model (25) should provide a good fit in central intervals.

The incomplete first moment distribution is
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The quantile estimates for the βi’s can be obtained first by computing Zi and Zi-1 where
Zi=Φ-1(pi) (see Beasley and Springer,1977) and then by solving the linear system
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Since 
−
βi1

 and 
−
βi2

  must be positive, a Lognormal submodel cannot be applied to the i-th

interval if A Z A Zi i i i−
+ +

−≤1 1.

5. Testing the accuracy of the procedures.
To evaluate the accuracy of the procedures of piecewise interpolation discussed in

the previous section I compared their results to the quantiles of income from six published
distributions: Italy 82, 83, 84 (ISTAT, 1985) and USA 82, 83, 84 (US Bureau of the Cen-
sus). Data refers to total money income of families and include 14 classes for t he former
and 21 classes for the other. For all the distributions, both the first and the last classes,
were open-ended (i.e. classes for which no information other than the number of incomes
was available). Three major aspects have been considered: the behavior of parameter esti-
mates, the goodness-of-fit and the estimation of the Gini measure.

Table II lists the mean, the coefficient of variation and the range of parameter esti-
mates. Since system (13) is underidentified for the first interval, I avoided interpolating
F1(A1) and used its true value to compute the other quantiles. This is clearly not a practi-



cable method and ad hoc devices must be arranged to face real situations  (e.g. those
proposed by Merhan, 1975a and Needleman, 1978). Of course it is not necessary to esti-
mate F1(Ak) since F1(Ak)=1-F1(Ak-1).

The relative dispersion of the parameter estimates is, broadly speaking, high for β1
in the Loglogistic (this is probably due to the parametrization adopted in (22)); and low for
the Lognormal (this is not surprising if one considers that in (25) there are two shape
parameters).

As a rule, the scale parameters have shown higher variability than shape parameters.
From the third and sixth column, it is possible to note that the range of estimates is always
too high to justify the use of a single functional form. The only exception may perhaps be
Italy 82 where a single Lognormal appears recommendable over the entire domain.

Table II: mean, standard deviation, and range of parameter estimates

Italy

 Mean C. of V. Range  Mean C. of V. Range

84 LogLaplace 13.5581 0.1675 8.3795 2.3432 0.3329 2.3448
Loglogistic 29659.4000 2.3954 271161.0000 3.2346 0.1863 2.1223
Lognormal 2.6608 0.0316 0.3256 0.5662 0.1648 0.3963

83 LogLaplace 12.9621 0.1420 7.0682 2.5023 0.3375 2.6808
LogLogistic 18088.6000 2.2772 158393.0000 3.2559 0.1876 2.1858
Lognormal 2.4944 0.0316 0.3256 0.5724 0.1544 0.3936

82 LogLaplace 12.0399 0.1469 6.0882 2.5899 0.3765 3.0180
Loglogistic 34381.7000 1.7544 178152.0000 3.2643 0.2473 2.4441
Lognormal 2.3845 0.0699 0.6603 0.5989 0.2295 0.5054

USA 84 LogLaplace 27.3548 0.1161 13.6596 1.6451 0.3477 2.0372
Loglogistic 12088.1000 2.0764 101179.0000 2.2583 0.2551 1.9836
Lognormal 3.3930 0.0721 1.0919 0.8396 0.3305 1.0904

83 LogLaplace 25.7421 0.1210 12.7686 1.7223 0.3804 2.2728
Loglogistic 14820.1000 1.9368 104962.0000 2.3438 0.2668 2.0283
Lognormal 3.3061 0.0649 0.9599 0.8167 0.3325 1.0411

82 LogLaplace 25.4201 0.1596 20.1466 1.7243 0.3140 1.9227
Loglogistic 5358.6100 1.2896 23073.5000 2.3268 0.2266 1.9135
Lognormal 3.2913 0.1146 1.8807 0.8236 0.3811 1.3958
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The goodness-of-fit has been measured by
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where qi is an estimated income share and qi
* is the actual income share. Both  indices lie

in the range from zero to one. Table III below displays the values of (28) and (29) for the
18 situations we have explored

Table III: values of the goodness-of-fit indices
Country Procedures

LogLaplace                 Loglogistic Lognormal
Year MAE   LAE MAE   LAE MAE   LAE

Italy
84 0.00114 0.00211 0.00084 0.00202 0.00072 0.00186
83 0.00170 0.00531 0.00218 0.00601 0.00245 0.00634
82 0.00274 0.00502 0.00340 0.00575 0.00361 0.00594

USA 84 0.00076 0.00199 0.00067 0.00217 0.00061 0.00245
83 0.00083 0.00161 0.00074 0.00167 0.00066 0.00180
82 0.00063 0.00147 0.00070 0.00151 0.00079 0.00157

Index (28) suggests the LogLaplace for Italy 82, Italy 83, USA 82 and the Lognormal for
the others. Index (29) confirms the Lognormal for Italy 84 and indicates the LogLaplace
for the others. However, on the basis of the two indices, none of the procedures is convinc-
ingly better than the others.

Gastwirth (1972) derived upper and lower bounds for the Gini index with grouped
data (see also Giorgi and Pallini, 1987); the same bounds were suggested by Gastwirth
and Smith (1972) for testing the fit of a distribution to grouped data.

Mehran (1975b), using a geometric approach, obtained bounds slightly larger, but
requiring scarcer data then Gastwirth’s. The bounds proposed by Mehran are
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The symbol αi denotes the slope of the line Ri joining (pi-1,qi-1) and (pi,qi); α i
* is given by
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bi
* being the slope of the line joining p qi i− −( )1 1

* *,  and p qi i
* *,( ) . The point p qi i

* *,( )  is the

intersection of Ri and Ri+2.
In table IV are reported the values of the lower bound GL and of the grouping

factor D both for the observed income shares and for those interpolated using the three
procedures.



Table IV: bounds on the Gini index.
            Observed    LogLaplace     Loglogistic      Lognormal

Country GL GD GL GD GL GD GL GD
Year

84 0.31840 0.00750 0.31570 0.00740 0.31650 0.00743 0.31700 0.00746
83 0.31000 0.00522 0.31110 0.00576 0.31230 0.00579 0.31300 0.00582
82 0.32210 0.00511 0.32640 0.00529 0.32770 0.00532 0.32820 0.00533

84 0.38110 0.00346 0.37950 0.00337 0.37970 0.00336 0.37990 0.00334
83 0.37950 0.00256 0.37780 0.00253 0.37810 0.00252 0.37820 0.00251
82 0.36010 0.00174 0.36130 0.00174 0.36110 0.00172 0.36130 0.00171

Italy

USA

As it can be seen from the table, the estimates of the lower bound are always adequate and
the bias associated with all of the procedures has the same sign.

The grouping factor is also approximated fairly well and the results are very close
for all of the distributions considered.

Such findings corroborate the impression that each of the three techniques produces
reasonable surrogates of the unknown income quantiles.

6. Conclusions.
This paper attempted to identify a satisfactory method for estimating the income quantiles
when the class means are unknown It has been shown that piecewise interpolation is a
viable and flexible technique to solve such a problem. None of the three special cases
considered systematically dominates the others. Persuasive approximations can be ob-
tained using a spline function of Loglogistic densities also in the case that, in addition to
the frequency count, only the total mean income is reported (the LogLaplace would re-
quire additional information on the median income). It is important to note that when the
first class is open-ended the only applicable model is the Loglogistic.
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