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Summary: iterative relocation is used to partition a sample of  n observers (for each of
which the ranking of the same set of m items is considered) into g homogeneous and
nonoverlapping clusters. The classification is obtained by using the global coefficient of
concordance as a quality evaluator and trasfers director.
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1. Introduction

Consider a fixed set of of m object a
t
=(a

t1
,a

t2
,…,a

tm
)’ ordered according to the different

degree in which they possess a common attribute. Let the object be thoroughly mixed and
then rearranged by an observer in order of merit according to his/her judgement and let n
be the number of judges and assume that each judge ranks indipendently (at least,
stochastically) of the other judges. There are cases in which it is more important to rank
some entity correctly than to correctly rank others (for example, it is more satisfactory the
placing of the winner in a  race in the first rank than the placing of the worst contestant
last). In other cases would be useful obtain explicit information about subsequences of
objects on which judges have similar views. The purpose of the present paper is to outline
a new algorithm for clustering multivariate ordinal data which is able to discover wether
all the judges can be considered as belonging to the same population, if there exist judges
markedly remote from the others or different subgroups among the judges.

2. Assessment of cluster homogeneity using Kendall’s coefficient

It has been observed (e.g. Gibbons, 1976, p. 303) that there is no such thing as perfect
disagreement for more than two sets of ranking. If, say, the first set of ranks is arranged in
natural order and the corresponding ranks of the second set appear in reverse natural order,
there is no way that the third set can be in complete disagreement with both of the first two
set of rankings. In this sense, the criterion guiding the new classification procedure is
oriented toward cluster homogeneity rather the distance between centroids. The most
popular measure of the agreement is the Kendall coefficient of concordance
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which is defined as the sum of squares of then m totals of the n rank values for each object
about the mean n(m+1)/2 divided by the maximum of this expression: n2(m3-m)/12,  which
occurs if all the n rankings agree; K would equal one for perfect agreement and tend
toward zero for no agreement, but it can never be negative. Kendall noted that , if ρ  stands
for the mean of the Spearman’s rank correlation coefficient between the n(n-1)/2 pairs of
rankings, then ρ =(nK-1)/(n-1). Iterative schemes for cluster analysis are concerned with
making membership changes which optimize a numerical criterion. In this paper we quantify
the overall resemblance of the judges with
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 accounts for the concondance among the judges belonging to cluster i at the q-th
iteration. Since W is a weighted average of the {K

i
} it ranges from the lowest to the highest

group concordance coefficients. If g
2
>g

1
, the final value of criterion for g

2
 groups W(g

2
) is

greater than W(g
1
) computed for g

1
 groups; however, violation have been encountered in

some data sets.The goal of the algorithm is to obtain homogenous groups of judges for
which all group members exhibit significant correlation among themselves and low
correlation with judges in other groups. Ehrenberg (1952) is skeptical on the Spearman
approach and develops an alternative measure of the agreement for multivariate ordinal
data. However, Tarsitano (2001) has found the Spearman’s r the most flexible among
several measures of pairwise concordance.

3. A new algorithm for clustering ordinal data sets

To determine a clustering of the judges g=(g
1
, g

2
, …, g

n
)’  with g

i
=j if a

i
 belongs to the j-th

cluster I propose an heuristic method which, as it is customary in the iterative partitioning
framework, has three essential features: starting the process, reassigning entities,
overcoming local optima.
      There are a wide variety of techniques available for choosing the first g leaders where
g is assumed to be known. In the present study we use the method suggested by Kennard
and Stone (1969). The first two leaders are selected by choosing the two judges that are
farthest apart. Let P={P

1
, P

2
, …, P

g
} be the set of the k judges that have been chosen as

leaders; the (k+1)-th leader is chosen from among the remaining (n-k) candidates using
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The first initialization of the membership vector g(0) is derived according to the rule
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The central step of an iterative relocation scheme is the way in which entities are moved
from one cluster to another. Let W(q+1) the pooled concordance coefficient after that transfer
of a

t
 from cluster j to cluster i  has taken place. The effect is
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If ∆W>0  then W(q+1) >W(q). It seems reasonable exhamining the potential effects of switching
a

t
 into every cluster (except the one it is in) and finding the greatest value satisfying ∆W>0.

Thus each entity is tranferred (if transferred) to the cluster which maximizes the impact of
the transfer. This step would have the drawback of preventing more effective transfers
involving cluster i and  j; moreover, the results depend on the order the entities are considered
one by one. A better procedure would be performing a complete scanning of the entities
and all candidate transfers for which ∆W>0 are retained. They are then sorted in ascend-
ing order of magnitude and executed starting with the first, but excluding those affecting
clusters already interested in a transfer. Bansfield and Bassill (1977) have suggested that a
local maximum might be circumvented  by swopping two entities a

t
 and a

s
 with g

t
=i and

g
s
=j, i≠j. The effect on our criterion is
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All the candidate swaps are tested in turn and those for which  ∂W>0 are executed with the
selective procedure used for the transfers. The algorithm produces a clustering which is
only locally optimal, given the starting configuration. The aggregate Kendall  concordace
coefficient may not be increased neither by trasferring a judge from one cluster to another
nor by exchanging the cluster to which a pairs of  judges belong; however, different partitions
may have the same or greater values of W.

4. Experimental results

A few experitments have been made in a preliminary attempt at validation of the new
algorithm (in the following it should be remembered that we are investigating the rankers
and not the items ranked). First, I re-analyze the data presented in Rizzi and Badaloni
(1972). The first data set is an artificial example including 35 complete rankins of 10
objects supposed to have 6 groups according to a density search method. Fig.1 shows the
quantity Ln(W

i+1
/W

i
) plotted against the number of clusters (also known as log-scree plot).

A pronounced peak in the graph indicates that g=i+1 is a good candidate value for the
correct number of clusters. This would suggest g=5 or g=7 for the first data set; in particular,
the structure for g=7 is very similar to the classification found by the two authors. The
second example is a study involving 121 students who rated 14 profession according to
their social prestige The solution g=10 proposed by Rizzi and Badaloni is compatible with
the graph although a lower number of clusters seems more plausible.



The third data set includes  67 rankings of the 14  required courses for a degree in Economics
according to the student’s satisfaction with the grade received. The appropriate number of
clusters is not known; however g=2 appears to be consistent with the study conducted by
Tarsitano (2001) in which the student evaluations are divided according to their mean
grade (lower than 26/30 and equal or greater than 26/30). The fourth examples is a concocted
data set presenting a strong four group structure fairly well exposed in Fig. 4.
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