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Riassunto: si adopera la classificazione gerarchica aggregativa per classificare n giudici
(per ognuno dei quali si considera la graduatoria completa proposta su m item) in gruppi
disgiunti ed omogenei. Lo schema si basa su matrici di dissimilarità ricavate da coefficienti
di correlazione ponderata che sono in grado di cogliere meglio di quelli tradizionali certi
profili di giudizio e consentono la definizione di gruppi più significativi di giudici.
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1. Introduction

Measuring agreement between two set of rankings is an issue frequently encountered in
many research studies. Classic fields where rank data occur are market segmentation,
consensus formation, scales of symptoms and feelings, information retrieval. The situa-
tion considered this paper is as follows: a fixed set of m item is arranged in order accord-
ing to the different degree in which they possess a common attribute with 1 assigned to the
most preferred item, 2 to the next-to-most preferred and so forth by n judges {O

1
, O

2
,…,O

n
}.

Gaps or ties are not allowed: a ranking is simply a permutation of the integers 1 through n.
Each judge ranks independently of the other judges, but there is reason to believe that
there exist different subgroups among the n judges.

Cluster analysis (CA) is the procedure by which we objectively group together rank-
ings on the basis of their differences and similarities. A crucial issue of CA is to decide
wether rankings should be described by either a pattern matrix or a dissimilarity matrix. A
pattern matrix is a (nxm) matrix S=(s

ij
) where s

ij
 denotes the rank given by the i-th judge to

the j-th object; a dissimilarity is a (nxn) matrix D=(d
ij
) where d

ij
 measures the degree of the

interjudge closeness (usually, the latter is derived from the former). The most common
outputs of CA are a partition of rankings (which is applied to S) and a hierarchical classi-
fication (which is applied to D). The problem of iterative partitioning a set of judges into
disjoint types may be investigated by using a k-means algorithm based on a simple func-
tion of the average Spearman’s ρ. Alternatively, the intergroup agreement can be evalu-
ated by the average Kendall’s τ.

The purpose of the present study is to obtain a successively-nested set of partitions
based on a dissimilarity matrix compatible with ranked data. The contents of the various
sections are as follows. Section 2  reviews the general formulation of weighted rank corre-
lations in which the incorporation of a weight function allows more flexibility in the clas-
sification. In Section 3 rank correlations are transformed in dissimilarity coefficients. In
addition, the choice of an agglomerative algorithm is briefly discussed.  Finally, in Section
4, we show experimental results and summarize our conclusions.



2. Weighted rank correlations
Researchers in many fields have become increasingly aware that there are certain patterns
of resemblance which may reflect significant facets of the association between two rank-
ings. In evaluating these relationships one would require a classification method that cap-
tures the specific pattern and is not unduly affected by few possibly incongruous data.
Quade and Salama (1992) showed that statistical methods for measuring association when
the magnitude of intercategory distances cannot be ignored, group naturally in two classes:
weighted rank correlation (w.r.c.) and correlation of scores. In this note, we pursue the first
approach. In particular, we analyze a weighted version of the Spearman’s ρ
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where x
k 
 is the k-th rank given by judge O

i 
after that the ranks given by judge O

j 
have been

arranged in their natural order . Vector w= {w
1
, w

2
,…,w

m
} is a monotone system of weights.

The expectations E(.) is taken over all m! permutations. Two special cases of (1) are known
in the literature. The Mango index (mango, 1997) is obtained by using w

i
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This measure is based on the sum of the second order minors extracted from the (mx2)
matrix having x as first column and the natural ordering as second column. The Blest
index

 
(Blest, 2000) is obtained  by using w
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Which is based on the differences between the accumulated ranks of the two judges.  Al-
though the two procedures appear to be entirely different, each of r

M
 and r

B
 can be derived

from the other. Furthermore, (r
m
 + r

b
)/2=ρ i.e. the Spearman’s coefficient. The values of r

M

and r
B
  range between -1 and 1. The former occurs between s

i
 and =m-s

i 
+ 1 for i=1,…, m

whereas +1 occurs only in the case of maximum concordance. A value near to zero indi-
cates no association between the rankings. The index of Mango

 
 and  Blest act as comple-

mentary rank order statistics in cases of limited resource allocation because ascribing
higher importance to one item reduces the importance of another. For example, it is more
satisfactory the placing of the winner in a race in the first position than the placing of the
worst contestant last (ceiling effect). In other cases differences in low ranks would seem
more critical (floor effect). For example, when an admission office expunges the less
qualified candidates. The coefficient r

B 
 is more sensitive to floor effects because weighs

the front ranks heavier than the back ranks. The r
m 

 reacts more to ceiling effects. Another



interesting feature
 
is that their values are synchronized to quantify bipolarity condition

that is comparisons in which the top-down and the bottom-up process simultaneously
affect the same attribute giving rise to a bidirectional effect.

3. Correlations, distance measures and agglomerative clustering

The basic assumption of this paper is that a rank correlation between judge i and the j can
be used to quantify the similarity/dissimilarity between them. Since -1≤r

M
, r

B 
≤1 these

coefficients have to be transformed into dissimilarities in the interval (0,1). Anderberg
(1973) suggested a linear transformation of the Spearman’s footrule which also corre-
sponds to the general coefficient of similarity proposed by Gower (1971) for rank data.
Kaufman and Rouseeuw (1990) proposed a linear transformation of the of the Spearman’s
ρ.  Rank correlations can be mapped to distances using the fact that the matrix R=(r

ij
) is

positive definite or positive semi-definite. Consequently,  the transformation d
ij
(w)=[1-

(r
ij
(w)+1)/2]0.5 result in metric dissimilarity matrices for each weight function. The use of

correlations in CA is in general controversial, but appears legitimate for rankings since
each judgement is being averaged over homogeneous attributes.

An agglomerative clustering starts with each judge forming a separate group. It
successively nests the group close to one another until all of the groups are merged into
one or until a stopping rule is satisfied. Numerous agglomerative algorithms are reported
in exploratory data analysis. They differ mainly in their definition of intergroup dissimi-
larity (link). The focus of this section is to use monotone invariant procedures in which the
construction of the particular hierarchy depends solely on the rank order of the dissimilar-
ity. While other links are possible, the type of data we are using precludes somewhat
methods  using average of correlations (UPGMA, UPGMC, WPGMC, Ward). In particu-
lar, we have employed the complete-link method because it is expected to identify stereo-
typal judge types and avoids chaining effect.

4. Experimental results and conclusions

Test data were generated in two steps. In the first, we have defined six pivot permutations

 
Natural order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Inverse order 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Floor effect 1 2 3 4 5 15 14 13 12 11 10 9 8 7 6
Ceiling effect 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15
Direct bipolarity 1 2 3 4 11 10 9 8 7 6 5 12 13 14 15
Reflected bipolarity 15 14 13 12 5 6 7 8 9 10 11 4 3 2 1

Then, we have generated 14 rankings by swapping the ranks of two randomly selected
positions of each of the pivot permutations. A total of n=90 “judges” have been obtained.
The following table reports the alternative classifications of rankings into six groups, as-
suming dissimilarities based on Mango and Blest indices and two other commonly used
rank correlation coefficients: Spearman’s ρ and Kendall’s τ. Τηε last row shows the cor-
rected Rand index of proximity between the “true “ partition and that achieved by the



method. Cell entries are the rankings which have been moved from one group to another.

  

Type Cluster Mango Blest Spearman Kendall
Natural order 1-15 +62 +62 +62 +62

-6,-9,-13 -6,-12 -6,-12 -12
Inverse order 16-30 +79,+90 +81 +81 +81,+82

-26,-29 -17,-21 -17,-21
Floor effect 31-45 +48,+87

Ceiling effect 46-60 +9,+13,+67 +12 +12 +12
+70 -48 -48

Direct Bipolarity 61-75 +6 +6 +6
-62,-67,-70 -62 -62 -62

Reflected Bipolarity 76-90 +26,+29 +17,+21 +17,+21+48
-79,-90 -81,-87 -81 -81,-82

C.Rand index 0.7495 0.7941 0.8186 0.8939

Table 1: alternative classifications of n=90 rankings

It is full evident that ρ and τ show scarce discriminating power over the simulated rank-
ings (here, high values of the Rand index have  a negative interpretation). In contrast,  r

M

and r
B
 allow reassigning several judges. For instance, according to the Mango index,

judgeO79=(15,14,6,12,5,13,7,8,9,10,11,4,3,2,1) and judge O90=(15,14,6,12,5,13,7,8,9,10,11,4,3,2,1) sup-
posed to be affected by  reflected bipolarity, have been moved to a cluster characterized by
inverse ordering because r

M
 gives more weight to agreement between back ranks than to

agreement between front ranks. It is important to realize that the choice of a w.r.c. coeffi-
cient presupposes the existence of particular type of clusters. Of course, there are no stan-
dard rules as to how the weights of r

ij
(w) should be chosen. However, the characteristics of

a w.r.c. would simplify the selection of dissimilarity measures and increase the generality
of research findings.
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