
METRON - International Journal of Statistics
2004, vol. LXII, n. 1, pp. 137-160

AGOSTINO TARSITANO

A new class of inequality measures
based on a ratio of L-statistics

Summary - The choice of a suitable weight function is a feasible and desirable direction
for inequality comparison. This paper proposes a new class of indices based on a
ratio of two L-statistics in which the weight function in the numerator involves the
expected values of order statistics from a random variable describing the normative
attitude to the measurement of inequality. Also, the article describes and discusses
a graphical technique, based on the QQ plot, which is useful to select the most
appropriate theoretical frequency distribution. A large-scale Monte Carlo study has
been conducted to assess the sampling and asymptotic properties of some of a number
of inequality indices. The simulations show that the new class is able to provide indices
that compete well with the traditional measures of income inequality and industrial
concentration.
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1. Introduction

Linear functions of order statistics (L-statistics) have been widely applied
in the study of income distribution to investigate asymptotic behavior of in-
equality indices and analyze their sensitivity to transfers at different points of
the distributions. In fact, Stigler (1974) states that his principal motivation for
carrying out research into L-statistics has been that “...these estimators exhibit
desirable robustness, particularly to heavy-tailed distributions or outlying distribu-
tions”. There has been an increased interest in measuring economic inequality
over the recent decades. A number of monographs have been published in this
field, including those by Sen (1997), Kakwani (1980), Nygard and Sandström
(1981), and in particular for a survey on sampling aspects (from a parametric
and distribution-free point of view) of some inequality indices investigated in
the paper see Giorgi (1999).

A wide range of income inequality indices has been proposed and various
attempts to unify the measures have been made (e.g. Zitikis 2002a, 2000b).

Received October 2003 and revised February 2004.



138 AGOSTINO TARSITANO

Here we propose a class of indices constructed as a ratio of L-statistics. What
is new is that the weights are the expected values of a probability distribution
describing the normative attitude to the measurement of income inequality.
The new class has great flexibility, optimal sampling properties, and provides
a fresh interpretation of some classical measures of income inequality. The
contents of the various sections are as follows. Section 2 reviews the general
formulation of L-statistics highlighting their more salient features. In the third
section, the results of Section 2 are applied to show that a ratio of L-statistics
yields valid measures of economic inequality. Section 4 reports on the results
of a simulation experiment designed to compare the finite sampling properties
of alternative measures of income inequality and to compare them with the
asymptotic results. Finally, there is a conclusion in which the major merits of
the new class are reviewed.

2. L-Statistics and inequality measures

Let {X1, X2, . . . , Xn} be a random sample of size n from a distribution
function F and let {X1:n, X2:n, . . . , Xn:n} denote the associated order statistics.
For a fixed sequence of weight functions Jn our interest will center on statistics
of the type

L(Jn)

µn
=

n−1
n∑

i=1
Jn

( i
n+1

)
Xi :n

µn
with

n∑
i=1

Jn

(
i

n + 1

)
= 0 ; (1)

where µn is the sample mean. Throughout the paper we assume that µn > 0.
Class (1) is particularly valuable in studies connected with income distributions
because of its homogeneity of degree zero; moreover, it is computationally
simple, exhibits desirable robustness when estimated from a sample and it is
asymptotically efficient given a proper choice of the weight functions. The
present paper deals with a class of L-statistics in which, following Chernoff
et al. (1967), Jn allows weight to be put on all observations. This choice
is particularly suited to income studies because every observation is relevant
for an accurate measurement of inequality. In this sense, see Friedlin et al.
(2003) for an illuminating application on very heavy-tailed distributions of the
Chernoff et al. (1967) results on L-statistics. Moreover, the score function
converges suitably to a real valued function J (t) defined on (0, 1) in such a
way as to allow one to replace Jn with the limiting weight function J (t). Table
1 presents the score function Jn of some indices falling into class (1). The
scores are obtained by setting t = i/(n + 1) in Jn(t). Fn( . ) is the empirical
distribution function based on {X1, X2, . . . , Xn}; the symbol [x] is the largest
integer less than or equal to x; { . } denotes an indicator function which is one
if the argument is true and zero otherwise. The Pietra-Ricci index is defined
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as one-half of the relative mean deviation; the Gini/2 index is given by the
absolute mean deviation from the median divided by the arithmetic mean. The
Eltetö-Frigyes index is defined as (µn − Mn)/µn where Mn is the mean income
of individuals with an income smaller then µn (Eltetö and Frigyes, 1968). The
Gini, Mehran, and Piesch indices belong to the class of linear indices proposed
by Mehran (1976). The Piesch index was also suggested by Giaccardi (1950).
According to Sen and Singer (1996, 193-194), the Piesch-Giaccardi (Mehran)
index measures the total inequality by looking at the propensity to fail of a
system consisting of three units in parallel (series). Consequently, P ≤ M .
The Bonferroni index is obtained as the unweighted average of the relative
differences between the mean and the partial means of the poorest units. The
index proposed by De Vergottini is obtained as the weighted average of the
relative differences between the mean and the partial means of the richest
units. All but the Amato index and De Vergottini index lie in the interval
from zero to unity. It must be noted that the inequality indices proposed by
Amato, Bonferroni, and the De Vergottini are special cases of a general formula
discussed by Amato (1948) which includes the linear indices as a subclass.

Table 1: Score function of various measures belonging to class (1).

Index Jn(t) J (t)

Gini (R)

(
n + 1

n − 1

)
(2t − 1) 2t − 1

Pietra Ricci (D) Fn(µn) − I {t < Fn(µn)} F(µ) − I {t < F(µ)}
Eltetö Frygies (D2) 1 − I {t < Fn(µn)} 1 − I {t < F(µ)}
Gini/2 (G2) sgn(t − 0.5) sgn(t − 0.5)

Piesch (P)
3[�(n + 1)t� − 1][�(n + 1)t� − 2]

2(n − 1)(n − 2)
− 1

2
(3t2 − 1)/2

Mehran (M)
3[n − �(n + 1)�][(n − 1) − �(n + 1)t�]

(n − 1)(n − 2)
1 − 3(1 − t)2

Amato (A) 1 −

n∑
j=�(n+1)t�

j−0.5(n + 1 − j)−0.5

n−1
n∑

j=1
j0.5(n + 1 − j)−0.5

4

π
arcsin(t) − 1

Bonferroni (B)
n

n − 1

(
1 −

n∑
j=�(n+1)t�

j−1

)
1 − Ln(t)

De Vergottini (dV)
t∑

j=�(n+1)(1−t)�
j−1 − 1 −[1 + Ln(1 − t)]
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The large sample results concerning the indices of Table 1 are contained
in two fundamentals theorems.

Theorem S1. [ Stigler (1974), Mason (1981)].
Assumption 1)

i) Jn(t) is uniformly bounded and continuous on [0, 1].
ii) J (t) is continuous except possibly at a finite number of points at which F−1(t)

is continuous.
iii) Jn(t) → J (t) uniformly in an open neighborhood of t as n → ∞.
iv) J (t) satisfies the Hölder condition of order α > 0.5.
v)

∫
J (t)dt = 0.

Assumption 2) ∫ √
F(x)[1 − F(x)]dx < ∞ .

If assumptions 1) and 2) are satisfied then

a) Lim
n→∞ E[L(Jn)] = L(J ) =

∫ 1

0
J (t)F−1(t)dt ;

b) Lim
n→∞ nσ 2[L(Jn)] = σ 2(J ) = 2

∫∫
0<t<s<1

J (t)J (s)t (1 − s)d F−1(t)d F−1(s) (2)

c)
√

n
[

L(Jn) − L(J )

σ [L(Jn)]

]
d−→ N (0, 1) as n → ∞ ; if σ > 0

Theorem S2 [Shorack -Wellner (1986, 662-665)].
Assumption 1)

For some M > 0 and B(t) = Mt−b1(1 − t)−b2 for 0 < t < 1 with
max(b1, b2) < 1.

i) | Jn(t) |≤ B(t).
ii) J (t) is continuous except possibly at a finite number of points at which F−1(t)

is continuous.
iii) Jn(t) → J (t) uniformly in some small neighborhood of t as n → ∞.
iv)

1) | J (t) |≤ B(t);
2) J ′(t) exists on (0, 1) and | J ′(t) |≤ B(t)[t (1 − t)]−1 for 0 < t < 1.

v)
∫

J (t)dt = 0.

Assumption 2)

|F−1(t)| < Mt−d1(1−t)−d2 for 0 < t < 1 , max{(b1+b2), (d1+d2)} < 0.5 . (3)

If assumptions 1) and 2) are satisfied then the conclusions of S1 still hold.
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Assumption 2 is cryptic in both theorems although the more familiar re-
quirement of E(| X |2+d) < ∞, d > 0 suffices in order that F should verify this
assumption both in S1 (Singh, 1981) and in S2 (Shorack, 1972). We should
consider, however, that the importance of these theorems relies on the fact that
the variance of L(Jn) converges even though the underlying distribution may
not have a finite variance.

The asymptotic properties of (1) can be established by using a two-step
procedure. First, (2) is ascertained for L(Jn) via S1 or via S2, and then the
Slutsky’s theorem is applied to the ratio L(Jn)/µn (see e.g. Randles and Wolfe,
1991, 424-426). The asymptotic variance of the ratio (1) can be approximated
by the methods outlined in Palmitesta et al. (1999) and Zitikis (2002a).

The conditions of Theorem S1 are fulfilled by the indices of Amato, Gini,
Mehran and Piesch-Giaccardi. Theorem S1 is also applicable to the indices of
Pietra-Ricci, Gini/2, and Eltetö-Frigyes provided that the corresponding J (t)
and F−1(t) possess no common discontinuities. Cf. Gastwirth (1974) for the
asymptotic results concerning the Pietra-Ricci index. Theorem S2 extends (2)
to the indices of Bonferroni and De Vergottini whose weight functions are not
bounded but verify condition iv) of S2.

Helmers (1981) showed that under the conditions of theorem S1 (in par-
ticular, assumption iv.1 with α = 1), the existence of a finite absolute third
moment allows us to establish a Berry-Esséen type bound of order n−0.5 for the
indices belonging to class (1). Friedrich (1989) obtained a Berry-Esséen bound
for an unbounded weight function, but at the cost of requiring the existence of
a finite fourth moment.

3. A new class of inequality measures

Inequality comparisons are always subject to arbitrary specifications of
weights. For the purpose of large-sample theory, the weight function J of an
income inequality measure should have a reasonably smooth behavior. The
purpose of this section is to show that the weight function can be conveniently
specified by means of the order statistics of a given random variable.

A quantile plot method

The measurement of income inequality may receive a valuable stimulus
from a graphical technique, similar in spirit to a QQ plot (see Shapiro and
Brain, 1980). Let Z be a nondegenerate random variable with distribution
function G(z) such that E(Z) < ∞. We further assume that G does not contain
unknown parameters. The model G represents the hypothesized distribution of
income and may be chosen to direct attention to certain levels of the income
variable.
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Suppose that one individual has income X and that X is included in a ran-
dom sample of size n : {Z1, Z2, . . . , Zn} drawn from G. If these observations
are ranked in ascending order: Zi :n for i = 1, 2, . . . , n with E(Zi :n) = mi :n ,
then our individual is prepared to occupy the position r whose expected income,
under the model G, is nearest to X . More formally, ‖X − mr :n‖ ≤ ‖X − mi :n‖
for i = 1, 2, . . . , n where ‖ . ‖ is a fixed metric. Let {X1, X2, . . . , Xn} be a
random sample of incomes from F , the “true”, but unknown distribution of
incomes and consider the scatterplot with coordinates{(

mi :n − mn

τn

)
,

(
Xi :n − µn

µn

)}
; i = 1, 2, . . . , n ;

τn =
n∑

i=1
(mi :n − mn)

2

n(mn:n − mn)
; mn = n−1

n∑
i=1

mi :n

(4)

where µn is the arithmetic mean of the {Xi :n}. The rationale behind the plot is
that if the plotting points lie near a straight line through the origin this provides
an informal validation of G to represent the observed data. Departure from
G would be indicated by increased curvature. If the linearity of the plot is
satisfactory, then the least squares estimate of the slope

V (Jn) =
n−1 ∑n

i=1 Jn

(
i

n+1

)
Xi :n

n−1
n∑

i=1
Xi :n

(5)

with

Jn(t) = m�(n+1)t�:n − mn

mn:n − mn
0 ≤ t ≤ 1 (6)

can measure the inequality in the sample distribution of incomes. First, V (Jn)

is scale invariant because it does not change if all {Xi :n} are multiplied by a
positive factor. Second, V (Jn) obeys the Pigou-Dalton principle which implies
that any transfer from a richer to a poorer individual which does not alter the
ranking (neutral or order-preserving transfer) reduces inequality. In fact, the
effect of a neutral transfer of d > 0 from the individual in the r -th position to
that in the s-th position, with s < r , is d(ms:n − mr :n)/(mn:n − mn) < 0. Third,
from the fact that both the {Xi :n} and the {mi :n} are nondecreasing it can be
seen that V (Jn) ≥ 0. Also, since mi :n ≤ mn:n then V (Jn) ≤ 1. The lower
limit V (Jn) = 0 can generally be interpreted as a tendency to the situation in
which the {Xi :n} are close together. The upper limit V (Jn) = 1 is achieved
as n diverges while only one of the individuals gets all the income. Finally,
the weight function Jn is a linear transformation of the income expected under
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G which reveals the normative preferences to the measurement of income
inequality implicit in any V (Jn). Giaccardi (1950) defined a class of inequality
measures similar to (5)-(6) in which {mi :n} is a bounded monotone increasing
sequence of non negative constants.

In light of the high correlation and heteroschedasticity of the order statistics,
the usual distributional results for the slope of a regression line do not apply.
However, recalling that Jn(t) is continuous and monotone nondecreasing for
0 < t < 1, the asymptotic behavior of V (Jn) can be assessed following the
approach outlined in Section 2.

Of course, (5) does not directly assess the linear nature of the plot. The
judgement of what can and cannot be considered a good approximation to a
straight line is a personal matter and should depend on the magnitude of the
departure from linearity and on the size of the sample. In case of doubt, a
more formal decision rule can be used e.g. the correlation coefficient or its
square.

Example 1. Let G(z) = z be the uniform distribution over the unit interval.
Then

mi :n = i

n + 1
; mn = 1

2
; mn:n − mn = n − 1

2(n + 1)
(7)

yields the Gini index which can now be regarded as a measure of inequality
appropriate in a situation in which the ex ante proportion of individuals receiving
an income less than or equal to z is directly proportional to z. One of the
referees has called to my attention a paper by Cohen and Keppler (1996) where
this model has been applied to analyze the relationship concerning firm size
and research and development effort.

Example 2. Let the probability mass for Z be equally distributed at two points:
{−1, 1}

mi :n =
{ −1 if i ≤ n/2

1 if i > n/2
; mn = 0 , mn:n − mn = 1 (8)

This scheme leads to the Gini/2 index. The Pietra-Ricci index has an analogous
interpretation. Note that when Jn is sectionally constant over (0, 1) then V (Jn)

fails the Pigou-Dalton principle because (5) becomes insensitive to transfers
between individuals associated with weights of equal sign and equal magnitude.

Example 3. If Z is the unit exponential distribution G(z) = 1−e−z , z > 0 then

mi :n =
n∑

j=n−i+1

j−1 ; mn = 1 ; mn:n − mn =

 n∑

j=2

j−1


 (9)

define the De Vergottini index (more specifically, the version ranging between
zero and one, denoted by dV*). The scores appearing in (9) show interesting
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aspects of the index. For example, if we assume that each unit possesses one
of a set of n incomes and that these incomes are randomly distributed among
infinite population, the minimum proportion of sampling units that must be
included in order to obtain i different incomes coincides with mi :n in the De
Vergottini index.

Example 4. Let G be the reflected unit exponential distribution G(z) = ez ,
z < 0. In this case z represents a loss and not an income. It follows that

mi :n = −
n∑

j=i

j−1 ; mn = −1 ; mn:n − mn = n − 1

n
; (10)

corresponding to the Bonferroni index. The scores (10), termed log-rank scores,
were introduced by Savage (1956). From another point of view, the i-th weight
of the Bonferroni index represents the selection differential (in terms of mean
units) obtained by comparing the mean of the bottom i ordered incomes with
the total mean.

Example 5. Kadane (1971) showed that mi :n = f si−1, i = 1, 2, . . . , n where
s and f are parameters such that s ≥ 1, f > 0 are the expectations of order
statistics for a sample from some positive random variable with E(Z) < ∞.
Let s = α1/(n+1), α > 1, f = s. Then

kn(α) =

n∑
i=1

[
α

i
n+1 −mn

α
n

n+1 −mn

]
Xi :n

n∑
i=1

Xi :n

with mn = n−1
n∑

i=1

α
i

n+1 → α − 1

Ln(α)
= m (11)

Since the limit weight function J (t) = (αt t − m)/(α − m) is convex, Theorem
S1 applies to (11) for each α > 1. kn(α) is “rightist” in the sense that transfers
at the upper end of the distribution are weighted more heavily than transfers
at the lower end. The larger is α the greater is concern for those on higher
incomes. In practical applications, one has to pick a certain value of α > 1.
Any such choice implies a further specification of the weight function. It can
be shown (see the section on large sample approximation) that (11) is related to
the logarithmic model F(z) = Ln[(α−m)z +m]/Ln(α) for (α−m)−1 ≤ z ≤ 1.

Numerical application
We illustrate the method for a sample of moderate size. Mehran (1981)

reports n = 200 incomes data obtained from the results of a household survey
where µn = 9438.3, σn = 9019.6, γ1 = 2.8, γ2 = 10.9, median= 6350.5,
range= (600, 67403). Figure 1a-1d provide the presentation of the quantities
in (4) for the following indices: Gini (R), Bonferroni (B), De Vergottini (dV)
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and kn(1.1). The marked curvature in the first two graphs contradicts the
assumed model. A close (and surprising) resemblance between R and kn(1.1)

is also apparent. The QQ plot against the scores of the De Vergottini index
is highly linear except, perhaps, for two observations in the upper tail (the
coefficient of determination is R2 = 0.97). This suggests a linear transformation
of the exponential distribution to be reasonable for the Mehran data. The
corresponding level of the inequality is dV*= 0.1892.

The message that these examples convey is that one may select the best G
distribution out of a finite family of admissible distributions which yields the
most linear QQ-plot. In other words, if the hypothesized model and the true
model of income are a linear transformation of each other, then an accurate
examination of several QQ-plots can help to select the model of the size dis-
tribution of income. However, it is not our purpose to claim that a simple plot
can capture simultaneously these two fundamental features of the distribution
of income. Our modest proposal is to introduce a useful tool which can lead
to the identification of stable structures in the income inequality of empirical
distributions.

Figure 1. QQ-plot for four inequality measures.
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Approximation of the expected value of order statistics
The proposed methodology may be difficult to apply because explicit al-

gebraic expressions for {mi :n} and τn are rarely available. To alleviate this
problem somewhat, we derive the weight function directly from the quantile
function of the presumed model G(z). To this end we further assume that Z
is an absolutely continuous random variable with associated density function
which is supposed to be continuous and strictly positive on the support of Z .
This allows us to exploit the well known convergence result m(n+1)t :n → G−1(t).
Since the size of the samples encountered in income distribution analysis is
fairly large, this approximation should be satisfactory. To simplify the search
for the weight function we restrict ourselves to those random variables Z with a
limited range. Also, we impose the normalizing constraint G−1(1) ≤ b. Thus,
the restricted class of indices is defined as follows

V (Jn) =
n−1 ∑n

i=1 J
(

i
n+1

)
Xi :n

µn

with J
(

i

n + 1

)
=

G−1
(

i
n+1

)
− mn

b − mn
, mn = n−1

n∑
i=1

G−1
(

i

n + 1

) (12)

The asymptotic properties of (11) follow from Theorem S1.

Example 6. If G(z) = sin(z), 0 ≤ z ≤ π/2 then (12) produces the Amato
index in Table 1.

J (t) = 4

π
sin−1(t) − 1 (13)

It is easily seen that (13) is monotone increasing and satisfies the principle of
diminishing transfers “ . . . One values more such transfer between persons with
given income difference if these incomes are lower than if they are higher”. Kolm
(1976, p.87). This is equivalent to J ′(t) > 0, J ′′(t) < 0 for all 0 ≤ t ≤ 1 if
the derivatives exist (Mehran, 1976). However, because of high concentration
on lower incomes, the Amato index may assume negative values. Moreover,
the value A = 0 does not necessarily represent perfect income equality since
A = 0 for a uniform distribution too.

Example 7. Generalized beta of the first type: G(z) = {
1 − [(1 − z)]1/α2

}1/α1 ,
0 ≤ z ≤ 1 with J (t) = 1 − c(1 − tα1)α2 , c = α1/B(α−1

1 , α2 + 1) α1, α2 > 0
where B(x, y) is the complete beta function

Tn(α1, α2) =
n−1 ∑n

i=1

{
1 − c−1

n

[
1 −

(
i

n+1

)α1
]α2

}
Xi :n

µn
,

cn = n−1
n∑

i=1

[
1 −

(
i

n + 1

)α1
]α2

(14)
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For 0 ≤ α1 ≤ 1, α2 > 1Tn fulfills the Kolm principle. If α1 = 1 then
Tn produces the generalization of the Gini index proposed by Donaldson and
Weymark (1980) and analyzed by Zitikis and Gastwirth (2002). The parameter
combination (α1 = 1, α2 = 2) determines the Mehran index with J (t) =
1 − 3(1 − t)2 and (α1 = 2, α2 = 1) gives the Piesch-Giaccardi index P with
J (t) = (3t2 −1)/2. Note that P violates the Kolm principle because J ′′(t) > 0.

Example 8. For the generalized lambda distribution G−1(t) = tα1 − (1 − t)α2 ,
0 ≤ t ≤ 1,

λn(α1, α2) =
1

n(1−mn)

n∑
i=1

[
B(α1,n+1)

B(α1,i) − B(α2,n+1)

B(α2,n+1−i) − mn

]
Xi :n

µn
,

mn = �(n + 1)

n

n∑
i=1

[
�(α1 + i)

�(n + 1 + α1)�(i)
− �(α2 + n + 1 − i)

�(n + 1 + α2)�(n + 1 − i)

] (15)

The parameters α1 and α2 determine the shape of the score function. In partic-
ular, if α1 = α2 then J (t) is symmetric about zero which means that a similar
weight (of opposite sign) is attached to ordered incomes at equal distances
from the extremes. In particular, the distribution with α1 = α2 = 0.1349 is
practically indistinguishable from N (0, σ ) with σ = 1.46357 (Mudholkar et al.,
1991). For 0 ≤ α1 ≤ 1, 1 ≤ α2 < ∞, (15) satisfies both the conditions of
Theorem S1 and the Kolm principle.

4. A Monte Carlo experiment

In this section we attempt to gather the following information. The sample
size beyond which the asymptotic results of class V (Jn) become applicable to
finite samples. The sensitivity of the indices when a change in the underlying
distribution of income takes place. The peculiarities of the score function Jn that
generate lower bias, smaller relative variability and faster rate of convergence
to the normal distribution.

Models of income distribution

Giorgi and Pallini (1987, 1990), Palmitesta et al. (1999) carried out various
experiments to assess the asymptotic behavior of Gini, Mehran and Piesch-
Giaccardi indices in samples drawn from a Burr/3 distribution. See also Giorgi
and Provasi (1995), Palmitesta et al. (2000). To the best of our knowledge, no
Monte Carlo study has been performed on the Bonferroni and Gini/2.
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Our Monte Carlo experiment involves two special cases of the generalized
beta distribution of the second type introduced by McDonald and Xu (1985)

G B(x; a, b, c, d, e) =
|a|xad−1

[
1 − (1 − c)( x

b )a
]e−1

bad B(d, e)
[
1 + c( x

b )a
]d+e

for 0 < xa <
ba

1 − c
; 0 ≤ c < 1, b, d, e ≥ 0

(16)

which has a high flexibility of shape and provides realistic frameworks to
test the inequality indices. The first model is the well known Burr/3 (or
Dagum type 1) with a = −γ 1, b = 1, c → 1, d = 1, e = δ−1 (if δ = 1
then γ coincides with the Gini index). The other model is the beta density
corresponding to (16) with a = 1, b = 1, c = 0, d = δ, e = γ which has
a compact support. In this case the income X should be interpreted as a
normalized value: X = (y − ymin)/(ymax − ymin) where ymin and ymax denote the
lower and upper limit (known in advance) over the whole population considered.
The closer the values of δ and γ are, the more symmetrical the density. The
condition δ < γ suffices to ensure that the Beta density is positively skewed.
The parameter combinations are reported in the following table:

Table 2: values of (γ, δ) chosen for the simulations

Models C1 C2 C3 C4 C5 C6 C7

Dagum/1 δ 1.00000 1.00000 2.00000 2.00000 3.00000 3.00000 4.00000
γ 0.15000 0.20000 0.20000 0.25000 0.25000 0.30000 0.30000

Beta δ 6.94600 4.07300 2.58600 1.71900 1.17900 0.85100 0.63300
γ 7.43300 5.10200 3.74600 2.84300 2.06900 1.71100 1.35400
Gini 0.15000 0.20000 0.25373 0.31103 0.36603 0.42418 0.47357

It can be easily checked that for the combinations of parameters considered
in Table 2, the corresponding distribution functions possess a finite moment of
order 3 so that assumption 2 is satisfied both for Theorem S1 and for Theorem
S2. Moreover, the models have the same value of the Gini index that is, the
Gini index varies across the curves, but not across the models.

Simulation plan
The design consisted of generating N = 25000 samples of various sizes:

(n = 200, 500, 1000, 2000, 3000, 4000, 8000) for the seven parameter com-
binations with a total of 98 distinct experiments. The exponential spacings
method proposed by Lurie and Mason (1973) was first used to generate uni-
form order statistics Ui :n , i = 1, 2, . . . , n and then the inversion method de-
termined {Xi :n, i = 1, . . . , n} in a random sample from a Burr/3 distribution:
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Xi :n = [(Ui :n)
−δ − 1]−γ . To simulate the order statistics in a random sample

from a beta distribution the independent variates (X1, X2, . . . , Xn) were gen-
erated according to the algorithms described in Rubinstein (1981, procedures
Be-3 and Be-4) and sorted into natural order as {Xi :n, i = 1, . . . , n} by using
Hoare’s Quicksort. Since the simulation plan analyzes sequences longer than
2 × 108, the fast multiple recursive generator (FMRG) proposed by Deng and
Lin (2000) was applied to produce uniform pseudorandom number on the unit
interval (all the sequences were initialized from the same seeds). The FMRG
has a period of (262 − 1) but yields values lower than 231 so that repetitions in
the same sample are probable. This is in contrast to the hypothesis of order
statistics from continuous distributions in which the probability of ties among
the observations is zero. However, because of the large discrepancy between
the number of potential calls and the effective number of values used in a single
sample, this drawback should not interfere constructively with the reliability of
the simulations.

All the software has been written in Future Basic 3 running on a G4 (one
processor, 400MHz) computer using MacOS 9.2 operating system. Program
codes as well as numerical results are available from the author on request.

Assessing performance
Two simple coefficients of performance were considered for comparison

Mb(θ) = 1

N

(
N∑

i=1

∣∣∣∣θi − θ0

θ0

∣∣∣∣
)

; with θ0 =
∫ 1

0 J (t)G B−1(t; a, b, c, d, e)dt∫ 1
0 G B−1(t; a, b, c, d, e)dt

(17)

Cv(θ) =

√√√√√ N∑
i=1

(
θi −θn

θn

)2

N
where θn =

N∑
i=1

θi

N
(18)

The relative mean bias Mb(θ) quantifies the average magnitude of the esti-
mator’s accuracy and Cv(θ) reflects the estimator’s variation from sample to
sample. The computation of θ0, i.e. the value of the given inequality index
in the parent distribution, was carried out by standard numerical integration
routines.

Eight indices were selected for inclusion in the study, that is θ ∈ 
 =
{R, D, G2, P, M, B, λ(0.8, 4), T (0.75, 2)}. The Amato index and De Vergottini
index were not considered because they do not lie in the unit interval. The
Eltetö-Frygies index was not included because all the essentials contained in the
indices proposed by Eltetö and Frygies (1968) can be condensed into the Pietra-
Ricci index. In fact, 1/(1 − D2) = µn/Mn (Kondor, 1971). The two indices
λ(0.8, 4), T (0.75, 2) were chosen after a preliminary study (not reported here)
involving 117 combinations of the parameters (α1, α2): [0.1(0.1)0.9, 1(0.25)4]
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on the basis of the best values of (17) and (18) for the proposed sample sizes.
Both λ(0.8, 4) and T (0.75, 2) are “leftist” giving more weight to transfers
affecting lower income earners. This choice has the effort of giving less im-
portance to observations in the upper tail than do other measures counteracting
the fact that extreme incomes, though rare, have considerable effects on the
sampling distributions. Moreover, since the top order statistics of the income
random variable do not contribute too much to λ(0.8, 4) and T (0.75, 2), their
convergence to the normal distribution should be faster than that of the other
indices.

Results

For reason of space only a selection of the results can be presented here.
Table 3, in two parts, shows the mean value (Ev), the mean bias (17) and
the coefficient of variation (18) for the eight measures of inequality over the
N = 25000 replications.

The general behavior of all the indices follows foreseeable lines. Consistent
with asymptotic results, the absolute bias becomes smaller and the coefficient
of variation diminishes as sample size increases for each θ ∈ 
 although, the
gain in accuracy and in low variance decays as the number of sampling units
grows up. Table 3 reveals that the higher the level of inequality expressed by
θ is, the lower Mb(θ) and Cv(θ) are for each θ (the estimated values of the
population mean exhibit the reverse of this condition). To some extent this
would be expected since (17) and (18) depend on the size of θ . To obtain a
mean-independent comparison the quantities

Relative Bias =

7∑
j=1

Mbj [θ(γ, δ)]

7
,

Relative variation =

7∑
j=1

Cvj [θ(γ, δ)]

7

(19)

were computed over the seven curves for each model and reported in Table
4. The findings of this table confirm the tendencies already shown in Table 3.
In fact, both the relative bias and the relative variation of all θ ’s declines as
the sample size tends to infinity and we could name several measures having
similar optimum performance at least from a sample size n ≥ 500. Also, we
can note that the parent distribution has scarce or no influence on the behavior
of the indices as far as mean bias and relative variation are concerned except
that Mb(θ) and Cv(θ) associated with the beta model are slightly smaller than
those obtained from the Burr/3 model.
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Table 3a: results fo the Burr/3 model.

δ γ n R D G2 P M B λ T

2 0.2 200 EV 0.2536 0.1766 0.3493 0.2003 0.3595 0.3689 0.3293 0.3899
500 0.2537 0.1769 0.3502 0.2002 0.3606 0.3707 0.3314 0.3918

1000 0.2537 0.1769 0.3503 0.2001 0.3609 0.3712 0.3320 0.3924
2000 0.2537 0.1769 0.3504 0.2000 0.3610 0.3714 0.3323 0.3926
3000 0.2537 0.1770 0.3505 0.2000 0.3612 0.3716 0.3325 0.3928
4000 0.2538 0.1770 0.3506 0.2001 0.3612 0.3717 0.3326 0.3929
8000 0.2537 0.1770 0.3506 0.2000 0.3612 0.3717 0.3326 0.3929

200 MB 0.0152 0.0106 0.0201 0.0138 0.0189 0.0182 0.0174 0.0198
500 0.0096 0.0067 0.0126 0.0087 0.0119 0.0114 0.0110 0.0125

1000 0.0068 0.0047 0.0090 0.0062 0.0085 0.0081 0.0078 0.0089
2000 0.0048 0.0034 0.0064 0.0044 0.0060 0.0057 0.0055 0.0063
3000 0.0039 0.0028 0.0058 0.0038 0.0055 0.0048 0.0044 0.0056
4000 0.0034 0.0024 0.0045 0.0031 0.0042 0.0040 0.0039 0.0044
8000 0.0024 0.0017 0.0032 0.0022 0.0030 0.0029 0.0028 0.0031

200 CV 0.0600 0.0601 0.0574 0.0691 0.0527 0.0494 0.0528 0.0508
500 0.0378 0.0377 0.0360 0.0435 0.0331 0.0309 0.0331 0.0318

1000 0.0269 0.0268 0.0257 0.0310 0.0235 0.0219 0.0235 0.0226
2000 0.0190 0.0189 0.0181 0.0219 0.0166 0.0154 0.0166 0.0160
3000 0.0155 0.0155 0.0148 0.0179 0.0136 0.0126 0.0136 0.0130
4000 0.0133 0.0133 0.0127 0.0154 0.0117 0.0109 0.0117 0.0112
8000 0.0095 0.0094 0.0090 0.0109 0.0083 0.0077 0.0083 0.0080

4 0.3 200 EV 0.4731 0.3403 0.6531 0.3912 0.6357 0.6207 0.5790 0.6722
500 0.4734 0.3408 0.6548 0.3912 0.6374 0.6220 0.5822 0.6748

1000 0.4735 0.3409 0.6552 0.3911 0.6379 0.6224 0.5832 0.6757
2000 0.4734 0.3409 0.6554 0.3910 0.6381 0.6226 0.5837 0.6760
3000 0.4736 0.3410 0.6556 0.3911 0.6385 0.6228 0.5839 0.6762
4000 0.4736 0.3411 0.6557 0.3912 0.6384 0.6228 0.5841 0.6764
8000 0.4736 0.3411 0.6557 0.3911 0.6384 0.6228 0.5842 0.6764

200 MB 0.0253 0.0188 0.0296 0.0262 0.0248 0.0220 0.0234 0.0237
500 0.0161 0.0118 0.0187 0.0167 0.0157 0.0139 0.0148 0.0150

1000 0.0116 0.0085 0.0134 0.0120 0.0112 0.0099 0.0106 0.0107
2000 0.0082 0.0060 0.0095 0.0085 0.0079 0.0070 0.0075 0.0076
3000 0.0071 0.0053 0.0088 0.0073 0.0064 0.0062 0.0068 0.0062
4000 0.0058 0.0042 0.0066 0.0060 0.0056 0.0049 0.0053 0.0053
8000 0.0041 0.0030 0.0047 0.0043 0.0040 0.0035 0.0038 0.0038

200 CV 0.0535 0.0552 0.0454 0.0670 0.0390 0.0354 0.0403 0.0353
500 0.0340 0.0347 0.0285 0.0428 0.0246 0.0223 0.0255 0.0222

1000 0.0244 0.0248 0.0204 0.0308 0.0176 0.0160 0.0182 0.0158
2000 0.0173 0.0175 0.0144 0.0218 0.0124 0.0113 0.0129 0.0112
3000 0.0140 0.0142 0.0117 0.0177 0.0101 0.0092 0.0105 0.0091
4000 0.0122 0.0123 0.0101 0.0154 0.0087 0.0079 0.0091 0.0079
8000 0.0087 0.0087 0.0072 0.0109 0.0062 0.0056 0.0065 0.0056
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Table 3b: results fo the Beta model.

δ γ n R D G2 P M B λ T

2.586 3.746 200 EV 0.2540 0.1828 0.3645 0.1942 0.3726 0.3807 0.3388 0.4062
500 0.2538 0.1830 0.3652 0.1938 0.3736 0.3822 0.3407 0.4081

1000 0.2538 0.1830 0.3655 0.1936 0.3739 0.3827 0.3414 0.4087
2000 0.2538 0.1831 0.3656 0.1936 0.3740 0.3829 0.3417 0.4090
3000 0.2538 0.1831 0.3657 0.1936 0.3741 0.3830 0.3418 0.4091
4000 0.2537 0.1831 0.3657 0.1935 0.3741 0.3831 0.3419 0.4091
8000 0.2537 0.1831 0.3657 0.1935 0.3741 0.3831 0.3419 0.4092

200 MB 0.0383 0.0422 0.0419 0.0411 0.0367 0.0339 0.0364 0.0360
500 0.0243 0.0268 0.0266 0.0260 0.0233 0.0213 0.0229 0.0227

1000 0.0171 0.0188 0.0187 0.0183 0.0164 0.0150 0.0161 0.0159
2000 0.0121 0.0134 0.0133 0.0130 0.0116 0.0106 0.0113 0.0113
3000 0.0098 0.0109 0.0108 0.0105 0.0094 0.0086 0.0092 0.0091
4000 0.0085 0.0094 0.0094 0.0091 0.0082 0.0075 0.0080 0.0080
8000 0.0060 0.0067 0.0067 0.0064 0.0058 0.0053 0.0056 0.0056

200 CV 0.0480 0.0531 0.0527 0.0513 0.0461 0.0423 0.0451 0.0448
500 0.0304 0.0335 0.0333 0.0325 0.0291 0.0266 0.0285 0.0283

1000 0.0214 0.0236 0.0234 0.0229 0.0205 0.0187 0.0201 0.0199
2000 0.0152 0.0167 0.0166 0.0162 0.0145 0.0132 0.0142 0.0141
3000 0.0123 0.0136 0.0135 0.0132 0.0118 0.0108 0.0115 0.0115
4000 0.0107 0.0118 0.0117 0.0115 0.0103 0.0094 0.0100 0.0100
8000 0.0076 0.0084 0.0083 0.0081 0.0072 0.0066 0.0071 0.0070

0.633 1.354 200 EV 0.4743 0.3581 0.6989 0.3796 0.6625 0.6375 0.5948 0.7021
500 0.4739 0.3585 0.7004 0.3787 0.6638 0.6382 0.5975 0.7044

1000 0.4737 0.3586 0.7008 0.3784 0.6642 0.6384 0.5984 0.7052
2000 0.4736 0.3586 0.7011 0.3782 0.6644 0.6385 0.5988 0.7055
3000 0.4736 0.3586 0.7011 0.3781 0.6645 0.6386 0.5990 0.7056
4000 0.4736 0.3587 0.7012 0.3781 0.6645 0.6386 0.5990 0.7057
8000 0.4736 0.3587 0.7013 0.3781 0.6646 0.6386 0.5992 0.7058

200 MB 0.0329 0.0386 0.0337 0.0395 0.0262 0.0223 0.0259 0.0238
500 0.0211 0.0248 0.0216 0.0253 0.0168 0.0143 0.0164 0.0151

1000 0.0149 0.0175 0.0152 0.0178 0.0118 0.0100 0.0115 0.0106
2000 0.0104 0.0123 0.0107 0.0125 0.0083 0.0070 0.0081 0.0075
3000 0.0086 0.0101 0.0088 0.0103 0.0068 0.0058 0.0066 0.0061
4000 0.0074 0.0088 0.0076 0.0089 0.0059 0.0050 0.0058 0.0053
8000 0.0052 0.0062 0.0054 0.0062 0.0042 0.0035 0.0040 0.0037

200 CV 0.0411 0.0484 0.0422 0.0492 0.0329 0.0280 0.0320 0.0296
500 0.0263 0.0309 0.0269 0.0314 0.0210 0.0178 0.0203 0.0188

1000 0.0186 0.0219 0.0191 0.0223 0.0148 0.0126 0.0144 0.0133
2000 0.0131 0.0154 0.0134 0.0156 0.0104 0.0088 0.0101 0.0093
3000 0.0107 0.0126 0.0110 0.0128 0.0086 0.0073 0.0083 0.0077
4000 0.0093 0.0110 0.0096 0.0111 0.0074 0.0063 0.0072 0.0067
8000 0.0065 0.0077 0.0067 0.0078 0.0052 0.0044 0.0051 0.0047



A new class of inequality measures based on a ratio of L-statistics 153

Table 4: Overall measure of bias and relarive variation.

n R D G2 P M B λ T

Burr/3 Bias 200 0.0472 0.0478 0.0435 0.0557 0.0394 0.0369 0.0404 0.0376
500 0.0300 0.0302 0.0274 0.0356 0.0248 0.0232 0.0253 0.0235

1000 0.0215 0.0215 0.0195 0.0255 0.0177 0.0165 0.0180 0.0167
2000 0.0152 0.0152 0.0138 0.0181 0.0125 0.0116 0.0127 0.0118
3000 0.0132 0.0128 0.0124 0.0147 0.0111 0.0092 0.0108 0.0095
4000 0.0107 0.0107 0.0097 0.0127 0.0088 0.0082 0.0089 0.0083
8000 0.0076 0.0076 0.0069 0.0091 0.0062 0.0058 0.0064 0.0059

Var. 200 0.0600 0.0604 0.0547 0.0711 0.0495 0.0463 0.0502 0.0469
500 0.0379 0.0379 0.0343 0.0450 0.0311 0.0291 0.0316 0.0294

1000 0.0270 0.0270 0.0245 0.0321 0.0222 0.0206 0.0225 0.0209
2000 0.0191 0.0191 0.0173 0.0227 0.0156 0.0146 0.0159 0.0148
3000 0.0157 0.0162 0.0163 0.0191 0.0134 0.0122 0.0127 0.0134
4000 0.0134 0.0134 0.0121 0.0160 0.0110 0.0103 0.0112 0.0104
8000 0.0096 0.0095 0.0086 0.0114 0.0078 0.0073 0.0079 0.0074

Beta Bias 200 0.0368 0.0413 0.0397 0.0407 0.0338 0.0308 0.0334 0.0326
500 0.0233 0.0263 0.0253 0.0258 0.0214 0.0195 0.0210 0.0206

1000 0.0164 0.0187 0.0179 0.0182 0.0151 0.0138 0.0148 0.0145
2000 0.0117 0.0134 0.0128 0.0129 0.0107 0.0099 0.0105 0.0103
3000 0.0095 0.0111 0.0106 0.0105 0.0088 0.0081 0.0085 0.0084
4000 0.0082 0.0097 0.0092 0.0091 0.0076 0.0071 0.0074 0.0073
8000 0.0058 0.0072 0.0067 0.0064 0.0054 0.0052 0.0052 0.0052

Var. 200 0.0460 0.0517 0.0497 0.0507 0.0424 0.0384 0.0414 0.0405
500 0.0292 0.0328 0.0315 0.0322 0.0268 0.0243 0.0262 0.0256

1000 0.0206 0.0231 0.0223 0.0227 0.0189 0.0171 0.0185 0.0181
2000 0.0146 0.0164 0.0158 0.0161 0.0134 0.0121 0.0131 0.0128
3000 0.0119 0.0134 0.0129 0.0131 0.0109 0.0099 0.0107 0.0105
4000 0.0103 0.0116 0.0111 0.0114 0.0095 0.0085 0.0092 0.0091
8000 0.0073 0.0082 0.0079 0.0080 0.0067 0.0060 0.0065 0.0064

As we have seen in Section 3, all the indices considered for the Monte
Carlo experiment were shown to be asymptotically normally distributed. The
asymptotic results however, are more readily applicable if we can establish how
fast the convergence is taking place. Since the population distribution function
is fixed, the rate of convergence depends only on the limit weight function J
which can be used to investigate the asymptotic properties of (5). Table 5a
and 5b show the results of testing


H0 : ψ

[
θ − E(
)

σ(θ)

]
= N (0, 1)

H1 : ψ

[
θ − E(θ)

σ (θ)

]
�= N (0, 1)

(20)
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with the χ2 goodness-of-fit test where ψ( . ) represents the distribution of the
inequality index. More specifically, the 25000 repetitions of each θ ∈ 
 were
grouped into 40 non overlapping intervals each having an expected number
of frequencies of 1250. The class limits of the empirical distributions of the
inequality indices were chosen such that all theoretical probabilities are equal to
1/40 which gives equal importance to all partition of the Gaussian model. The
observed values of the Chi-square greater than the threshold value χ2

0.05(37) =
52.1923, were replaced by “ * ” meaning that H0 cannot be accepted at 5% level
of significance. The Shapiro-Wilk test W would have been more akin to the
issues discussed in this section than the χ2. Nevertheless, our simulation plan
considers N = 25000 replications of the quantity to be tested for normality and
the computation of W becomes very imprecise as the number of cases increases.
Royston (1992) gave an acceptable approximation for N in the interval [3-5000].
It is generally observed that, with sporadic exceptions, the tested empirical
distributions are acceptably normal when the model underlying the sample
values is the beta distribution and sample sizes of n ≥ 1000 are available. The
leftist measures B, M , λ(0.8, 4) and T (0.75, 2) perform well throughout. The
normal model is also a plausible representation of the empirical distribution of
the Pietra- Ricci index and Gini/2 index. The insufficient agreement between
ψ(θ) and N (0, 1) for smaller sized samples and low or moderate levels of
inequality (curve C1-C3 in Table 2) should be ascribed to the slow convergence
of the standard error of (5).

Under the Burr/3 model the performance of most indices deteriorates ap-
preciably and a great variation is observed in the values of χ2

c across levels of
inequality and across sample sizes. Specifically, the N (0, 1) was found to be
appropriate for the empirical distribution of B, M and λ(0.8, 4) for n ≥ 2000.
Also, D and G2 have a sampling distribution which shows an encouraging
degree of fitting to the normal whereas the empirical distribution for R and P
contradict the postulated model. For high levels of inequality (curves C4-C7)
the convergence to the normal is barely evident. In particular, R is very unreli-
able (except for the largest samples) and P exhibits a χ2

c systematically greater
than the others. On the other hand, the sampling behavior of B, M , λ(0.8, 4)

and T (0.75, 2) appears to be quite close to what asymptotic theory suggests.
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Table 5a: asymptotic normality under the Burr/3 model.

n R D G2 P M B λ T

C1 200 * * * * * 47.38 * *
C2 200 * * * * * * * *
C3 200 * * * * 45.44 * * 40.01
C4 200 * * * * * 46.45 * *
C5 200 * * * * 34.00 28.93 * *
C6 200 * * * * * * * 44.40
C7 200 * * 48.47 * * * * 45.60

C1 500 * * 48.36 * 49.98 * * 39.97
C2 500 * * * * * * * *
C3 500 * * 48.72 * * 43.14 45.25 32.89
C4 500 * * * * 50.29 45.57 * 39.09
C5 500 * * * * 35.77 50.42 * 37.87
C6 500 * * * * * * * 45.36
C7 500 * * * * 44.54 * * 35.40

C1 1000 * * * * * * * *
C2 1000 * * * * * * * *
C3 1000 * 51.24 * * 43.49 45.29 * *
C4 1000 * * 47.63 * * 45.70 * *
C5 1000 * 48.28 45.32 * 36.60 * 38.71 39.05
C6 1000 * * 51.73 * 49.37 * * 49.40
C7 1000 * * 47.36 * 36.95 * * 40.14

C1 2000 37.05 35.58 49.87 * 21.03 31.09 43.59 42.64
C2 2000 51.08 44.34 47.96 * 37.02 30.47 25.68 21.79
C3 2000 39.71 32.52 40.70 48.83 42.26 * 37.44 47.06
C4 2000 * 41.03 30.06 * 46.40 35.08 47.88 25.00
C5 2000 * 42.40 40.25 * 44.89 33.91 40.87 34.72
C6 2000 * * 38.32 * 47.69 * * 29.69
C7 2000 * 50.12 48.99 * 26.58 29.52 35.73 33.26

C1 3000 38.91 26.29 44.78 48.72 47.74 29.55 30.96 32.78
C2 3000 43.50 35.32 26.90 * 30.60 40.05 32.24 45.47
C3 3000 45.22 37.70 32.72 * 38.11 36.63 49.23 40.84
C4 3000 39.52 39.49 39.79 * 22.36 33.60 37.15 44.49
C5 3000 * 51.53 34.46 * 35.65 32.86 23.28 24.75
C6 3000 * * 32.23 * 30.80 41.15 41.37 29.45
C7 3000 * 39.29 24.14 * 31.73 37.09 28.51 51.51

C1 4000 45.94 30.04 32.86 46.63 31.30 23.88 32.73 40.58
C2 4000 * 46.89 * * 46.04 35.75 41.25 32.60
C3 4000 41.31 43.54 27.58 * 43.04 44.77 * 29.65
C4 4000 * * 49.46 * 43.24 36.29 34.85 46.27
C5 4000 48.50 41.33 30.31 * 42.65 45.30 46.22 33.89
C6 4000 * * 35.49 * 38.08 51.00 * 34.31
C7 4000 * 48.85 24.54 * 38.34 51.83 48.90 31.53

C1 8000 37.59 40.73 45.80 44.06 44.80 41.39 38.51 39.75
C2 8000 42.20 47.61 41.19 * 47.53 46.55 50.63 *
C3 8000 46.06 47.25 39.87 * 39.19 33.71 46.64 33.89
C4 8000 39.81 42.82 * * 35.40 42.13 37.72 28.09
C5 8000 36.67 28.84 36.09 39.81 34.90 31.12 51.18 28.02
C6 8000 * 50.36 36.04 * 44.40 48.03 * 37.18
C7 8000 * 34.33 34.06 * 36.38 32.08 40.94 *
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Table 5b: asymptotic normality under the beta model.

n R D G2 P M B λ T

C1 200 36.89 38.22 41.23 48.55 34.52 49.00 35.42 52.22
C2 200 40.65 41.17 24.25 40.00 * 51.86 44.38 46.43
C3 200 32.99 * * * 26.69 33.36 33.40 42.59
C4 200 37.15 39.97 35.74 47.13 41.00 28.07 39.03 38.95
C5 200 46.88 * * 43.79 41.40 43.96 36.35 42.42
C6 200 43.83 37.34 36.56 43.01 * * * *
C7 200 30.20 36.97 40.79 36.39 45.51 * 51.57 *

C1 500 43.36 43.77 44.61 * 49.04 50.55 33.09 48.74
C2 500 * v34.50 36.52 37.96 32.91 35.13 31.45 36.51
C3 500 36.39 29.20 43.16 27.85 27.27 33.56 25.96 27.36
C4 500 40.03 37.02 40.01 29.59 44.63 49.16 * 41.23
C5 500 35.16 37.80 31.39 39.02 38.28 42.58 39.47 40.81
C6 500 25.88 31.07 46.44 28.92 * 48.19 * 44.03
C7 500 * 35.73 * 46.70 51.62 * * *

C1 1000 37.45 40.50 46.54 2.84 43.14 33.34 47.02 32.09
C2 1000 49.06 37.79 34.54 36.77 23.13 47.15 30.33 29.43
C3 1000 28.95 39.10 38.95 29.80 * 29.75 34.49 36.63
C4 1000 41.36 40.96 29.56 33.12 42.52 28.72 34.20 35.07
C5 1000 * 39.06 37.51 * 48.73 38.64 48.12 39.67
C6 1000 38.12 19.16 48.23 44.10 26.53 31.55 31.44 44.46
C7 1000 23.62 25.01 37.90 35.57 42.81 38.82 36.45 34.18

C1 2000 47.56 41.13 44.53 29.39 35.81 27.36 31.27 45.03
C2 2000 20.73 * 46.86 28.48 36.02 25.15 32.19 39.08
C3 2000 25.15 37.39 34.27 34.85 45.61 39.25 41.12 44.89
C4 2000 50.31 27.76 46.36 30.59 33.42 37.43 32.15 26.04
C5 2000 * 40.20 39.63 37.00 23.20 42.53 29.56 24.08
C6 2000 27.83 23.64 36.25 33.11 25.94 30.44 32.60 34.55
C7 2000 40.58 30.02 36.31 45.63 23.14 24.06 17.05 26.44

C1 3000 26.62 51.05 41.56 26.23 44.82 35.76 40.71 46.46
C2 3000 34.48 37.06 46.38 26.35 31.31 29.10 30.28 36.09
C3 3000 51.06 42.86 32.68 27.21 37.78 43.24 36.56 41.82
C4 3000 34.91 45.34 35.93 44.21 36.48 42.70 35.14 24.84
C5 3000 34.74 34.38 26.93 33.15 32.68 32.49 29.96 31.03
C6 3000 30.08 * 49.56 29.82 33.88 48.04 39.40 32.44
C7 3000 39.54 32.78 34.13 35.80 31.70 34.84 27.71 36.26

C1 4000 27.31 29.58 32.89 47.55 6.38 35.29 43.91 34.88
C2 4000 17.01 33.68 35.13 37.26 24.60 41.12 28.90 36.04
C3 4000 30.39 42.76 33.53 23.07 39.11 34.06 28.18 34.22
C4 4000 27.91 33.61 27.46 26.16 * 27.35 37.22 42.26
C5 4000 * 42.02 23.96 45.34 34.36 33.93 31.08 36.73
C6 4000 29.24 20.05 20.68 35.48 29.48 39.02 33.64 33.86
C7 4000 41.57 36.25 40.44 52.18 * 42.67 40.53 44.15

C1 8000 27.86 40.82 37.61 49.52 29.53 26.26 29.34 28.09
C2 8000 26.48 26.50 42.99 36.39 47.83 36.94 32.46 36.39
C3 8000 23.30 24.88 32.74 39.71 30.56 30.84 29.86 37.06
C4 8000 30.03 48.58 46.39 32.99 27.75 40.65 36.39 27.77
C5 8000 51.40 43.69 39.51 42.87 38.07 48.29 48.87 36.26
C6 8000 27.22 24.84 37.16 26.91 42.73 32.10 38.92 32.96
C7 8000 41.45 38.22 45.63 42.18 38.20 35.65 38.28 14.18
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5. Concluding remarks

This article proposes the expected values of order statistics from a given
random variable as weights of a new class of inequality measures. Also, a
useful variant of the QQ-plot has been introduced. A Monte Carlo experiment
has highlighted both the computational feasibility of the new indices and their
strength and shortcomings.

The general conclusions that can be drawn, at least in the framework of
the models considered in the simulations, are the following.

i) Although there appears to be a common thread among the indices of
inequality, their sampling properties are not invariant. Specifically, the
approach to normality for the Bonferroni index, Mehran index, λ(0.8, 4),
T (0.75, 2) is faster than for the other indices.

ii) From a statistical point of view, the boundness of the weight function
appears to be a factor of minor relevance for the choice of an inequality
measure.

iii) The fashion of a “simple form” for the weight function of an income
inequality index is not defensible since the relatively complex formulae for
λ(0.8, 4) and T (0.75, 2) have often obtained better results than the more
elegant and computationally simple expressions for the indices of Gini,
Piesch-Giaccardi and Mehran.

iv) The importance given to inequality measures like the Pietra-Ricci index and
Gini/2 index in empirical work is not questionable on the ground of their
sampling accuracy which, on the contrary, seems to be very reasonable.

v) A question of both theoretical and practical interest is how the inequality
measures would vary their performance as the parent population undergoes
change. Our findings indicate that the performance of an index is unlikely
to be affected seriously by the underlying model provided that the skewness
of the potential distribution functions is at comparable level and the size
of the sample is 8000 or larger.

vi) If the choice of an income-weighting scheme is based on a strictly sta-
tistical background, then the Bonferroni index, Mehran index, λ(0.8, 4)

and T (0.75, 2) should be preferred because their asymptotic properties are
better than those of the indices which lack the property of diminishing
transfers. Thus considerations of both economic theory (the Kolm princi-
ple) and statistical theory point to the need to use leftist weight function
to devise an income inequality measure.
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