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Abstract: This paper proposes the generalized lambda distribution (GLD)
as a model for describing the distribution of income over a population. Per-
formances of various methods of fitting the GLD to grouped income data are
evaluated. Of the estimators considered it is concluded that the unweighted
least squares regression on group means should be used.

1 Introduction

There has been an increased interest in describing the distributions of per-
sonal income for the last several decades. A number of monographs have been
published in the area, including those by Dagum [1], Kleiber and Kotz [4].
The study of income distributions usually provide a mathematical descrip-
tion F for the cumulative distribution of incomes and use it to summarize
in a small number of parameters the peculiarities one discovers in empirical
distributions. Also, F can be employed to smooth out irregularities in the
histogram of observed data and to compute summary measures that can be
compared spatially and temporally.

A wide variety of functional forms have been considered as possible models
for incomes. One approach is to view the income density function as the
outcome of a stochastic process (e.g. the Champernowne model). A second
approach exploits the connections between income and aptitudes (e.g. the
lognormal model). Also, the model is derived from a differential equation
designed to capture a stable structure of observed distributions of income (e.g.
Singh-Maddala model). Another approach is the search of a flexible analytic
form, which ensures a satisfactory goodness of fit (e.g. the generalized beta
model). Other approaches can no doubt be suggested.

The generalized lambda distribution (GLD) is a flexible and manageable
tool for modeling empirical and theoretical distributions. The GLD is pri-
marily specified by the quantile function

Xp(p;λ) = λ1 + λ−1
2

[
pλ3 − qλ4

]
0 ≤ p ≤ 1, q = 1 − p; λ2 �= 0 (1)

Where λ1 is a location parameter, λ2 is a linear parameter related to (though
not only to) the scale of X and λ3, λ4 are exponential parameters determining
the shape of the quantile function. The following conditions are imposed:

If λ2 → ∞ then λ3, λ4 > −∞; If λ3, λ4 → ∞ then |λ2| > 0 (2)
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Although there is scarcely a need for another model to fit the distribution of
income the flexibility and the adaptability offered by the GLD legitimate its
advancement in this context.

The basic proposition of this paper is that personal income distributions
can be adequately described by using the quantile function (1). The content
of the paper is organized as follows: in Section 2 the properties of GLD
are described and its analytical and statistical peculiarities are summarized.
Section 3 contains a discussion of several estimation procedures in the case
of grouped data paying special attention to the extension of these methods
to a random variable defined by its quantile function. The goodness-of-fit
statistics assessing their usefulness are also considered. The results of an
application to a real data set are exposed in Section 4 providing information
about the relative merits of the different estimation techniques.

2 Shape, moments, and Lorenz curve of the GLD

The support of the GLD random variable is bounded (λ1 − 1/λ2, λ1 + 1/λ2)
if λ3, λ4 > 0 and is the real line when λ3, λ4 < 0. Hence, the extremes of
X(p, λ) are finite or infinite according to the sign of the exponential parame-
ter. Analytic expression for the cumulative distribution function F (x, λ) is in
general not available. However, the fact that the GLD is not invertible is not
a serious drawback because the same is true for many popular models such
as lognormal and generalized beta. The limiting form of (1) as λ3 diverges
to ∞ is the Pareto distribution.

The probability density function of a GLD random variable is defined
by the density quantile function, that is the density expressed in terms of
p = F (x, λ)

1
dX(p;λ)

dp

= h [X(p;λ)] =
λ2

λ3pλ3−1 + λ4qλ4−1
(3)

If λ3 = λ4 then (3) is symmetric about the pole X = λ1. When scale and
location are changed we transform the variable Y = a+bX . The transformed
distribution is another member of the GLD family with λ1, λ2 replaced by
a + bλ1 and bλ2 respectively. Expression h[X(p, λ)] represents a legitimate
probability density function if and only if it is nonnegative and integrates to
one. The latter condition follows directly from (3). A good summary of the
regions in which the GLD is well defined is given in Karian and Dudewicvz [3].

The ordinates of the density quantile function at the extremes of the
range of variation are (λ2/λ4, λ2/λ3) if λ3, λ4 ≥ 1 and zero for λ3, λ4 < 1.
The parameters λ3 and λ4 determine the type of tails of the GLD (provided
that the sign of λ2 ensures that (3) is a valid density function). For example,
if λ3, λ4 > 0 then (3) has increasingly peakedness and short tails; if λ3, λ4 < 0
the tails have increasingly heaviness. The density tends to zero both as p goes
to 0 and as p goes to 1 if, respectively, λ3 < 1 and λ4 < 1. On the other
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hand, if λ4 ≥ 1(λ3 ≥ 1) then the density has truncated left (right) tail. The
density (3) is unimodal if λ3, λ4 > 2, if 0 < λ3, λ4 < 1 or if 0 < λ3, λ4 < 0.
It is zeromodal if 1 < λ3, λ4 < 2. The arithmetic mean and the median of
a GLD are

µ = λ1 + λ−1
2

⌊
1

(λ3 + 1)
− 1

(λ4 + 1)

⌋
; Me = λ1 + λ−1

2

(
0.5λ3 − 0.5λ4

)
(4)

Consider the linear transformation Z = X − λ1. Then

E(Zi) =
i∑

j=0

(
j

i

)
(−1)jλ−i

2 B(λ3(i − j) + 1, λ4j + 1); i = 1, 2, · · · (5)

Where B(x, y) denotes the complete beta function. The i-th moment of the
GLD exists if and only if min(λ3, λ4) > −i−1. Since Z − E(Z) = X − E(X)
the central moments of X coincide with the central moments of Z. The
degree of skewness can be measured by

µ − Me

SMe
= b(λ) (6)

=
(λ4 + 1)

[
1 − (λ3 + 1)0.5λ3

]
− (λ3 + 1)

[
1 − (λ4 + 1)0.5λ4

]
(λ4 + 1)

[
1 − 0.5λ3

]
+ (λ3 + 1)

[
1 − 0.5λ4

]
where SMe is the mean deviation about the median. From (6) it easily
checked that (3) has a positive skewness if λ3 < λ4. The practical advantage
of using X(p, λ) instead of F (x, λ) depends on having the X(p, λ) in closed
form. First, the Lorenz curve and other characteristics are handled simply.

L(p; λ) = µ−1
n

λ1p + λ−1
2

h
(λ3 + 1)−1 pλ3+1 + (λ4 + 1)−1

“
qλ4+1 − 1

”io
(7)

The condition λ2λ3λ4 ≥ 0 suffices to ensure the convexity of the Lorenz
curve as long as the mean exists and h[X(p, λ)] is a valid density function.
Sarabia [7] used this model to define a hierarchy of Lorenz curves. Maddala
and Singh [5] employed a version of (7) obtaining good results in terms of
fitting. The use of (7) can be done analytically and not numerically. For
instance, the Lorenz orderings can be obtained by a direct comparison of
involved curves.

Second, several measures of inequality can be written as
∫

J(p)X(p, λ)dp
with

∫
J(p)dp = 0 where J(.) is a monotone weight function. The following

formulae express three well-known measures of income inequality.
Gini

µ−1
{
λ1 − µ + 2λ−1

2

[
(λ3 + 1)−1 − (λ4 + 1)−1(λ4 + 2)−1

]}
(8)
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Bonferroni

µ−1
{
µ − λ1 + λ−1

2

[
(λ4 + 1)−1(λ + ψ(λ4 + 2)) − (λ3 + 1)−2

]}
(9)

Pietra-Ricci

µ−1
{
(µ − λ1)pµ + λ−1

2

[
(λ3 + 1)−1pλ3+1

µ + (λ4 + 1)−1qλ4+1
µ

]}
(10)

Where γ is the Eulero’s constant and ψ(.) is the digamma function.
Finally, the expected value of the i-th order statistic exists in closed form

for each i

E(Xi:n) = λ1 + λ−1
2

[
B(n + 1, λ3)

B(i, λ3)
− B(n + 1, λ4)

B(n − i + 1, λ4)

]
; i = 1, · · · , n (11)

3 Parameter estimation

Suppose that n ordered incomes have been grouped (preserving the order-
ing) into k intervals where the boundaries are (Li, Ui], i = 1, 2, · · · , k. The
number of values in the i-th interval is ni with Σni = n. The mean income
is mi, fi = ni/n denotes the relative frequency, Ni and pi are, respectively,
the cumulative absolute and relative frequency of incomes not exceeding Xi.
Clearly, the grouping scheme may significantly affect the parameter estima-
tion and the variance of estimators. For instance, if the observations cluster
significantly around particular values producing multimodal distributions, no
GLD can give an acceptable agreement with this behavior.

Karian and Dudewicz [3, p. 155] considered the following system

S1 : r3 =
A1 − A2

A3 − A1
; r4 =

A4 − A5

A3 − A2
; S2 : r2 = λ−1

2 (A3−A2); r1 = λ1+λ−1
2 A1 (12)

Where Ai = (αi)λ3 − (1 − αi)λ4 , i = 1, 2, · · · , 5; α2 < α1, α2 < α3, α5 <
α4; αI is an observed percent point and ri is its sample counterpart. The
subsystem formed by the first two equations is free of λ1andλ2. Now, given
a solution (λ3, λ4)ofS1, one can rapidly determine the best companion choice
for (λ1, λ2) by solving the linear system S2. The roots of S1 can be obtained
by a Newton method. This, however, should be preceded both by a trial and
error search over the relevant range values of (λ3, λ4) and a direct search like
the Nelder-Mead simplex algorithm to establish a reasonable starting point.

The method of quantiles has the advantage of being operative without the
necessity of knowing every measurement. Moreover, the outliers are given
less weight than in the moment estimates; in fact, (12) can be still be ap-
plied when the moments do not exist. The choice of α, however, involves an
inherent arbitrariness. If the alfa’s favor the central part of the distribution,
then the Xi’s around the mode are efficiently estimated, but at the cost of
underestimating higher incomes. If the alfa’s were selected in the tails then
the most frequent incomes would be neglected. Karian and Dudewicz [3,
p. 158] suggest: α = (0.5, 0.1, 0.9, 0.75, 0.25) which is quite unsatisfactory for
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income distributions that are typically skewed to the right. The estimates
determined by equating four percentage points seem to be a valid alterna-
tive to (12). However, all the Ck−1,4 combinations should be investigated
(supposing that at least one of the non linear four equations systems will
give permissible values) to establish an optimal choice. The difficulties of
applying this method for large k are such that it would probably be better
to abandon it.

The method of moments has been advocated because of its widespread
use in practice. The first step is the solution, following closely that of S1, of
a nonlinear system that depends solely on (λ3, λ4)

γ1 =
n∑

i=1

(
Xi − x

s

)3

γ2 =
n∑

i=1

(
Xi − x

s

)4

(13)

Once the best values for (λ3, λ4) have been attained, the values of (λ1, λ2)
are given by λ2 = ±(b−a2)0.5/s, λ1 = −a/λ3, a = (1+λ3)−1−(1+λ4)−1, b =
(1 + 2λ3)−1 − (1 + 2λ4)−1 − 2B(1 + λ3, 1 + λ4), min(λ3, λ4) ≥ −0.25.

The method of moments is inadequate. Its use is restricted to distribu-
tions possessing their first four moments, but the heavy tail usually observed
in empirical income distributions does not support such a premise. Further-
more, when the available data are grouped, a correction for grouping should
be considered and if L1 and/or Uk were left unspecified, the moments cannot
be estimated without making arbitrary assumptions. On the other hand (11)
is cryptic: the GLD density is symmetric for λ3 = λ4 but γ1 = 0 even if
λ3 �= λ4 and it is far from clear which characteristic is being measured by
γ2 in skewed distributions. Finally, for some data sets, the iterative process
might converge to (λ3, λ4) for which GLD has no finite moments. The method
of quantiles and the method of moments do not appear to be very convenient
for income data at the present. The ordinary least squares estimates of λ can
be obtained by minimizing

S(λ) =
k∑

i=1

[yi − λ1 − β2gi(λ3, λ4)]
2
fi; β2 = λ−1

2

M1 : yi = Ui; gi = pλ3
i − qλ4

i ; i = 1, 2, · · · , k − 1

M2 : yi = Ui; gi =
B(n + 1, λ3)
B(Ni, λ3)

− B(n + 1, λ4)
B(n − Ni + 1, λ4)

,

i = 1, 2, · · · , k − 1

M3 : yi = mi; gi =
pλ3+1

i − pλ3+1
i−1

fi(λ3 + 1)
+

qλ4+1
i − qλ4+1

i−1

fi(λ4 + 1)
, i = 1, 2, · · · , k

M1 defines the estimators that minimize the sum of squared differences be-
tween predicted and observed quantiles. M2, based on (9), is an extension to
grouped data of the method proposed by Oztürk and Dale [6]. M3 suggests
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itself because of the importance of the group means for measuring income
inequality. This new approach is more demanding since it requires knowl-
edge of the mean of each income group, but has the advantage of using more
information than the other methods. Since λ1 and λ2 are in linear form, they
can be replaced by their least squares estimates given (λ3, λ4)

λ̂1 = ȳ − λ̂2
−1

ḡ.

λ̂2 =
1

β̂2

=
∑k

i=1(gi − ḡ)2fi∑k
i=1 (yi − ȳ) (gi − ḡ) fi

(14)

⇒ S(λ3, λ4) = (1 − r2
yg)

k∑
i=1

(yi − ȳ)2 fi

Where ryg is the correlation coefficient between y and g and ryg does not
depend on λ1, β2. Therefore, the pair (λ3, λ4) that minimizes [1− (ryg)2] also
minimizes S(λ3, λ4). It should be remarked that S(λ3, λ4) in (14), like S1
and (12), can have multiple solutions or no solution for some data sets. Even
when a solution exists, the numerical procedure devoted to its search may
fail to find it because of convergence failure. Moreover, the observed yi will
not have equal variance nor will they be uncorrelated. Since this drawback
is, at least in theory, serious further studies (e.g. in the line of generalized
least squares) are needed to assess the effectiveness of GLD for income data.

4 Parameter estimation

Gastwirth [2] gives an income distribution in ten classes. The Gini index
for the entire sample is 0.4014 and the crude bounds within which the index
must lie are (0.3883, 0.4083). Table 1 reveals the relative merit of five distinct
estimators of λ.

Since the αi have not been reached, the ri’s in (12) were computed by
using linear interpolation on the given values (Q1) and the closest observed
quantiles (Q2). It is easily seen that the quantile estimates depend markedly
on the particular choice of percentage points. The moments have been cal-
culated by assuming that all incomes in the i-th interval equal the average
income mi whereas, the solutions of (14), were obtained by using the Nelder-
Mead simplex procedure. According to the SSE there is a sufficiently close
agreement between observed and estimated percentiles with the exception of
the two methods based on quantiles. As a general result, the fit of GLD is
reasonable good in the middle part, but is poor in describing both the upper
and the lower tails. The best performance has been obtained by M2 with
M1 close competitor. M3 has an unduly bad fit in the last class. The Chi-
squared criterion confirms the ranking of the six techniques determined by
SSE. However, only the method of moments and the method of least squares
on group means were able to provide an estimated Gini index (reported in
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Table 1: Observed and estimated quantiles of income data.

the last row of Table 1) lying inside the prescribed bounds. In this sense M3
carries the gold medal.
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