

samuelj
File Attachment
2000c1dacoverv05b.jpg

Using R for Introductory Statistics

Using R for Introductory Statistics
John Verzani

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

This edition published in the Taylor & Francis e-Library, 2005.
 “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of

thousands of eBooks please go to http://www.ebookstore.tandf.co.uk/.”

Library of Congress Cataloging-in-Publication Data Verzani, John. Using R for introductiory
statistics/John Verzani. p. cm. Includes index. ISBN 1-58488-4509 (alk. paper) 1. Statistics—
Data processing. 2. R (Computer program language) I. Title QA276.4.V47 2004 519.5—dc22

2004058244

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are

listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the

consequences of their use.
Neither this book nor any part may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press

for such copying.
Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2005 by Chapman & Hall/CRC Press

No claim to original U.S. Government works

ISBN 0-203-49989-1 Master e-book ISBN

ISBN 0-203-59470-3 (Adobe e-Reader Format)
International Standard Book Number 1-58488-4509 (Print Edition)

Library of Congress Card Number 2004058244

Contents

1 Data 1

2 Univariate data 31

3 Bivariate data 67

4 Multivariate Data 102

5 Describing populations 138

6 Simulation 161

7 Confidence intervals 178

8 Significance tests 207

9 Goodness of fit 239

10 Linear regression 264

11 Analysis of variance 298

12 Two extensions of the linear model 327

A Getting, installing, and running R 343

B Graphical user interfaces and R 348

C Teaching with R 354

D More on graphics with R 356

E Programming in R 369

 Index 392

Preface

What is R?

R is a computer language for statistical computing similar to the S language developed at
Bell Laboratories. The R software was initially written by Ross Ihaka and Robert
Gentleman in the mid 1990s. Since 1997, the R project has been organized by the R
Development Core Team. R is open-source software and is part of the GNU project. R is
being developed for the Unix, Macintosh, and Windows families of operating systems.
The R home page (http://www.r-project.org/) contains more information about R and
instructions for downloading a copy.

R is excellent software to use while first learning statistics. It provides a coherent,
flexible system for data analysis that can be extended as needed. The open-source nature
of R ensures its availability. R’s similarity to S allows you to migrate to the commercially
supported S-Plus software if desired. Finally, despite its reputation, R is as suitable for
students learning statistics as it is for researchers using statistics.

The purpose of this book

This book started as a set of notes, titled “simpleR,” that were written to fill a gap in
documentation for using R in an introductory statistics class. The College of Staten Island
had been paying a per-seat fee to use a commercial statistics program. The cost of the
program precluded widespread installation and curtailed accessibility. It was determined
that the students would be better served if they could learn statistics with a software
package that taught them good computer skills at the outset, could be installed all over
campus and at home with relative ease, and was free to use. However, no suitable
materials were available to accompany the class text. Hence, the basis for “simpleR”—a
set of notes to accompany an in-class text.

Now, as R gains wider acceptance, for pedagogic, style, and economic rea-sons, there
is an increase, but no abundance, in available documentation. The adoption of R as the
statistical software of choice when learning statistics depends on introductory materials.
This book aims to serve the needs of students in introductory applied-statistics classes
that are based on precalculus skills. An emphasis is put on finding simple-looking
solutions, rather than clever ones. Certainly, this material could be covered more quickly
(and is in other books such as those by Dalgaard, Fox, and Venables and Ripley). The
goal here is to make it as accessible to student-learners as possible.

This book aims to serve a hybrid purpose: to cover both statistical topics and the R
software. Though the material stands alone, this book is also intended to be useful as an
accompaniment to a standard introductory statistics book.

Description of this book

The pacing and content of this book are a bit different from those in most introductory
texts. More time is spent with exploratory data analysis (EDA) than is typical, a chapter
on simulation is included, and a unified approach to linear models is given. If this book is
being used in a semester-long sequence, keep in mind that the early material is
conceptually easier but requires that the student learn more on the computer. The pacing
is not as might be expected, as time must be spent learning the software and its
idiosyncrasies.

Chapters 1 through 4 take a rather leisurely approach to the material, developing the
tools of data manipulation and exploration. The material is broken up so that users who
wish only to analyze univariate data can safely avoid the details of data frames, lists, and
model formulas covered in Chapter 4. Those wishing to cover all the topics in the book
can work straight through these first four chapters.

Chapter 5 covers populations, random samples, sampling distributions, and the central
limit theorem. There is no attempt to cover the background probability concepts
thoroughly. We go over only what is needed in the sequel to make statistical inference.

Chapter 6 introduces simulation and the basics of defining functions. Since R is a
programming language, simulations are a strong selling point for R’s use in the
classroom.

Traditional topics in statistical inference are covered in chapters 7–11. Chapters 7, 8,
and 9 cover confidence intervals, significance tests, and goodness of fit. Chapters 10 and
11 cover linear models. Although this material is broken up into chapters on linear
regression and analysis of variance, for the most part we use a common approach to both.

Chapter 12 covers a few extensions to the linear model to illustrate how R is used in a
consistent manner with many different statistical models. The necessary background to
appreciate the models is left for the reader to find.

The appendices cover some background material and have information on writing
functions and producing graphics that goes beyond the scope of the rest of the text.

Typographic conventions

The book uses a few quirky typographic conventions. Variables and commands are
typeset with a data typeface; functions as a. function() (with accompanying parentheses);
and arguments to functions as col= (with a trailing equal sign). Help-page references have
a leading question mark: ?par. Data sets are typeset like faithful. Those that require a
package to be loaded prior to usage also have the package name, such as Animals
(MASS). Large blocks of commands are set off with a vertical bar:

> hist(rnorm(100)) # draw histogram

Often the commands include a comment, as does the one above. The output is formatted
to have 4 digits and 65 characters per column, and the type size is smaller, in order to get
more information in a single line. This may cause minor differences if the examples are
tried with different settings.

Web accompaniments

The home page for this book is

http://www.math.csi.cuny.edu/UsingR

On this page you will find solutions to selected homework problems (a full solutions
manual for instructors is available from the publisher), a list of errata, and an
accompanying package containing data sets and a few functions used in the text. The
UsingR package contains data sets collected from various places. Consult the help page
of a data set for proper attribution. The package needs to be installed on your computer
prior to usage. If your computer has an internet connection, the command

> install.packages("UsingR")

will fetch the package from CRAN, R’s warehouse of add-on packages, and install it. The
command library (UsingR) will load the package for use.

If for some reason this fails, the package can be retrieved from this book’s home page
with the commands

> where="http://www.math.csi.cuny.edu/UsingR"
> install.packages("UsingR",contriburl=where)

Finally, if that fails, the package can be downloaded from the home page and installed
manually as described in Chapter 1.

Using R

The R software is obtained from the Comprehensive R Archive Network (CRAN), which
may be reached from the main R web site http://www.r-project/. org. Some basic details
for installation appear in Appendix A and more detail is on the CRAN website. This book
was written to reflect the changes introduced by version 2.0.0 of R. R has approximately
two new major releases per year (the second number in the version number). Despite the
addition of numerous improvements with each new version, the maintainers of R do a
very careful job with the upgrades to R. Minor bug fixes appear in maintenance versions
(the third number). It is recommended that you upgrade your installation to keep pace
with these changes to R, although these new releases may affect some of the details given
in this text.

Acknowledgments

The author has many people to thank for this project. First, the numerous contributors to
the R software and especially the core members for their seemingly tireless efforts in
producing this excellent software. Next, the editorial staff at Chapman Hall/CRC was

great. In particular I can’t thank an anonymous reviewer enough for his thorough and
thoughtful comments and recommendations. As well, thanks go to several people who
have contacted me regarding the “simpleR” notes. Finally, the author wishes to thank his
eagle-eyed wife and the rest of his family, for their constant love, help, and support
during this project.

Chapter 1
Data

1.1 What is data?

When we read the newspaper or watch TV news or read online news sites, we find
ourselves inundated with data and its interpretation. Most often the data is presented in a
summarized format, leading the reader to draw conclusions. Statistics allow us to
summarize data in the familiar terms of counts, proportions, and averages. What is often
missing, though, is information telling us how to interpret the statistic. The goal of this
book is to learn about data: how to summarize it, how to present it, and how to infer from
it when appropriate.

■ Example 1.1: Tax-cut rhetoric In spring 2003, while promoting a tax cut,
President of the United States George W.Bush said, “Under this plan, 92 million
Americans receive an average tax cut of $1,083.” Yet the Urban InstituteBrookings
Institution Tax Policy Center reports that 80% of Americans would receive less than this,
the middle 20% would have an average tax cut of only $256, and almost half of all
taxpayers would receive a tax cut of less than $100.

Can this be true? Seemingly not, but it is possible. What is being shown here are
various ways of measuring the “center” of some set of numbers: in this case, the center of
the amounts people would save under a proposed tax plan. The president uses the familiar
mean to find a value of $1,083, yet the median amount is closer to $100. The value of
$256 is a trimmed mean. When is it appropriate to use a mean to summarize a center?
When is the median or a trimmed mean more appropriate? In this example, we see that
the facts can look entirely different based on how we choose to present them. ■

■ Example 1.2: A public-opinion poll A news web site runs a daily online poll to
record its readers’ opinions on a variety of topics. Often, several thousand people “click
in” with their opinion. The web site reports the numbers but leaves for discussion the
validity of the poll.

What is the difference between this type of poll and a scientific public-opinion poll?
The goal of both is to gauge the opinions of some population. What is calculated is the
proportion based on a sample from that population. In the news-web site case, the sample
is self-selected. With this, no statistical inference can be drawn about a larger population.
The results represent only the people who clicked in.

The term statistical inference refers to using a probability model to link the data to a
wider context. In a scientific poll where the sample is randomly chosen, probability
models can be employed to allow us to infer the true opinions of a larger population. In
this case, a statistic formed from a sample is used to estimate an unknown parameter of
the population. The inference won’t be exact, but our intuition is that it is usually within
some margin of error, which gets smaller as the size of the sample gets larger.

■ Example 1.3: Effectiveness of a diet pill
The weight-loss supplement ephedra was popular until its risky side effects became better
known. Because of its side effects, ephedra was removed from sale in Canada and the
U.S. Its effectiveness is also in question, although in combination with caffeine ephedra
is widely thought to work well. The Muscletech company commissioned a number of
studies in the year 2001 to see if its ephedra-based product, Hydroxycut, was effective for
weight loss. One study found that Hydroxycut users lost 15 pounds of fat mass in 12
weeks, while those taking a placebo (a sugar pill) lost 10.

Even before asking whether the results are statistically significant, a skeptical observer
might ask several questions about the trial. We know who funded the trial. Did this fact
affect the outcome? Were the groups randomly assigned or chosen to favor the company?
Were those in the placebo group aware that they were taking a placebo? Were the
researchers aware of who was in the placebo group? Is the difference in weight lost
attributable to chance and not the ephedra pill? Is the ephedra pill safe to use?

A randomized experiment is used to measure effectiveness. An idealized one would
begin with a group of subjects, or experimental units. These would be randomly allocated
into possibly several treatment groups, one being the control group. A treatment is
applied to each subject, with those in the control group receiving a placebo. In the
example, there are just two groups—those who get a dosage of ephedra and those who
get a placebo. After the treatment, observations are made and recorded for further
analysis.

The role of the randomization is to avoid bias, or a “stacking of the deck.” Sometimes,
to cut down on variations, the subjects are matched in groups with common
characteristics, so that similar treatments would be expected to yield similar results. To
ensure that subjects do not improve because they expect they should, a blind experiment
may be used. For this, a control group is given a treatment that appears to be the same but
is really not. To further eliminate the chance of bias, a double-blind experiment is used.
In a double-blind experiment, the researchers themselves are unaware of which treatment
group a subject is in. This sounds like a lot of work, but it is necessary to try to eliminate
the effects of other variables besides the treatment (confounding variables) that may
affect the results. This is the only way a cause-and-effect relationship can be drawn.

Assume for the moment that the industry-sponsored research on ephedra was
unbiased. Was the reported difference significant? Not according to a New York Times
article from June 2003:

In an internal memorandum accompanying the study, a Muscletech
official warned, “None of these results can be deemed significant,” adding
that “Hydroxycut can’t be claimed as superior” to the placebo. To get
around that, the official proposed that copy writers simply say, “Lose 15
pounds of fat in 12 weeks with Hydroxycut and exercise!”

How one chooses to compare or present results can have a dramatic effect on what is
implied.

■ Example 1.4: The impact of legalized abortion on crime Does abortion cut down
on crime? Steven Levitt, a University of Chicago economist, and John Donohue, a
Stanford University law professor, concluded in a paper in the May 2001 Quarterly

Using R for introductory statistics 2

Journal of Economics that legalizing abortion in the United States in 1973 led to the drop
in crime seen in the country two decades later. Their data? An analysis of crime rates
from 1985 to 1997 correlated against abortion rates of two decades prior; the timing of
the decline in crime coincided with the period when children born shortly after Roe v.
Wade would be reaching their late teenage years. States that were the first to legalize
abortion, including New York, Washington, Alaska, and Hawaii, were the first to see a
drop in crime, and states with the highest abortion rates had a larger decrease.

Levitt and Donohue may have convinced those who wanted to be convinced, but those
who didn’t want to be convinced found many flaws in the study. The major problem is
that in an observational study such as this one, it is impossible to eliminate confounding
variables, despite the ingenuity of the approach. For example, did a higher rate of
incarceration lead to a drop in crime? What about a”war on drugs”? In trying to prove a
cause and effect with an observational study, we are always open to explanations based
on variables that are beyond our control. Remember that it took decades to prove the
detrimental effects of smoking on health, despite the results of several observational
studies.

■ Example 1.5: What is the maximum heart rate? A common rule of thumb is that
one’s maximum heart rate when exercising should be about 220 minus one’s age. This is
a linear relationship between age and maximum heart rate. Although this formula is easy
to remember and use, researchers suggest that there are more accurate formulas to use
when needed.

The actual relationship between age and maximum heart rate is not exactly linear. It
also depends on other factors, such as the type of athlete or the type of activity. However,
the ease of understanding linear relationships makes them useful, even when they are not
entirely accurate.

The statistical method of fitting a linear relationship to data is called linear regression.
It can be used in a variety of situations and is one of the most widely used statistical
techniques.

■ Example 1.6: Shark populations in decline Beginning in the 1950s with the
advent of large-scale commercial fishing, the populations of several fish species have had
a precipitous decline. How can we estimate the size of the original stock given the current
population? There were no accurate surveys at the time the fishing rate began to increase.
One approach was published in Nature by Myers and Worm. They gathered as much data
as possible for a species and then fit a nonlinear statistical model to the data. For each
species, an estimate can be found for the percentage decline. Then, data for all the
surveyed species can be combined to make inferences about the remaining species. It has
been estimated, although with controversy, that the populations as of 2003 are 10% of
their preindustrial size.

1.1.1 Problems

1.1 Find an article in a newspaper or on the internet that shows the results of a poll. Circle
any wording indicating how the poll was taken and what results are suggested.

1.2 Find an article in the newspaper or on the internet that shows the results of a
clinical trial. Describe the experimental setup. Was there a control group? Was it a
scientific study? Was it an observational study? What were the findings?

Data 3

1.3 Find an article in the newspaper or on the internet that relies on statistics and is not
about a survey. Explain what statistics the writer used and how they strengthened the
writer’s argument.

1.2 Some R essentials

Before we can use the computer to help us look at statistical problems, we need to
familiarize ourselves with the way it is used. First we learn some basic concepts for
interacting with the computer such as how to store, access, and manipulate data. It is
assumed that R is already installed on your computer. For information on installing R
please refer to Appendix A.

1.2.1 Starting R

R is started in different ways depending on the platform used and the intent of usage.
This book primarily covers using R in an interactive mode. That is, we ask R a question,
and it responds with an answer.

To begin in Windows, we click on the R icon on the desktop, or find the program
under the start menu. A new window pops up with a command-line subwindow. For
Linux, R is often started simply by typing “R” at a command prompt. When R is started,
a command line and perhaps other things await our usage.

The command line, or console, is where we can interact with R. It looks something
like this:

R : Copyright 2004, The R Foundation for Statistical
Computing
Version 2.0.0 (2004–10–04), ISBN 3–900051–07–0
R is free software and comes with ABSOLUTELY NO
WARRANTY.
You are welcome to redistribute it under certain
conditions.
Type ’license()’ or ’licence()’ for distribution
details.
R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in
publications.
Type ’derno()’ for some demos, ’help()’ ‘for on-line
help, or
’help.start()’ for a HTML browser interface to help.
Type ’q()’ to quit R.
[Previously saved workspace restored]
>

The version number is printed, as is some useful information for new users, including
instructions on quitting R from the command line.

Using R for introductory statistics 4

When R starts, it searches for any saved work in the current directory. If it finds some,
that work will be reloaded and we are reminded that it was done. When we quit R, it will
offer to save the current session. Thus we can continue our work from session to session.

The command prompt, >, is the final thing shown. This is where we type commands to
be processed by R. This happens when we hit the ENTER key.

Appendix B describes some graphical interfaces available for R. These can make
certain tasks in R easier to do. The primary aim of this book, however, is to cover basic
usage of the command-line interface.

1.2.2 Using R as a calculator

The simplest usage of R is performing basic arithmetic, as we would do with a calculator.
R uses familiar notation for math operations, such as +, −, *, and /. Powers are taken with
^. As usual, we use parentheses to group operations.*

The following example is from an interactive R session. A command is typed at the
prompt followed by the ENTER key. Multiple commands per line can be evaluated if
separated by a semicolon, ;. The result of the last command is printed in the output.

(We typeset the example with the command prompt showing, but this shouldn’t be
typed when trying these examples.)

> 2 + 2
[1] 4
> 2 ^ 2
[1] 4
> (1–2) * 3
[1] − 3
> 1–2 * 3
[1] − 5

The answer to each “question” is printed starting with a [1]. This notation will make
sense once data vectors are explained.

Functions Many mathematical and statistical functions are available in R. They are all
used in a similar manner. A function has a name, which is typed, followed by a pair of
parentheses (required). Arguments are added inside this pair of parentheses as needed.

We show some familiar functions below. (The # is the comment character. All text in
the line following this is treated as a comment. In the examples, the comments are
provided for comprehension; they should not be typed if you are trying these examples.)

> sqrt(2) # the square root
[1] 1.414
> sin(pi) # the sine function
[1] 1.225e-16 # this is 0!
> exp(1) # this is exp(x) = e^x
[1] 2.718
> log(10) # the log base e
[1] 2.303

Data 5

The result of sin (pi) is the very small 1.225· 10–16 and not precisely 0, as it should be.
Such numeric differences are not uncommon. The logarithm† has base e for its default
behavior.

* The full order of operations is covered in the help page for Syntax.
† This book has a few examples where logarithms and exponentials are important, although for the
most part knowledge of these function is not essential for following the material.

Many functions in R have extra arguments that allow us to change the default
behavior. For example, to use base 10 for the logarithm, we could use either of the
following:

> log(10,10)
[1] 1
> log(10, base=10)
[1] 1

To understand the first one, log(10, 10), we need to know that R expects the base to be
the second argument of the function. The second example uses a named argument, of the
type base=, to say explicitly that the base is 10. The first style contains less typing; the
second is easier to remember and read. This book will typically use named arguments for
clarity.

Warnings and errors When R finds a command it doesn’t understand, it will respond
with an error message. For example:

> squareroot(2)
Error: couldn’t find function “squareroot”
> sqrt 2
Error: syntax error
> sqrt(−2)
[1] NaN
Warning message:
NaNs produced in: sqrt(−2)
> sqrt(2 # the +, like >, is not
typed
+)
[1] 1.414

The first command produced an Error: and no output, as R could not find a function with
that name. The second command failed to use parentheses around the argument, causing
R to issue a syntax error. Parentheses are required to use a function. We typeset function
names with parentheses to remind us of that. The third command produced an output, but
R guessed it wasn’t what we wanted. The output NaN means “not a number,” in response
to the request for a square root of a negative number. Consequently, a Warning was
printed. The last command shows what happens if R encounters a line that is not
complete. The continuation prompt, +, is printed, indicating more input is expected.

Using R for introductory statistics 6

1.2.3 Assignment

It is often convenient to name a value so that we can use it later. Doing so is called
assignment. Assigment is straightforward. We put a name on the left-hand side of the
equals sign and the value on the right. Assignment does not produce any printed output.

> x = 2 # assignment is quiet
> x + 3 # x is now 2
[1] 5
> pi # pi is a built-in
constant
[1] 3.142
> e^2 # e is not
Error: Object “e” not found
> e = exp(1) # e is now its familiar
value
> e^2
[1] 7.389

The variable e is not previously assigned, unlike the built-in constant pi. If we insist
though, we can assign it as illustrated.

Assignment with=versus <– Assignment can cause confusion if we are trying to
understand the syntax as a mathematical equation. If we write

x=2x+1

as a mathematical equation, we have a single solution: −1. In R, though, the same
expression, x=2*x+1, is interpreted to assign the value of 2*x+1 to the value of x. This
updates the previous value of x. So if x has a value of 2 prior to this line, it leaves with a
value of 5.

This type of confusion can be minimized by using the alternate assignment operator
<−. The R expression x <− 2*x+1 then “visually” looks like what it does. In fact, −> also
works as assignment only to the right-hand side. Additionally, there is another operator
for assignment, <<−. This is useful when we are programming in R.

This book uses the equals sign=for assignment, as it is widely used in other computer-
programming languages and shorter to type. Its introduction into R is relatively recent
(version 1.4.0).

Acceptable variable names We are free to make variable names out of letters,
numbers, and the dot or underline characters. A name starts with a letter or a dot (a
leading dot may not be followed by a number). We cannot use mathematical operators,
such as +, −, *, and /.‡ Some examples are

> x = 2
> n = 25
> a.really.long.number = 123456789
> AReallySmallNumber = 0.000000001

Case is important. Some variable names are naturally used to represent certain types of
data. Often n is for a length; x or y stores a data vector; and i and j are for integers and

Data 7

indices. Variables that begin with the dot character are usually reserved for programmers.
These conventions are not forced upon us, but consistently using them makes it easier to
look back and understand what we’ve done.

‡The help page for make. names () describes this in more detail.

1.2.4 Using c () to enter data

A data set usually contains many observations, not just one. We reference the different
observations by an index, as in x1, x2, …, xn. We always use n to be the number of
observations, unless specified otherwise. For example, the number of whale beachings
per year in Texas during the 1990s was

74 122 235 111 292 111 211 133 156 79

To store this data in R we use a data vector. Data vectors can be made with the c ()
function, which combines its arguments. The whale data can be entered, as follows:

> whales = c(74, 122, 235, 111, 292, 111, 211, 133,
156, 79)

The values are separated by a comma. Once stored, the values can be printed by typing
the variable name

> whales

[1] 74 122 235 111 292 111 211 133 156 79

The [1] refers to the first observation. If more than one row is output, then this number
refers to the first observation in that row.

The c () function can also combine data vectors. For example:

> x = c(74, 122, 235, 111, 292)
> y = c(111, 211, 133, 156, 79)
> c(x,y)
[1] 74 122 235 111 292 111 211 133 156 79

Data vectors have a type One restriction on data vectors is that all the values have the
same type. This can be numeric, as in whales, characters strings, as in

> Simpsons = c("Homer",’Marge’,"Bart","Lisa","Maggie")

or one of the other types we will encounter. Character strings are made with matching
quotes, either double, ", or single,’.

If we mix the type within a data vector, the data will be coerced into a common type,
which is usually a character. This can prevent arithmetic operations.

Using R for introductory statistics 8

Giving data vectors named entries A data vector can have its entries named. These
will show up when it is printed. The names () function is used to retrieve and set values
for the names. This is done as follows:

> names(simpsons) = c("dad","mom","son","daughter
1","daughter 2")
> names(simpsons)
[1] “dad” “mom” “son” “daughter 1"
[5] “daughter 2"
> simpsons
 dad mom son daughter 1 daughter 2
 "Homer" "Marge" "Bart" "Lisa" "Maggie"

When used to assign values for the names, the names () function appears on the other side
of the assignment, unlike most functions, as it modifies the attributes of the data vector.
The last command shows that a data vector with names is printed with the names above
the values.

1.2.5 Using functions on a data vector

Once the data is stored in a variable, we can use functions on it. Most R functions work
on vectors exactly as we would want them to. For example, the sum () function will add
up all the numbers in the data vector, and the length () function will return the number of
values in the data vector.

> sum(whales) # total number of
beachings
[1] 1524
> length(whales) # length of data vector
[1] 10
> sum(whales)/length(whales) # average no. of
beachings
[1] 152.4
> mean(whales) # mean function finds
average
[1] 152.4

We can find the average as the total sum over the length, or we can use the mean()
function. R has many built-in functions for doing such things. Other useful functions to
know about are sort (), min (), max (), range (), diff (), and cumsum ().

> sort(whales) # the sorted values
[1] 74 79 111 111 122 133 156 211 235 292
> min(whales) # the minimum value
[1] 74
> max(whales) # the maximum value
[1] 292
> range(whales) # range returns both min
and max

Data 9

[1] 74 292
> diff(whales) # diff returns
differences
[1] 48 113 −124 181 −181 100 −78 23−77
> cumsum(whales) # a cumulative, or
running tally
[1] 74 196 431 542 834 945 1156 1289 1445 1524

Vectorization of functions
Performing arithmetic in R is made much easier by the vectorization of functions. That is,
most functions will do their operation on each entry of the data vector at the same time.
For example, the number of whales that beached in Florida during the 1990s is

89 254 306 292 274 233 294 204 204 90

We enter this in and then look at the sum and differences for the states.

> whales.fla = c(89, 254, 306, 292, 274, 233, 294, 204,
204, 90)
> whales + whales.fla
[1] 163 376 541 403 566 344 505 337 360 169
> whales—whales.fla # florida usually
has more
[1] −15 −132 −71 −181 18 −122 −83 −71 −48 −11
> whales—mean(whales) # difference from
average
[1] −78.4 −30.4 82.6 −41.4 139.6 −41.4 58.6 −19.4 3.6
−73.4

The + operator adds up each corresponding entry, and the − operator subtracts each
corresponding entry. The last example shows that a single number, in this case mean
(whales), can be subtracted from a vector. The result is to subtract the number from each
entry in the data vector. This is an example of data recycling. R repeats values from one
vector so that its length matches the other.

Other arithmetic functions, such as sin(), cos(), exp(), log(), ^ and sqrt (), are
vectorized, as will be seen in the examples throughout this book.

■ Example 1.7: The variance A set of numbers has a summary number called the
variance, which is related to the average squared distance from the mean. A formula (
is the average) is

Although the var () function will do this work for us in the future, we show how we could
do this directly in R using the vectorization of functions. The key here is to find the
squared differences and then add up the values.

Using R for introductory statistics 10

> x = c(2,3,5,7,11)
> xbar = mean(x)
> x—xbar # the difference
[1] −3.6 −2.6 −0.6 1.4 5.4
> (x−xbar)^2 # the squared difference
[1] 12.96 6.76 0.36 1.96 29.16
> sum((x−xbar)^2) # sum of squared
differences
[1] 51.2
> n = length(x)
> n
[1] 5
> sum((x−xbar)^2)/ (n-1)
[1] 12.8

That is, the variance for these numbers is 12.8. ■
Functions are like pets A silly analogy: to remember how to use functions in R, think

of them as being like pets. They don’t come unless we call them by name (spelled
properly). They have a mouth (the parentheses) that likes to be fed (in this case the
arguments to the function), and they will complain if they are not fed properly.

Finding help
Using R to do statistics requires knowing a lot of different functions—more than most of
us can keep in our head at any given time. Thankfully, R has excellent built-in help
facilities. These can be consulted for information about what is returned by a function, for
details on additional arguments, and for example usages of the function or data set.

The help() function is the primary interface to the help system. For exam-pie, help
("mean") will find help on the mean() function. A useful shortcut is the ?, as in ?mean, or
? "mean". The quoted form is needed for some function names. The help page may show
up in the terminal, a separate window, or even in a web browser, depending on your
setup.

This works great if we can remember the name of the desired function. If not, there are
other ways to search. The function help. search() will search each entry in the help
system. For example, help, search ("mean") returns many matches of functions that
mention the word “mean” in certain parts of their help page. To match just function
names, the well-named apropos () function will search through the available function
names and variables for matches. For example, apropos ("mean") will return all
documented functions and variables with the word “mean” in their names.

If we want to explore the help pages to see what is there, the help. start () function will
open a web browser to an index of all the available documentation, including the
manuals, if installed. All subsequent uses of help() or ? will appear in the browser. A
standard installation of R includes a few manuals. These can be viewed in HTML format
through help. start () or they can be printed out. These manuals may be daunting at first,
but they are full of excellent information.

Most help pages have interesting examples. These can be run one-by-one by cutting
and pasting into the console, or all at once by using the function example (). A typical
usage would be example (mean).

Data 11

Simplifying editing by working smarter not harder
Using the command line in R can involve a fair amount of typing. However, there are
ways to reduce the amount of typing necessary.

Using the arrow keys to make editing data easier R’s console keeps a history of the
commands entered in. The history () function shows the last 25. Individually, the
commands can be accessed using the up- and down-arrow keys. Repeatedly pushing the
up arrow will scroll backward through the history. This can be extremely useful, as we
can reuse previous commands. Many times we wish to change only a small part of a
previous command, such as when a typo is made. With the arrow commands we can
access the previous command then edit it as desired. Table 1.1 has a summary of
shortcuts.

Using data.entry () or edit () to edit data Many ports of R have a primitive
spreadsheet interface for editing data. This is available through the dat a. entry ()
function. For example, data. entry (x) will allow us to edit the data vector x.

The function does not make a new variable. To use data. entry () to make a new
variable, we can first create a simple one, as we have done below, and then finish the data
entry with the spreadsheet.

> x = c(1) # 1 will be first entry

Table 1.1 Keyboard shortcuts for the command
line

↑ (up arrow) Recalls the previously entered command from the history list; multiple pushes
scrolls through the command history list

↓ (down
arrow)

Scrolls forward in the history list

← (left arrow) Moves cursor to the left
→ (right
arrow)

Moves cursor to the right

HOME
(CTRL-a)

Moves cursor to beginning of current line

END (CTRL-
e)

Moves cursor to end of current line

> data.entry(x)

The edit () function also allows us to edit a data vector. We need to assign back its output,
otherwise the edits will be lost. For a data vector, the edit () command uses a text editor.
A spreadsheet interface is used for more complicated data objects.

1.2.6 Creating structured data

Sometimes numbers have some structure or pattern. Take, for example, the integers 1
through 99. To enter these into an R session one by one would be very tedious.
Fortunately, R has shortcuts for entering data that is sequential or that is repeated in some
way.

Using R for introductory statistics 12

Simple sequences A sequence from 1 to 99 by 1’s is given by 1:99 in R. The colon
operator, :, is used to create sequences from a to b by 1’s. Some examples:

> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
> rev(1:10) # countdown
[1] 10 9 8 7 6 5 4 3 2 1
> 10:1 # a > b
[1] 10 9 8 7 6 5 4 3 2 1

Arithmetic sequences An arithmetic sequence is determined by a starting point, a; a step
size, h; and a number of points, n. The sequence is

a, a+h, a+2h, a+3h, …, a+(n−1)h.

These sequences can be created in R directly.

> a = 1; h = 4; n = 5 # use ; to separate commands
> a + h*(0:(n−1)) # note 0:(n−1) is not 0:n −1
[1] 1 5 9 13 17

It is usually desirable to specify either the step size and the starting and ending points or
the starting and ending points and the length of the arithmetic sequence. The seq()
function allows us to do this.

> seq(1,9,by=2) # odd numbers
[1] 1 3 5 7 9
> seq(1,10,by=2) # as 11 > 10 it is not included
[1] 1 3 5 7 9
> seq(1,9,length=5) # 5 numbers only
[1] 1 3 5 7 9

Repeated numbers When a vector of repeated values is desired, the rep() function is
used. The simplest usage is to repeat its first argument a specified number of times, as in

> rep(1,10)
[1] 1 1 1 1 1 1 1 1 1 1
> rep(1:3,3)
[1] 1 2 3 1 2 3 1 2 3

More complicated patterns can be repeated by specifying pairs of equal-sized vectors. In
this case, each term of the first is repeated the corresponding number of times in the
second.

> rep(c("long","short"),c(1,2)) # 1 long and 2 short
[1] "long" "short" "short"

Data 13

1.2.7 Problems

1.4 Use R as you would a calculator to find numeric answers to the following:

1. 1+2(3+4)
2. 43+32+1

3.

4.

1.5 Rewrite these R expressions as math expressions, using parentheses to show the order
in which R performs the computations:

1. 2+3–4
2. 2+3*4
3. 2/3/4
4. 2^3^4

1.6 Enter the following data into a variable p with c ()

2 3 5 7 11 13 17 19

Use length() to check its length.
1.7 You recorded your car’s mileage at your last eight fill-ups as

65311 65624 65908 66219 66499 66821 67145 67447

Enter these numbers into the variable gas. Use the function diff () on the data. What does
it give? Interpret what both of these commands return: mean (gas) and mean(diff (gas)).

1.8 Let our small data set be

2 5 4 10 8

1. Enter this data into a data vector x.
2. Find the square of each number.
3. Subtract 6 from each number.
4. Subtract 9 from each number and then square the answers.

Use the vectorization of functions to do so.
1.9 The asking price of used MINI Coopers varies from seller to seller. An online

classifieds listing has these values in thousands:

15.9 21.4 19.9 21.9 20.0 16.5 17.9 17.5

1. What is the smallest amount? The largest?
2. Find the average amount.

Using R for introductory statistics 14

3. Find the differences of the largest and smallest amounts from the mean.

Enter in the data and apply one of R’s functions to find answers to the above questions.
1.10 The monthly sales figures of Hummer H2 vehicles in the United States during

2002 were

[Jan] 2700 2600 3050 2900 3000 2500 2600 3000 2800
[Oct] 3200 2800 3400

(according to a graphic from the New York Times). Enter this data into a variable H2. Use
cumsum() to find the cumulative total of sales for 2002. What was the total number sold?
Using diff (), find the month with the greatest increase from the previous month, and the
month with the greatest decrease from the previous month.

1.11 Four successive National Health and Examination surveys showed the average
amount of calories consumed by a 20-to-29-year-old male to be 2,450, 2,439, 2,866, and
2,618 (http://www.cdc.gov). The percentage of calories from fat was 37%, 36.2%, 34%,
and 32.1%. The percentage from carbohydrates was 42.2%, 43.1%, 48.1%, and 50%. Is
the average number of fat calories going up or going down? Is this consistent with the
fact that over the same time frame (1971 to 2000) the prevalence of obesity in the United
States increased

from 14.5% to 30.9%?
1.12 Create the following sequences:

1. "a" , "a" , "a" , "a", "a".
2. 1, 3, …, 99 (the odd numbers in [1, 100])
3. 1, 1, 1, 2, 2, 2, 3, 3, 3
4. 1, 1, 1, 2, 2, 3
5. 1, 2, 3, 4, 5, 4, 3, 2, 1

using :, seq(), or rep() as appropriate.
1.13 Store the following data sets into a variable any way you can:

1. 1, 2, 3, 5, 8, 13, 21, 34 (the Fibonacci series)
2. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 (positive integers)
3. 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10 (reciprocals)
4. 1, 8, 27, 64, 125, 216 (the cubes)
5. 1964, 1965, …, 2003 (some years)
6. 14, 18, 23, 28, 34, 42, 50, 59, 66, 72, 79, 86, 96, 103, 110 (stops on New York’s No. 9

subway)
7. 0, 25, 50, 75, 100, …, 975, 1000 (0 to 1000 by 25s)

Use c() only when : or seq() will not work.

Data 15

1.3 Accessing data by using indices

Using R to access the entries in a data vector is straightforward. Each observation, x1, x2,
…, xn, is referred to by its index using square brackets, as in x [1], x [2], …, x [n]. Using
the indices, we can access and assign to the values stored in the data vector.

We keep track of eBay’s Friday stock price in the variable ebay. The first two months
of data are

88.8 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6

These are entered as

> ebay = c(88.8, 88.3, 90.2, 93.5, 95.2, 94.7, 99.2,
99.4, 101.6)
> length(ebay)
[1] 9

The first value is clearly 88.8 and the last 101.6. We can get these directly, as in

> ebay[1]
[1] 88.8
> ebay[9]
[1] 101.6
> ebay[length(ebay)] # in case length isn’t
known
[1] 101.6

Slicing R also allows slicing, or taking more than one entry at a time. If x is the data
vector, and vec is a vector of positive indices, then x [vec] is a new vector corresponding
to those indices. For the ebay example, the first four entries are for the first month. They
can be found by

> ebay[1:4]
[1] 88.8 88.3 90.2 93.5

The first, fifth, and ninth Fridays can be accessed using c (1, 5, 9) as the index.

> ebay[c(1,5,9)]
[1] 88.8 95.2 101.6

Negative indices If the index in x [i] is positive, we can intuit the result. The ith value of
x is returned if i is between 1 and n. If i is bigger than n, a value of NA is returned,
indicating “not available.”

However, if i is negative and no less than −n, then a useful convention is employed to
return all but the ith value of the vector. For example, x [−1] is all of x but the first entry.

Using R for introductory statistics 16

> ebay[−1] # all but the first
[1] 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6
> ebay[−(1:4)] # all but the 1st – 4th
[1] 95.2 94.7 99.2 99.4 101.6

Accessing by names In R, when the data vector has names, then the values can be
accessed by their names. This is done by using the names in place of the indices. A
simple example follows:

> x = 1:3
> names(x) = c("one","two","three") # set the names
> x["one"]
one

1

Parentheses for functions; square brackets for data vectors The usage of parentheses,
(), and square brackets, [], can be confusing at first. To add to the confusion, lists will use
double square brackets [[]]. It helps to remember that R uses parentheses for functions
and square brackets for data objects.

1.3.1 Assigning values to data vector

We can assign values to a data vector element by element using indices. The simplest
case, x [i]=a, would assign a value of a to the ith element of x if i is positive. If i is bigger
than the length of the vector x, then x is enlarged. For example, to change the first entry
in ebay to 88.0 we could do

> ebay[1] =88.0
> ebay
[1] 88.0 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6

We can assign more than one value at a time. The case x[vec]<−y will assign to the
indices specified by vec the values of y. For example, adding the next month’s stock
prices to ebay can be done as follows:

> ebay[10:13]=c(97.0,99.3,102.0,101.8)
> ebay
[1] 88.0 88.3 90.2 93.5 95.2 94.7 99.2 99.4 101.6 97.0
[11] 99.3 102.0 101.8

Data recycling If y is shorter than the values specified by vec, its values are recycled.
That is, y is repeated enough times to fill out the request. If y is too long, then it is
truncated.

Data 17

1.3.2 Logical values

When using R interactively, we naturally imagine that we are having a dialogue with R.
We ask a question, and R answers. Our questions may have numeric answers consisting
of a single value (e.g., “What is the sum of x?”), a vector of numeric answers (e.g., “What
are the differences between x and y?”), or they may by true-or-false answers (e.g., “x is
bigger than 2?”). R expressions which involve just values of true or false are called
logical expressions. In R the keywords TRUE and FALSE are used to indicate true or
false (these can be abbreviated T or F, although it is not recommended as T and F may
hold some other value). A question like, “Is x bigger than 2?” is answered for each
element of x. For example, “Which values of ebay are more than 100?” is asked with
ebay > 100 and answered for each value of x as TRUE and FALSE.

> ebay > 100
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
TRUE FALSE
[11] FALSE TRUE TRUE

This output is hard to parse as displayed but is very useful when used as the indices of a
data vector. When x is a data vector and vec is a logical vector of the same length as x
then, x [vec] returns the values of x for which vec’s values are TRUE. These indices can
be found with the which() function. For example:

> ebay[ebay > 100] # values bigger than 100
[1] 101.6 102.0 101.8
> which(ebay > 100) # which indices
[1] 9 12 13
> ebay[c(9,12,13)] # directly
[1] 101.6 102.0 101.8

Some functions are usefully adapted to logical vectors (the logical vector is coerced to a
numeric one). In particular, the sum function will add up all the TRUE values as 1 and all
the FALSE values as 0. This is exactly what is needed to find counts and proportions.

> sum(ebay > 100) # number bigger than 100
[1] 3
> sum(ebay > 100)/length(ebay) # proportion bigger
[1] 0.2308

Table 1.2 summarizes the ways to manipulate a data vector.

Table 1.2 Ways to manipulate a data vector
Suppose x is a data vector of length n=length (x).
x[1] the first element of x
x[length(x)] the last element of x
x[i] the ith entry if 1≤i≤n, NA if i>n, all but the ith if −n≤ i≤−1, an error if i<−n, and an

Using R for introductory statistics 18

empty vector if i=0
x[c (2, 3)] the second and third entries
x [−c (2, 3)] all but the second and third entries
x [1] =5 assign a value of 5 to first entry; also x [1]<−5
x[c (1, 4)]=c
(2, 3)

assign values to first and fourth entries

x [indices]=y assign to those indices indicated by the values of indices: if y is not long enough,
values are recycled; if y is to long, just its initial values are used and a warning is
issued

x<3 vector with length n of TRUE or FALSE depending if x[i]<3
which (x<3) which indices correspond to the TRUE values of x< 3
x [x<3] the x values when x<3 is TRUE. Same as x[which (x<3)]

Creating logical vectors by conditions
Logical vectors are created directly using c (), or more commonly as a response to some
question or condition. The logical operators are <, <=, >, =>, ==, and ! =. The meanings
should be clear from their common usage, but equals is == and not simply =. The
operator !=means not equal. The ! operator will switch values of a logical vector.

Comparisons between logical vectors are also possible: “and” is done with &; “or” is
done with |. Each entry is compared and a vector is returned. The longer forms && and | |
evaluate left to right until a TRUE or FALSE is determined. Unlike the shorter forms,
which return a vector of values, the longer forms return a single value for their answer.

To illustrate:

> x = 1:5
> x < 5 # is x less than 5
[1] TRUE TRUE TRUE TRUE FALSE
> x > 1 # is x more than 1
[1] FALSE TRUE TRUE TRUE TRUE
> x > l & x < 5 # is x bigger than 1 and
less than 5
[1] FALSE TRUE TRUE TRUE FALSE
> x > 1 && x < 5 # First one is false
[1] FALSE
> x > 1 | x < 5 # is x bigger than 1 or
less than 5
[1] TRUE TRUE TRUE TRUE TRUE
> x > 1 || x < 5 # First one true
[1] TRUE
> x == 3 # is x equal to 3
[1] FALSE FALSE TRUE FALSE FALSE
> x != 3 # is x not equal to 3
[1] TRUE TRUE FALSE TRUE TRUE
> ! x == 3 # not (x equal to 3)
[1] TRUE TRUE FALSE TRUE TRUE

The expression of equality, ==, allows us to compare a data vector with a value. If we
wish to use a range of values we can use the %in% operator.

Data 19

> x == c(2, 4)
[1] FALSE FALSE FALSE TRUE FALSE
Warning message:
longer object length
 is not a multiple of shorter object length in:
x == c(2, 4)
> x %in% c(2, 4)
[1] FALSE TRUE FALSE TRUE FALSE

The last command shows that the second and fourth entries of x are in the data vector c
(2,4). The first command shows that recycling is applied, then the data vectors are
compared element by element. The warning is issued, as this type of implicit usage is
often unintended.

For numeric comparisons, the operators == and !=do not allow for rounding errors.
Consult the help pages ?"<" and ?all. equal to see a workaround.

1.3.3 Missing values

Sometimes data is not available. This is different from not possible or null. R uses the
value NA to indicate this. With operations on a data vector NA values are treated as
though they can’t be found. For example, adding with a value of NA returns an NA, as
the addition cannot be carried out. A natural way to check whether a data value is NA
would be x == NA. However, a value cannot be compared to NA, so rather than an
answer of TRUE, the value NA is given. To check whether a value is NA, the function
is.na() is used instead.

For example, the number of O-ring failures for the first six flights of the United States
space shuttle Challenger were (there is no data for the fourth flight):

0 1 0 NA 0 0

We enter this in using NA as follows:

> shuttle = c(0, 1, 0, NA, 0, 0)
> shuttle
[1] 0 1 0 NA 0 0
> shuttle > 0 # note NA in answer
[1] FALSE TRUE FALSE NA FALSE FALSE
> shuttle == NA # doesn’t work!
[1] NA NA NA NA NA NA
> is.na(shuttle)
[1] FALSE FALSE FALSE TRUE FALSE FALSE
> mean(shuttle) # can’t add to get the
mean
[1] NA
> mean(shuttle, na.rm=TRUE) # na.rm means remove NA
[1] 0.2
> mean(shuttle[!is.na(shuttle)])# hard way
[1] 0.2

Using R for introductory statistics 20

Many R functions have an argument na. rm=, which can be set to be TRUE in order to
remove NAs or FALSE. This is a convenient alternative to using constructs such as
x[!is.na(x)].

1.3.4 Managing the work environment

If an R session runs long enough, there typically comes a point when there are more
variables defined than can be remembered. The ls() function and the objects ects ()
function will list all the objects (variables, functions, etc.) in a given work environment.
The browseEnv() function does so using web browser to show the results. The simplest
usage is ls(), which shows all the objects that have been defined or loaded into your work
environment. To filter the request, the pattern= argument can be used. If this argument is
a quoted string then all objects with that string in their names will be listed. More
complicated matching patterns are possible.

To trim down the size of the work environment the functions rm () or remove () can be
used. These are used by specifying a name of the objects to be removed. The name may
or may not be quoted. For example, rm ("tmp") or rm (tmp) will remove the variable tmp
from the current work environment. Multiple names are possible if separated by commas,
or if given in vector form, as quoted strings, to the argument list=.

1.3.5 Problems

1.14 You track your commute times for two weeks (ten days), recording the following
times in minutes:

17 16 20 24 22 15 21 15 17 22

Enter these into R. Use the function max() to find the longest commute time, the function
mean() to find the average, and the function min() to find the minimum.

Oops, the 24 was a mistake. It should have been 18. How can you fix this? Do so, and
then find the new average.

How many times was your commute 20 minutes or more? What percent of your
commutes are less than 18 minutes long?

1.15 According to The Digital Bits (http://www.digitalbits.com/), monthly sales (in
10,000s) of DVD players in 2003 were

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
79 74 161 127 133 210 99 143 249 249 368 302

Enter the data into a data vector dvd. By slicing, form two data vectors: one containing
the months with 31 days, the other the remaining months. Compare the means of these
two data vectors.

1.16 Your cell-phone bill varies from month to month. The monthly amounts in
dollars for the last year were

46 33 39 37 46 30 48 32 49 35 30 48

Data 21

Enter this data into a variable called bill. Use the sum function to find the amount you
spent last year on the cell phone. What is the smallest amount you spent in a month?
What is the largest? How many months was the amount greater than $40? What
percentage was this?

1.17 The average salary in major league baseball for the years 1990–1999 are given
(in millions) by:

0.57 0.89 1.08 1.12 1.18 1.07 1.17 1.38 1.44 1.72

Use diff () to find the differences from year to year. Are there any years where the
amount dropped from the previous year?

The percentage difference is the difference divided by the previous year times 100.
This can be found by dividing the output of diff () by the first nine numbers (not all ten).
After doing this, determine which year has the biggest percentage increase.

1.18 Define x and y with

> x = c(1, 3, 5, 7, 9)
> y = c(2, 3, 5, 7, 11, 13)

Try to guess the results of these R commands:

1. x+1
2. y*2
3. length (x) and length (y)
4. x+y (recycling)
5. sum(x>5) and sum(x[x>5])
6. sum(x>5|x<3)
7. y[3]
8. y[−3]
9. y[x] (What is NA?)
10. y[y>=7]

Remember that you access entries in a vector with [].
1.19 Consider the following “inequalities.” Can you determine how the comparisons

are being done?

> "ABCDE" == "ABCDE"
[1] TRUE
> "ABCDE" < "ABCDEF"
[1] TRUE
> ”ABCDE" < "abcde"
[1] TRUE
> ”ZZZZZ" < "aaaaa"
[1] TRUE
> "11" < "8"
[1] TRUE

Using R for introductory statistics 22

1.4 Reading in other sources of data

Typing in data sets can be a real chore. It also provides a perfect opportunity for errors to
creep into a data set. If the data is already recorded in some format, it’s better to be able
to read it in. The way this is done depends on how the data is stored, as data sets may be
found on web pages, as formatted text files, as spreadsheets, or built in to the R program.

1.4.1 Using R’s built-in libraries and data sets

R is designed to have a small code kernel, with additional functionality provided by
external packages. A modest example would be the data sets that accompany this book.
More importantly, many libraries extend R’s base functionality. Many of these come
standard with an R installation; others can be downloaded and installed from the
Comprehensive R Archive Network (CRAN), http://www.r-project.org/, as described
below and in Appendix A.

Most packages are not loaded by default, as they take up computer memory that may
be in short supply. Rather, they are selectively loaded using either the library () or require
() functions. For instance, the package pkgname is loaded with library (pkgname). In the
Windows and Mac OS X GUIs pack-ages can be loaded using a menu bar item.

In addition to new functions, many packages contain built-in data sets to provide
examples of the features the package introduces. R comes with a collection of built-in
data sets in the datasets package that can be referenced by name. For example, the lynx
data set records the number of lynx trappings in Canada for some time period. Typing the
data set name will reference the values:

> range(lynx) # range of values
[1] 39 6991

The packages not automatically loaded when R starts need to be loaded, using library(),
before their data sets are visible. As of version 2.0.0 of R, data sets in a package may be
loaded automatically when the package is. This is the case with the data sets referenced in
this text. However, a package need not support this. When this is the case, an extra step
of loading the data set using the data() command is needed. For example, to load the
survey data set in the MASS package, could be done in this manner:

library(MASS)
data(survey) # redundant for versions >=
2.0.0

To load a data set without the overhead of loading its package the above sequence of
commands may be abbreviated by specifying the package name to data(), as in

> data(survey, package="MASS")

However, this will not load in the help files, if present, for the data set or the rest of the
package. In R, most built-in data sets are well documented, in which case we can check

Data 23

what the data set provides, as with ?lynx. See Table 1.3 for more details on data() and
library().

Accessing the variables in a data set: $, attach(), and with()
A data set can store a single variable, such as lynx, or several variables, such as the
survey data set in the MASS package. Usually, data sets that store several variables are
stored as data frames. This format combines many variables in a rectangular grid, like a
spreadsheet, where each column is a different variable, and usually each row corresponds
to the same subject or experimental unit. This conveniently allows us to have all the data
vectors together in one object.

The different variables of a data frame typically have names, but initially these names
are not directly accessible as variables. We can access the values by name, but we must
also include the name of the data frame. The $ syntax can be used to do this, as in

> library(MASS) # load package.
Includes geyser
> names(geyser) # what are variable
names of geyser
[1] "waiting" "duration" # or ?geyser for more
detail
> geyser$waiting # access waiting
variable in geyser

[1] 80 71 57 80 75 77 60 86 77 56 81 50 89
 54 90
…

Table 1.3 library() and data() usage
library() list all the installed packages
library(pkg) Load the package pkg. Use lib.loc=argument to load package from a non-

privileged directory.
data() list all available data sets in loaded packages
data(package="pkg") list all data sets for this package
data(ds) load the data set ds
data(ds,package=("pkg") load the data set from package
?ds find help on this data set
update.packages() contact CRAN and interactively update installed packages
install.packages(pkg) Install the package named pkg. This gets package from CRAN. Use

lib=argument to specify a nonprivileged directory for installation. The
contriburl=…allows us to specify other servers to find the package.

Alternately, with a bit more typing, the data can be referred to using index notation as
with geyser [["waiting"]]. Both these styles use the syntax for a list discussed in Chapter
4.

Having to type the data frame name each time we reference a variable can be
cumbersome when multiple references are performed. There are several ways to avoid
this.

Using R for introductory statistics 24

A convenient method, which requires little typing, is to “attach” a data frame to the
current environment with the attach() function, so that the column names are visible.
Attached data sets are detached with the function detach (). As this style works well in
interactive sessions, we employ it often in this book. However, as discussed in Chapter 4,
this style can be confusing if we plan to change values in the data set or wish to use other
variables with the same name as a variable in an attached data set or the same name as a
data set.

The function with() essentially performs the attach() and detach() commands at once.
A template for its usage is

with(data.frame, command)

If we desire more than one command, we can give a block of commands by surrounding
the commands in curly braces. One caveat: assignment done inside the block using=(or
even <−) will be lost.

Beginning in Chapter 3 we will see that many functions in R allow an argument data=
to specify a data frame to find the variables in.

Examples of these styles are shown below using the built-in Sitka data set. These
illustrate a common task of loading a data set, and finally accessing a variable in the data
set. We use names () to show the variable names.

> data(Sitka) # load data set,
optional
> names(Sitka) # variable names
[1] “size” “Time” “tree” “treat”
> tree # not visible
Error: Object “tree” not found
> length(Sitka$tree) # length
[1] 395
> with(Sitka,range(tree)) # what is range
[1] 1 79
> attach(Sitka)
> summary(tree)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1 20 40 40 60 79
> detach(Sitka)

It is a good idea to use detach() to clear out the attached variable, as these variables can
be confusing if their names coincide with others we have used.

1.4.2 Using the data sets that accompany this book

The UsingR package contains the data sets that accompany this book. It needs to be
installed prior to usage.

Installing an R package

Data 25

If you have the proper administrative permissions on your computer and the package you
wish to install is housed on CRAN, then installing a package on the computer can be
done with the command

> install.packages(packagename)

In the Windows and Mac OS X GUIs a menu bar item allows us to browse and install a
package. Once installed, a package can be loaded with library() and the data sets accessed
with data(), as with the built-in packages.

If we do not have the necessary administrative permissions we can specify a directory
where the packages can be written using the argument lib=. When loading the package
with library(), the lib. loc= argument can be used to specify the same directory. In each
case, the directory can be specified by a string, such as lib="c: /R/localpackage".

If the package is not on CRAN, but on some other server, the argument contriburl=
can be given to specify the server. For example: to install the UsingR package from its
home page try these commands:

> where = "http://www.math.csi.cuny.edu/UsingR"
> install.packages("UsingR",contriburl=where)

If this fails (and it will if the site is not set up properly), download the package file and
install it directly. A package is a zip archive under Windows; otherwise it is a tar.gz
archive. Once downloaded, the package can be installed from the menu bar in Windows,
or from the command line under UNIX. If the package name is aPackage_0.1. tar.gz, the
latter is done at the command line from a shell (not the R prompt, as these are not R
functions) with the command

R CMD INSTALL aPackage_0.1.tar.gz

1.4.3 Other methods of data entry

What follows is a short description of other methods of data entry. It can be skipped on
first reading and referenced as needed.

Cut and paste
Copying and pasting from some other program, such as a web browser, is a very common
way to import data. If the data is separated by commas, then wrapping it inside the c()
function works well. Sometimes, though, a data set doesn’t already have commas in it. In
this case, using c() can be tedious. Use the function scan() instead. This function reads in
the input until a blank line is entered.

For example, the whale data could have been entered in as

> whales = scan()
1:74 122 235 111 292 111 211 133 156 79
11:
Read 10 items

Using R for introductory statistics 26

Using source () to read in R commands
The function dump () can be used to write values of R objects to a text file. For example,
dump ("x", "somefile. txt") will write the contents of the variable x into the file somefile
.txt, which is in the current working directory. Find this with getwd(). We can dump more
than one object per file by specifying a vector of object names. The source() function will
read in the output of dump() to restore the objects, providing a convenient way to transfer
data sets from one R session to another.

The function source() reads in a file of R commands as though they were typed at the
prompt. This allows us to type our commands into a file using a text editor and read them
into an R session. There are many advantages to this. For example, the commands can be
edited all at once or saved in separate files for future reference.

For the most part, this book uses an interactive style to interface with R, but this is
mostly for pedagogic reasons. Once the basic commands are learned, we begin to do
more complicated combinations with the commands. At this point using source(), or
something similar, is much more convenient.

Reading data from formatted data sources
Data can also be found in formatted data files, such as a file of numbers for a single data
set, a table of numbers, or a file of comma-separated values (csv).R has ways of reading
each of these (and others).

For example, if the Texas whale data were stored in a file called “whale.txt” in this
format

74 122 235 111 292 111 211 133 156 79

then scan() could be used to read it in, as in

> whale = scan(file="whale.txt”)
Read 10 items

Options exist that allow some formatting in the data set, such as including a separator,
like a comma, (sep=), or allowing for comment lines (comment.char=).

Tables of data can be read in with the read. table () function. For example, if
“whale.txt” contained data in this tabular format, with numbers separated by white space,

texas florida
74 89
122 254
…
79 90

then the data could be read in as

> read.table("whale.txt",header=TRUE)
 texas florida
1 74 89
2 122 254

Data 27

….
10 79 90

The extra argument header=TRUE says that a header includes information for the column
names. The function read.csv() will perform a similar task, only on csv files. Most
spreadsheets can export csv files, which is a convenient way to import spreadsheet data.

Both read. table () and read.csv() return a data frame storing the data.
Specifying the file In the functions scan(), source(), read.table(), and read.csv(), the

argument file= is used to specify the file name. The function file.choose() allows us to
choose the file interactively, rather than typing it. It is used as follows:

> read.table(file = file.choose())

We can also specify the file name directly. A file is referred to by its name and
sometimes its path. While R is running, it has a working directory to which file names
may refer. The working directory is returned by the getwd() function and set by the
setwd() function. If a file is in the working directory, then the file name may simply be
quoted.

When a file is not in the working directory, it can be specified with its path. The
syntax varies, depending on the operating system. UNIX traditionally uses a forward
slash to separate directories, Windows a backward slash. As the backward slash has other
uses in UNIX, it must be written with two backward slashes when used to separate
directories. Windows users can also use the forward slash.

For example, both "C:/R/data.txt" and "C:\\R\\data.txt" refer to the same file, data. txt,
in the R directory on the “C” drive.

With a UNIX operating system, we can specify the file as is done at the shell:

> source(file="~/R/data.txt") # tilde expansion
works

Finding files from the internet R also has the ability to choose files from the internet
using the url() function. Suppose the webpage
http://www.math.csi.cuny.edu/UsingR/Data/whale.txt contained data in tabular format.

Then the following would read this web page as if it
were a local file.
> site =
"http://www.math.csi.cuny.edu/UsingR/Data/whale.txt"
> read.table(file=url(site), header=TRUE)

The url () function is used only for clarity, the file will be found without it, as in

> read.table(file=site, header=TRUE)

Using R for introductory statistics 28

1.4.4 Problems

1.20 The built-in data set islands contains the size of the world’s land masses that exceed
10,000 square miles. Use sort() with the argument decreasing=TRUE to find the seven
largest land masses.

1.21 Load the data set primes (UsingR). This is the set of prime numbers in [1,2003].
How many are there? How many in the range [1,100]? [100,1000]?

1.22 Load the data set primes (UsingR). We wish to find all the twin primes. These are
numbers p and p+2, where both are prime.

1. Explain what primes[−1] returns.
2. If you set n=length (primes), explain what primes[−n] returns.
3. Why might primes [−1]—primes [−n] give clues as to what the twin primes are?

How many twin primes are there in the data set?
1.23 For the data set treering, which contains tree-ring widths in dimension-less units,

use an R function to answer the following:

1. How many observations are there?
2. Find the smallest observation.
3. Find the largest observation.
4. How many are bigger than 1.5?

1.24 The data set mandms (UsingR) contains the targeted color distribution in a bag of
M&Ms as percentages for varies types of packaging. Answer these questions.

1. Which packaging is missing one of the six colors?

2. Which types of packaging have an equal distribution of colors?

3. Which packaging has a single color that is more likely than all the others? What
color is this?

1.25 The t imes variable in the data set nym. 2002 (UsingR) contains the time to finish
for several participants in the 2002 New York City Marathon. Answer these questions.

1. How many times are stored in the data set?

2. What was the fastest time in minutes? Convert this into hours and minutes using R.

3. What was the slowest time in minutes? Convert this into hours and minutes using R.

1.26 For the data set rivers, which is the longest river? The shortest?
1.27 The data set uspop contains decade-by-decade population figures for the United

States from 1790 to 1970.

1. Use names() and seq() to add the year names to the data vector.

Data 29

2. Use diff() to find the inter-decade differences. Which decade had the greatest
increase?

3. Explain why you could reasonably expect that the difference will always increase
with each decade. Is this the case with the data?

Using R for introductory statistics 30

Chapter 2
Univariate data

In statistics, data can initially be considered to be one of three basic types: categorical,
discrete numeric, and continuous numeric. Methods for viewing and summarizing data
depend on which type it is, so we need to be aware of how each is handled and what we
can do with it. In this chapter we look at graphical and numeric summaries of a data set
for a single variable. The graphical summaries allow us to grasp qualitative aspects of a
data set immediately. Numerical summaries allow us to compare values for the sample
with parameters for a population. These comparisons will be the subject of the second
half of this text.

When a data set consists of a single variable, it is called a univariate data set. We study
univariate data sets in this chapter. When there are two variables in a data set, the data is
bivariate, and when there are two or more variables the data set is multivariate.

Categorical data is data that records categories. An example is a survey that records
whether a person is for or against a specific proposition. A police force might keep track
of the race of the people it pulls over on the highway, or whether a driver was using a cell
phone at the time of an accident. The United States census, which takes place every ten
years, asks several questions of a categorical nature. In the year 2000, a question
regarding race included 15 categories with write-in space for three more answers
(respondents could mark themselves as multiracial.) Another example is a doctor’s chart,
which records patient data. Gender and illness history might be treated as categories.

Let’s continue with the medical example. A person’s age and weight are numeric
quantities. Both are typically discrete numeric quantities usually reported as integers
(most people wouldn’t say they are 4.673 years old). If the precise values were needed,
then they could, in theory, take on a continuum of values. They would then be considered
continuous. Why the distinction? We can clearly turn a continuous number into a discrete
number by truncation, and into a categorical one by binning (e.g., 40- to 50-year-olds).
For some summaries and statistical tests it is important to know whether the data can
have ties (two or more data points with the same value). For discrete data there can be
ties; for continuous data it is generally not true that there can be ties.

A simple way to remember these is to ask, What is the average value? If it doesn’t
make sense, then the data is categorical (such as the average of a nonsmoker and a
smoker); if it makes sense but might not be an answer (such as 18.5 for age when we
record only integers), then the data is discrete. Otherwise the data is likely to be
continuous.

2.1 Categorical data

Categorical data is summarized by tables or graphically with barplots, dot charts, and pie
charts.

2.1.1 Tables

Tables are widely used to summarize data. A bank will use tables to show current interest
rates; a newspaper will use tables to show a data set when a graphic isn’t warranted; a
baseball game is summarized in tables. The main R function for creating tables is,
unsurprisingly, table().

In its simplest usage, table(x) finds all the unique values in the data vector x and then
tabulates the frequencies of their occurrence.

For example, if the results of a small survey are “yes,” “yes,” “no,” “yes,” and “no,”
then these can be tabulated as

> res = c("Y", Y", "N", "Y", "N")
> table(res)
res
N Y
2 3

Such small data sets can, of course, be summarized without the computer. In this next
example, we examine a larger, built-in data set, yet there is no more work involved than
with a smaller data set.

■ Example 2.1: Weather in May The United States National Weather Service
collects an enormous amount of data on a daily basis—some categorical, much numeric.
It is necessary to summarize the data for consumption by its many users. For example,
suppose the day’s weather is characterized as “clear,” “cloudy,” or “partly cloudy.”
Observations in Central Park for the month of May 2003 are stored in the
central.park.cloud (UsingR) data set.

> library(UsingR) # need to do once
> central.park.cloud
[1] partly.cloudy partly.cloudy partly.cloudy clear
[5] partly.cloudy partly.cloudy clear cloudy
…
[29] clear clear partly.cloudy
Levels: clear partly.cloudy cloudy

However, the data is better presented in a tabular format, as in Table 2.1

Table 2.1 Weather in Central Park for May 2003
clear partly cloudy cloudy
11 11 9

Using R for introductory statistics 32

The table() function will produce this type of output:

> table(central.park.cloud)
central.park.cloud
 clear partly.cloudy cloudy
 11 11 9

2.1.2 Barplots

Categorical data is also summarized in a graphical manner. Perhaps most commonly, this
is done with a barplot (or bar chart). A barplot in its simplest usage arranges the levels of
the variable in some order and then represents their frequency with a bar of a height
proportional to the frequency.

In R, barplots are made with the barplot() function. It uses a summarized version of the
data, often the result of the table() function.* The summarized data can be either
frequencies or proportions. The resulting graph will look the same, but the scales on the
y-axis will differ.

■ Example 2.2: A first barplot Twenty-five students are surveyed about their beer
preferences. The categories to choose from are coded as (1) domestic can, (2) domestic
bottle, (3) microbrew, and (4) import. The raw data is

3 4 1 1 3 4 3 3 1 3 2 1 2 1 2 3 2 3 1 1 1 1 4 3 1

Let’s make a barplot of both frequencies and proportions. We first use scan () instead of
c(), to read in the data. Then we plot (Figure 2.1) in several ways. The last two graphs
have different scales. For barplots, it is most common to use the frequencies.

*In version 1.9.0 of R one must coerce the resulting table into a data vector to get the desired plot.
This can be done with the command t(table(x))

> beer=scan()
1:3 4 1 1 3 4 3 3 1 3 2 1 2 1 2 3 2 3 1 1 1 1 4 3 1
26:
Read 25 items
> barplot(beer) # this isn’t
correct
> barplot(table(beer), # frequencies
+ xlab="beer", ylab="frequency")
> barplot(table(beer)/length(beer), # proportions
+ x lab="beer", ylab="proportion")

The + symbol is the continuation prompt. Just like the usual prompt, >, it isn’t typed but
is printed by R.

The barplot on the left in Figure 2.1 is not correct, as the data isn’t summarized. As
well, the barplot() function hasn’t labeled the x-and y-axes, making it impossible for the
reader to identify what is being shown. In the subsequent barplots, the extra arguments
xlab= and ylab= are used to label the x- and yaxes.

Univariate data 33

Figure 2.1 Barplot of beer: the first
needs to be summarized; the second
and third show frequencies and
proportions

■ Example 2.3: Misleading barplots When people view a barplot, they are trying to
visualize differences between the data presented. People tend to assume a scale starts at 0.
A graphic designer can deliberately mislead the reader by making a graphic non-0 based
(and not mentioning having done this). Such misleading barplots appear frequently in the
media.

We can see how this is done by looking at a data set on sales figures (Figure 2.2).

> sales = c(45,44,46) # quarterly sales
> names(sales) = c("John","Jack","Suzy”) # include
names
> barplot(sales, main="Sales", ylab="Thousands") #
basic barplot
> barplot(sales, main="Sales", ylab="Thousands",
+ ylim=c(42,46), xpd=FALSE) # extra arguments to
fudge plot

Figure 2.2 Two barplots showing the
same data. The right one is
misleading, as the y-axis does not
start at 0.

Using R for introductory statistics 34

There are names on the bars because the data vector was given names. The argument
names.arg=could also be used. We used the argument ylim=to set the limits on the y-axis
and xpd= to have R print only within these limits.

The second barplot seems to indicate a much greater difference in sales than the first,
despite its representing the same information. As people expect barplots to start at 0, we
should always draw them that way.

■ Example 2.4: Time series data shown with barplots Barplots are often used to
illustrate what are technically time series. A time series is a measurement of the same
thing taken at several points in time. For example: the high temperature in May 2003 at
Central Park is stored in the MAX variable of the central.park (UsingR) data set. In
Figure 2.3 the data is presented using the following commands. We assume the UsingR
package has already been loaded using the command library (UsingR).

> barplot(central.park$MAX, # used $ notation, not
attach()
+ names.arg=1:31, # + is continuation
prompt
+ xlab="day", ylab="max. temp.”)

The graph seems familiar, as we regularly see such graphs in the media. Still, it could be
criticized for “chart junk” (this term was coined by E.Tufte to refer to excessive amounts
of chart ink used to display a relationship). ■

The barplot() function is used similarly to the other plotting functions. The basic
function provides a graphic that can be adjusted using various arguments. Most of these
have names that are consistent from plotting function to plotting function. For the
barplot() function we showed these arguments: names can be changed with names. arg=;
axis limits set with xlim= or ylim=; and the plot region was clipped using xpd=. The
arguments horizontal=TRUE (draws the bars horizontally) and col=(sets the bars colors)
were not shown.

Although doing so is a bit redundant, some people like to put labels on top of the bars
of a barplot. This can be done using the text() function. Simply save

Figure 2.3 Maximum temperatures
in Central Park during May 2003.
This barplot shows time-series data
rather than categorical data.

Univariate data 35

the output of the barplot() function and then call text() with postions for the x and y
coordinates; an argument, labels=, for the text; and the argument pos=1 to put the text
just below the bar. This example (not shown) illustrates the process:

> our.data = c(1,2,2.5); names(our.data)=1:4
> bp = barplot(our.data)
> text(bp, our.data, labels = our.data, pos = 1)

The x-coordinates are returned by barplot(); the y-coordinates of the text are the heights
of the bars given by the values in the data vector.

2.1.3 Pie charts

The pie chart graphic is used to display the relative frequencies or proportions of the
levels of a categorical variable. The pie chart represents these as wedges of a circle or pie.
Pie charts, like barplots, are widely found in the media. However, unlike barplots, pie
charts have lost favor among statisticians, as they don’t really do well what they aim to
do.

Creating a pie chart is more or less the same as creating a barplot, except that we use
the pie() function. Similar arguments are used to add names or change the colors.

For example, to produce a pie chart for the sales data in Example 2.3, we use the
following commands (Figure 2.4):

> sales
John Jack Suzy
 45 44 46
> pie(sales, main="sales")

The argument main= is used to set a main title. Alternatively, the title () function can be
used to add a title to a figure. Again, the names attribute of sales is used to label the pie
chart. Alternatively, the labels= argument is available. For the graphic in the text,
col=gray (c (, 7, .85, .95)) was used to change the colors.

Figure 2.4 An example of a pie
chart. Can the sales leader be
identified?

Using R for introductory statistics 36

Why are pie charts a poor choice? The help page for pie(), (?pie), gives a clue as to
why:

Pie charts are a very bad way of displaying information. The eye is good
at judging linear measures and bad at judging relative areas. A bar chart or
dot chart is a preferable way of displaying this type of data.

To illustrate why the pie chart is misleading, look again at Figure 2.4. It is practically
impossible to tell who has made the most sales. The pie chart fails at discerning
differences. The bar chart example in Figure 2.2 shows that the barplot can be effective in
highlighting differences, but using it this way can be misleading.

2.1.4 Dot charts

Using a dot chart, also known as a Cleveland dotplot, is one way to highlight differences
without being misleading. The default dot chart shows the values of the variables as big
dots in a horizontal display over the range of the data. Differences from the maximum
and minimum values are very obvious, but to see their absolute values we must look at
the scale. The primary arguments to dot chart() are the data vector and an optional set of
labels specified by the argument labels=. Again, if the data vector has names, these will
be used by default. Other options exist to change the range of the data (xlim=), the colors
involved (color=, gcolor=, lcolor=), and the plotting characters (pch=, gpch=).

> dotchart(sales,xlab="Amount of sales")

Figure 2.5 shows the differences quite clearly.

Figure 2.5 The dot chart highlights
differences between categories

Univariate data 37

2.1.5 Factors

Where does the ordering of the categories come from in the examples on creating tables?
If we looked at the help page for table() we would find that the data should be
interpretable as a “factor.” R uses factors to store categorical data.

Factors are made with the function factor() or the function as. factor() and have a
specific set of values called levels().

At first glance, factors appear to be similar to data vectors, but they are not. We see
below that they are printed differently and do not have numeric values.

> 1:5 # a numeric vector
(integer)
[1] 1 2 3 4 5
> factor(1:5) # now a factor. Note
levels
[1] 1 2 3 4 5
Levels: 12345
> mean(factor(1:5)) # factors are not
numeric
[1] NA
Warning message:
argument is not numeric or logical: returning NA in:
mean.default(factor(1:5))
> letters [1:5] # a character vector
[1] “a” “b” “c” “d” “e”
> factor(letters[1:5]) # turned into a factor
[1] a b c d e
Levels: a b c d e

The initial order of the levels in a factor is determined by the sort () function. In the
example with mean() an error is returned, as factors are treated as numeric even if their
levels are given numeric-looking values. We used letters to return a character vector. This
built-in variable contains the 26 letters a through z. The capital letters are in LETTERS.
Chapter 4 has more on factors.

2.1.6 Problems

2.1 Find an example of a table in the media summarizing a univariate variable. Could
you construct a potential data set that would have this table?

2.2 Try to find an example in the media of a misleading barplot. Why is it misleading?
Do you think it was meant to be?

2.3 Find an example in the media of a pie chart. Does it do a good job of presenting
the data?

2.4 Load and attach the data set central .park (UsingR). The WX variable contains a
list of numbers representing bad weather (e.g., 1 for fog, 3 for thunder, 8 for smoke or
haze). NA is used when none of the types occurred. Make a table of the data, then make a
table with the extra argument exclude=FALSE. Why is the second table better?

Using R for introductory statistics 38

2.5 Web developers need to know which browsers people use, as they need to support
many different platforms. Table 2.2 contains usage percentages based on an analysis of a
United States Geological Society web server.

Table 2.2 Web browser statistics
Browser statistics
Internet Explorer 86%
Gecko-based (Netscape, Mozilla) 4%
Netscape Navigator 4 5%
Opera 1%
unidentified 4%
source http://www.upsdell.com/BrowserNews/stat.htm

Make a bar chart, a pie chart, and a dot chart of this data.
2.6 According to the New York Times, the top-selling MP3 players for August 2003

are as shown in Table 2.3 with their market shares. Assume the total market share is $22
million.

1. What percent is “other”?

2. Find the dollar amount (not the percentage amount) for each company.

3. Make a bar chart, dot chart, and pie chart of the data, including “other.” Which chart
shows the relationship best?

4. Comment on how out-of-date this data seems.

Table 2.3 Sales of MP3 players. Total $22 million
MP3 players
Apple 18%
RCA 15%
Rio 14.4%
iRiver 13.5%
Creative Labs 6.2%

2.7 Make a dot chart of the mpg variable in the mtcars data set. Specify the argument
labels=using the command rownames(mtcars), which returns the names of each row of
the data frame.

2.8 The data set npdb (UsingR) contains information on malpractice awards in the
United States. Attach the data set and make a table of the state variable. Which state had
the most awards? (Using sort () on your table is useful here.)

2.9 For the malpractice-award data set npdb (UsingR), the variable ID is an
identification number unique to a doctor but not traceable back to the doctor. It allows a
look at a doctor’s malpractice record without sacrificing anonymity.

The commands

Univariate data 39

> table(npdb$ID)

create a table of malpractice awards for each of the 6,369 doctors. What does the
command table (table (ID)) do, and why is this interesting?

2.10 The data set MLBattend (UsingR) contains attendance information for major
league baseball between 1969 and 2000. The following commands will extract just the
wins for the New York Yankees, in chronological order.

> attach(MLBattend)
> wins[franchise == "NYA"]
[1] 80 93 82 79 80 89 83 97 100 100 89 103
 59 79 91
…
> detach(MLBattend) # tidy up

Add the names 1969:2000 to your variable. Then make a barplot and dot chart showing
this data in chronological order.

2.2 Numeric data

For univariate data, we want to understand the distribution of the data. What is the range
of the data? What is the central tendency? How spread out are the values? We can answer
these questions graphically or numerically. In this section, we’ll see how. The familiar
mean and standard deviation will be introduced, as will the p th quantile, which extends
the idea of a median to measure position in a data set.

2.2.1 Stem-and-leafplots

If we run across a data set, the first thing we should do is organize the data so that a sense
of the values becomes more clear. A useful way to do so for a relatively small data set is
with a stem-and-leaf plot. This is a way to code a set of numeric values that minimizes
writing and gives a fairly clear idea of what the data is, in terms of its range and
distribution. For each data point only a single digit is recorded, making a compact
display. These digits are the “leaves.” The stem is the part of the data value to the left of
the leaf.

To illustrate, we have the following data for the number of points scored in a game by
each member of a basketball team:

2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5

The stem in this case would naturally be the 10s digit. A number like 23 would be written
as a 2 for the stem and a 3 for the leaf. The results are tabulated as shown below in the
output of stem().

> x = scan()
1:2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5

Using R for introductory statistics 40

21:
Read 20 items
> stem(x)
 The decimal point is 1 digit(s) to the right of the |
 0 | 000222344568
 1 | 23446
 2 | 38
 3 | 1

The stem is written to the left and the leaf to the right of the |. If this isn’t clear, look at
the values in the row with a stem of 1. They are 12, 13, 14, 14, and 16. For many data
sets, the data is faithfully recorded. In some cases, the data values are truncated to
accommodate the format.

The stem-and-leaf plot gives us a good understanding of a data set. At a glance we can
tell the minimum and maximum values (0 and 31); the shape of the distribution of
numbers (mostly in the 0 to 10 range); and, if we want to, the “middle” of the distribution
(between 5 and 6).

In practice, stem-and-leaf plots are usually done by hand as data is being collected.
This ris best done in two passes: a first to get the stem and the leaves, and a second to sort
the leaves. We may decide the latter step is not necessary, depending on what we want to
know about the numbers.

The stem() function As illustrated, stem-and-leaf plots are done in R with the stem()
function. The basic usage is simply stem(x), where x is a data vector. If there are too
many leaves for a stem, the extra argument scale= can be set, as in stem(x,scale=2).

A back-to-back stem and leaf diagram can be used to show two similarly distributed
data sets. For the second data set, the left side of the stem is used. There is no built-in R
function to generate these.

2.2.2 Strip charts

An alternative to a stem-and-leaf plot is a strip chart (also referred to as a dotplot). This
graphic plots each value of a data set along a line (or strip). As with a stem-and-leaf plot,
we can read off all the data. Unlike the stem-and-leaf plot, however, the strip chart does
not take up much vertical space on a page and so is a favorite of some authors. Variants
are often found in the media.

Univariate data 41

Figure 2.6 An example of a strip
chart showing each value in a data
set

Strip charts are created in R with the stripchart() function. The extra argument
method="stack” will create stacks when there are ties in the data. Otherwise, multiple
values will show up as a single plot character.

Figure 2.6 shows the data on heights of 4-year-olds contained in the data set kid.
weights (UsingR). The following commands produce the graphic:

> attach(kid.weights)
> x=height[48 <= age & age < 60] # four year olds
>
stripchart(x,method="stack",xlab="x",pch=1,offset=1,cex
=2)
> detach(kid.weights) # tidy up

A lot of extra arguments are needed to make these graphs look right. The argument xlab=
adjusts the label on the x-axis, pch=1 uses a different plot character than the default
square, cex= changes the size of the plot character, and of f set= pushes the points apart.

In this book, we use a visually stripped-down version of this graphic (Figure 2.7)
made with the DOTplot() function available in the UsingR package.

> DOTplot(x)

Figure 2.7 Alternative to stripchart(),
with fewer lines

2.2.3 The center: mean, median, and mode

Viewing the distribution of a data set with a stem-and-leaf plot or a strip chart can be
overwhelming if there is too much data. It is also convenient to have concise, numeric
summaries of a data set. Most of these summaries are familiar from everyday usage. Not
only will the numeric summaries simplify a description of the data—they also allow us to

Using R for introductory statistics 42

compare different data sets quantitatively. In this section we cover central tendency; in
the next we cover measures of spread.

The most familiar notion of the center of a numeric data set is the average value of the
numbers. In statistics, the average of a data set is called the sample mean and is denoted
by

The sample mean
The sample mean of the numeric data set, x1, x2, …, xn, is

 (2.1)
The mean() function will compute the sample mean for a data vector. Additional
arguments include trim= to perform a trimmed mean and na.rm= for removal of missing
data.

The mean can be found directly from the formula, as in

> x = scan()
1:2 3 16 23 14 12 4 13 2 0 0 0 6 28 31 14 4 8 2 5
21:
Read 20 items
> sum(x)/length(x)
[1] 9.35

Using the mean() function is preferable, though:

> mean(x)
[1] 9.35

The mean is the most familiar notion of center, but there are times when it isn’t the best.
Consider, for example, the average wealth of the patrons of a bar before and after
Microsoft co-founder Bill Gates steps in. Really large values can skew the average,
making a misleading measure of center.

The median
A more resistant measure of the center is the sample median, which is the “middle”
value of a distribution of numbers. Arrange the data from smallest to biggest. When there
is an odd number of data points, the median is the middle one; when there is an even
number of data points, the median is the average of the two middle ones.

The sample median
The sample median, m, of x1, x2,…,xn is the middle value of the sorted values. Let the
sorted data be denoted by x(1)≤ x(2)≤ …≤x(n). Then

Univariate data 43

(22)

The sample median is found in R with the median() function.

For example:

> bar = c(50,60,100,75,200) # bar patrons worth
in 1000s
> bar.with.gates = c(bar,50000) # after Bill Gates
enters
> mean(bar)
[1] 97
> mean(bar.with.gates) # mean is sensitive to
large values
[1] 8414
> median(bar)
[1] 75
> median(bar.with.gates) # median is resistant
[1] 87.5

The example shows that a single large value can change the value of the sample mean
considerably, whereas the sample median is much less influenced by the large value.
Statistics that are not greatly influenced by a few values far from the bulk of the data are
called resistant statistics.

Visualizing the mean and median from a graphic
Figure 2.8 shows how to visualize the mean and median from a strip chart (and, similarly,
from a stem-and-leaf plot). The strip chart implicitly orders the data from smallest to
largest; to find the median we look for the middle point. This is done by counting. When
there is an even number, an average is taken of the two middle ones.

The formula for the mean can be interpreted using the physics formula for a center of
mass. In this view, the mean is the balancing point of the strip chart when we imagine the
points as equal weights on a seesaw.

With this intuition, we can see why a single extremely large or small data point can
skew the mean but not the median.

Using R for introductory statistics 44

Figure 2.8 The median is the middle
point, the mean the balance point

The trimmed mean
A modification of the mean that makes it more resistant is the trimmed mean. To
compute the trimmed mean, we compute the mean after “trimming” a certain percentage
of the smallest and largest values from the data. Consequently, if there are a few values
that skew the mean, they won’t skew the trimmed mean.

The mean() function can be used with the trim= argument to compute a trimmed
mean. Its value is the proportion to be trimmed from both sides.

■ Example 2.5: Income distributions are skewed
The cfb (UsingR) data set contains a sampling of the data contained in the Survey of

Consumer Finances conducted in the year 2001 by the U.S. Federal Reserve Board. Many
of the variables have some values much bigger than the bulk of the data. This is common
in income distributions, as some fortunate people accumulate enormous wealth in a
lifetime, but few can accumulate enormous debt.

The INCOME variable contains yearly income figures by household. For this data, we
compare the different measures of center.

> income=cfb$INCOME
> mean(income)
[1] 63403
> median(income)
[1] 38033
> mean(income, trim=.2)
[1] 41992
> sum(income <= mean(income))/length(income)*100
[1] 70.5

The data is clearly skewed to the right, as the mean is significantly more than the median.
The trimmed mean is more in line with the median. The last line shows that 70.5% of the
values are less than or equal to the sample mean. ■

The mode and midrange of a data set
The mode of a data set is the most common value in the data set. It applies only to
discrete numeric data. There is no built-in function to find the mode, as it is not a very

Univariate data 45

good summary of a data set. However, it can be found using commands we’ve seen
previously. For example, if x stores the data, then the mode may be found as follows:

> x=c(72,75,84,84,98,94,55, 62)
> which(table(x) == max(table(x)))
84
5

That is, the value of 84, which is the fifth, after sorting, of x. Alternately, the function
which. max(), which determines the position of the max in a data vector, finds this value
with which.max(table(x)).

The midrange is a natural measure of center—the middle of the range. It can be found
using mean (range(x)). For some data sets it is close to the mean, but not when there are
outliers. As it is even more sensitive to these than the mean, it isn’t widely used to
summarize the center.

Summation notation
The definition of the mean involves a summation:

In statistics, this is usually written in a more compact form using summation notation.
The above sum is rewritten as

The symbol ∑, the Greek capital sigma, is used to indicate a sum. The i=1 on the bottom
and n on top indicate that we should include xi for i=1, 2 , …, n, that is x1, x2, …, xn.
Sometimes the indices are explicitly indicated, as in

When the variable that is being summed over is not in doubt, the summation notation is
often shortened. For example,

Notationally, this is how summations are handled in R using the sum() function. If x is a
data vector, then sum(x) adds up x[1]+x[2]+…+x[n].

The summation notation can be confusing at first but offers the advantages of being
more compact to write and easier to manipulate algebraically. It also forces our attention
on the operation of addition.

■ Example 2.6: Another formula for the mean We can use the summation formula
to present another useful formula for the mean. Let Range (x) be all the values of the data
set. When we add x1+x2+…+xn, if there are ties in the data, it is natural to group the same

Using R for introductory statistics 46

numbers first and then add. For example, if there are four 5’s, we would just add a single
value of 4.5, or 20. Let nk=#{i:xi=k}; that is, the number of data points equal to k. We can
then write the sample mean as

Here pk=nk/n is the proportion of times the data is k.
The last sum is a weighted average. The weights are the pk—nonnegative numbers

that add to 1.

2.2.4 Variation: the variance, standard deviation, and IQR

The center of a distribution of numbers may not adequately describe the entire
distribution. For example, consider the data in Table 2.4 on test scores for two different
tests presented in a back-to-back stem-and-leaf plot.

Table 2.4 Two test results
first test stem second test
 4 07
 5
 6

75 7
87520 8 260

 9
 10 00

The means are about the same, but clearly there is more variation in the second test—two
students aced it with 100s, but two failed miserably. In the first test, the students all did
roughly the same. In short, there is more “spread,” or variation, in the second test.

The sample range
There are many ways to measure spread. The simplest is the range of the data.
Sometimes the range refers to the distance between the smallest and largest values, and
other times it refers to these two values as a pair. The function range() returns the
smallest and largest values, as in range(x). The distance between the two is computed by
diff (range(x)).

The term distance between two points x and y refers to the value |x−y|, which is
nonnegative. The difference between x and y is x−y, which may be negative. We also call
this the deviation.

Sample variance
Using the idea of a center, we can think of variation in terms of deviations from the
center. Using the mean for the center, the variation of a single data point can be assessed
using the value A sum of all these differences will give a sense of the total

Univariate data 47

variation. Just adding these values gives a value of 0, as terms cancel. A remedy is to add
the squared deviations

If there is a lot of spread in the data, then this sum will be relatively large; if there is
not much spread, it will be relatively small. Of course, this sum can be large because n is
large, not just because there is much spread. We take care of that by dividing our sum by
a scale factor. If we divided by n we would have the “average squared deviation.” It is
conventional, though, to divide by n−1, producing the sample variance:

We will see that many of the statistics we consider can be analyzed this way: one piece
that intuitively makes sense and a divisor that allows us to compare the statistic among
different data sets.

The sample standard deviation is the square root of the variance. It has the
advantage of having the same units as the mean. However, the interpretation remains:
large values indicate more spread.

The sample variance and standard deviation
For a numeric data set x1, x2, …, xn, the sample variance is defined by

 (2.3)

The sample standard deviation is the square root of the sample variance:

(2.4)

The sample variance is computed in R using the var() function, the sample standard
deviation with the sd() function.

To illustrate on the test-scores data:

> test.scores = c(80,85,75,77,87,82,88)
> test.scores.b = c(100,90,50,57,82,100,86)
> mean(test.scores)
[1] 82
> mean(test.scores.b) # means are similar
[1] 80.71
> n = length(test.scores)
compute directly
> (1/(n−1)) * sum((test.scores − mean(test.scores))^2
)
[1] 24.67
> var(test.scores) # built-in var function
[1] 24.67

Using R for introductory statistics 48

> var(test.scores.b) # larger, as
anticipated
[1] 394.2
> sd(test.scores)
[1] 4.967

Quantiles, quintiles, percentiles, and more
The standard deviation, like the mean, can be skewed when an exceptionally large or
small value is in the data. More resistant alternatives are available. A conceptually simple
one (the IQR) is to take the range of the middle 50% of the data. That is, trim off 25% of
the data from the left and right, and then take the range of what is remaining.

To be precise, we need to generalize the concept of the median. The median splits the
data in half—half smaller than the median and half bigger. The quantiles generalize this.
The pth quantile is at position 1+p(n−1) in the sorted data. When this is not an integer, a
weighted average is used. † This value essentially splits the data so 100p% is smaller and
100(1−p)% is larger. Here p ranges from 0 to 1. The median then is the 0.5 quantile.

The percentiles do the same thing, except that a scale of 0 to 100 is used, instead of 0
to 1. The term quartiles refers to the 0,25, 50,75, and 100 percentiles, and the term
quintiles refers to the 0, 20,40, 60, 80, and 100 percentiles.

The quantile () function returns the quantiles. This function is called with the data
vector and a value (or values) for p. We illustrate on a very simple data set, for which the
answers are easily guessed.

> x = 0:5 # 0,1,2,3,4,5
> length(x)
[1] 6
> sum(sort(x)[3:4])/2 # the median the hard way
[1] 2.5
> median(x) # easy way. Clearly the
middle
[1] 2.5
> quantile(x,.25)
25%
1.25
> quantile(x,c(0.25,0.5,0.75)) # more than 1 at a time

† There are other definitions used for the pth quantile implemented in the quantile() function. These
alternatives are specified with the type= argument. The default is type 7. See ?quantile for the
details.

25% 50% 75%
1.25 2.50 3.75
> quantile(x) # default gives quartiles
0% 25% 50% 75% 100%
0.00 1.25 2.50 3.75 5.00

■ Example 2.7: Executive pay The exec.pay (UsingR) data set contains compensation to
CEOs of 199 U.S. companies in the year 2000 in units of $10,000. The data is not

Univariate data 49

symmetrically distributed, as a stem-and-leaf plot will show. Let’s use the quantile()
function to look at the data:

> sum(exec.pay > 100)/length(exec.pay) # proportion
more
[1] 0.09045 # 9% make more than 1
million
> quantile(exec.pay,0.9) # 914,000 dollars is 90
percentile
90%
91.4
> quantile(exec.pay,0.99) # 9 million is top 1
percentile
997,
906.6
> sum(exec.pay <= 10)/length(exec.pay)
[1] 0.1457 # 14 percent make
100,000 or less
> quantile(exec.pay,.10) # the 10 percentile is
90,000
10%
9

Quantiles versus proportions For a data vector x we can ask two related but inverse
questions : what proportion of the data is less than or equal to a specified value? Or for a
specified proportion, what value has this proportion of the data less than or equal? The
latter question is answered by the quantile function.

The inter-quartile range
Returning to the idea of the middle 50% of the data, this would be the distance between
the 75th percentile and the 25th percentile. This is known as the interquartile range and
is found in R with the IQR() function.

For the executive pay data the IQR is

> IQR(exec.pay)
[1] 27.5

Whereas, for comparison, the standard deviation is

> sd(exec.pay)
[1] 207.0

This is much bigger, as the largest values of exec. pay are much larger than the others and
skew the results.

z-scores
The z-score of a value is the number of standard deviations the value is from the sample
mean of the data set. That is,

Using R for introductory statistics 50

As with the quantiles, z-scores give a sense of the size a value has within a set of data. In
R the collection of z scores for a data set are returned by the scale() function. The set of z-
scores will have sample mean of 0 and standard deviation 1, allowing for comparisons
among samples with different senses of scale.

Numeric summaries of the data
A short description of a distribution of numbers could be made with the range, the mean,
and the standard deviation. It might also make sense to summarize the data with the
range, the quartiles, and the mean. In R, the summary() function does just this for a
numeric data vector.

For the executive-pay data set we have

> summary(exec.pay)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 14.0 27.0 59.9 41.5 2510.0

There is a large difference between the mean and the median. We would want to be
careful using the mean to describe the center of this data set. In fact, the mean is actually
the 84th percentile:

> sum(exec.pay <= mean(exec.pay))/length(exec.pay)
[1] 0.8392

That is, only 16% make more than the average.
In the sequel we will see that the summary () function returns reasonable numeric

summaries for other types of objects in R.

Hinges and the five-number summary
There is a historically popular set of alternatives to the quartiles called the hinges, which
are somewhat easier to compute by hand. Quickly put, the lower hinge is the median of
the lower half of the data, and the upper hinge the median of the upper half of the data. In
Figure 2.9, when n=6, the upper and lower halves include three (n/2) data points; when
n=7, there are still three ((n−1)/2) points in each. The difference is that when n is odd, the
median is removed from the data when considering the upper and lower halves.

The hinges are returned as part of the five-number summary, which is output by the
fivemim() function.

The lower and upper hinges can be different from the quartiles Q1 and Q3. For
example, with n=6, the first quartile is at position 1+(1/4)(6–1)=2.25. That is, a quarter of
the way between the second and third data points after sorting.

Univariate data 51

Figure 2.9 Hinges, marked with
diamonds, are medians of left and
right halves of the data. The left and
right halves of data consist of n/2
points when n is even, and (n−1)/2
points when n is odd.

This is different from the lower hinge, which from Figure 2.9 is seen to be the second
data point after sorting.

The IQR is the difference between the third and first quartiles. The H-spread is used
for the difference of the upper and lower hinges. Some books call the IQR the Q-spread;
others refer to the H-spread as the IQR.

2.2.5 Problems

2.11 Read this stem-and-leaf plot. First find the median by hand. Then enter in the data
and find the median using median().

The decimal point is 1 digit(s) to the right of the |
8 | 028
9 | 115578
10 | 1669
11 | 01

2.12 Figure 2.10 contains a strip chart of a data set. Estimate the median, mean, and 10%
trimmed mean. Enter in the data as accurately as you can and then check your estimates
using the appropriate function in R.

Figure 2.10 Strip chart of a data set

Using R for introductory statistics 52

2.13 Can you copyedit this paragraph from the August 16, 2003 New York Times?

The median sales price, which increased to $575,000, almost 12 per-cent
more than the median for the previous quarter and almost 13 percent more
than the median for the period a year ago, was at its highest level since the
first market overview report was issued in 1989. (The median price is
midway between the highest and lowest prices.)

2.14 In real estate articles the median is often used to describe the center, as opposed to
the mean. To see why, consider this example from the August 16, 2003 New York Times
on apartment prices:

The average and the median sales prices of cooperative apartments were
at record highs, with the average up almost 9 percent to $775,052 from the
first quarter this year, and the median price at $479,000, also an increase
of almost 9 percent.

Explain how using the median might affect the reader’s sense of the center.
2.15 The data set pi2000 (UsingR) contains the first 2,000 digits of π. What is the

percentage of digits that are 3 or less? What percentage of the digits are 5 or more?
2.16 The data set rivers contains the lengths (in miles) of 141 major rivers in North

America.

1. What proportion are less than 500 miles long?

2. What proportion are less than the mean length?

3. What is the 0.75 quantile?

2.17 The time variable in the nym. 2002 (UsingR) data set contains the time to finish
the 2002 New York City marathon for a random sample of the finishers.

1. What percent ran the race in under 3 hours?

2. What is the time cutoff for the top 10%? The top 25%?

3. What time cuts off the bottom 10%?

Do you expect this data set to be symmetrically distributed?
2.18 Compare values of the mean, median, and 25% trimmed mean on the built-in

rivers data set. Is there a big difference among the three?

Univariate data 53

2.19 The built-in data set islands contains the size of the world’s land masses that
exceed 10,000 square miles. Make a stem-and-leaf plot, then compare the mean, median,
and 25% trimmed mean. Are they similar?

2.20 The data set OBP (UsingR) contains the on-base percentages for the 2002 major
league baseball season. The value labeled bondsba01 contains this value for Barry Bonds.
What is his z-score?

2.21 For the rivers data set, use the scale() function to find the z-scores. Verify that the
z-scores have sample mean() and sample standard deviation 1.

2.22 The median absolute deviation is defined as
mad(x)=1.4826·median(|xi-median(x)|).

(2.5)

This is a resistant measure of spread and is implemented in the mad () function. Explain
in words what it measures. Compare the values of the sample standard deviation, IQR,
and median absolute deviation for the exec.pay (UsingR) data set.

2.23 The data set npdb (UsingR) contains malpractice-award information. The
variable amount is the size of malpractice awards in dollars. Find the mean and median
award amount. What percentile is the mean? Can you explain why this might be the case?

2.24 The data set cabinet (UsingR) contains information on the amount each member
of President George W.Bush’s cabinet saved due to the passing of a tax bill in 2003. This
information is stored in the variable est.tax. savings. Compare the median and the mean.
Explain the difference.

2.25 We may prefer the standard deviation to measure spread over the variance as the
units are the same as the mean. Some disciplines, such as ecology, prefer to have a
unitless measurement of spread. The coefficient of variation is defined as the standard
deviation divided by the mean.

One advantage is that the coefficient of variation matches our intuition of spread. For
example, the numbers 1, 2, 3, 4 and 1001, 1002, 1003, 1004 have the same standard
deviation but much different coefficient of variations. Somehow, we mentally think of the
latter set of numbers as closer together.

For the rivers and pi2000 (UsingR) data sets, find the coefficient of variation.
2.26 A lag plot of a data vector plots successive values of the data against each other.

By using a lag plot, we can tell whether future values depend on previous values: if not,
the graph is scattered; if so, there is often a pattern.

Making a lag plot (with lag 1) is quickly done with the indexing notation of negative
numbers. For example, these commands produce a lag plot‡ of x:

> n = length(x)
> plot(x[−n],x[−1])

(The plot () function plots pairs of points when called with two data vectors.) Look at the
lag plots of the following data sets:

‡This is better implemented in the lag.plot() function from the ts package.

1. x=rnorm(100) (random data)
2. x=sin(1:100) (structured data, but see plot (x))

Using R for introductory statistics 54

Comment on any patterns you see.
2.27 Verify that the following are true for the summation notation:

2.28 Show that for any data set

2.29 The sample variance definition, Equation (2.3), has a nice interpretation, but the
following formula is easier to compute by hand:

The term means to square the data values, then find the sample average, whereas
finds the sample average, then squares the answer. Show that the equivalence follows
from the definition.

2.3 Shape of a distribution

The stem-and-leaf plot tells us more about the data at a glance than a few numeric
summaries, although not as precisely. However, when a data set is large, it tells us too
much about the data. Other graphical summaries are presented here that work for larger
data sets too. These include the histogram, which at first glance looks like a barplot, and
the boxplot, which is a graphical representation of the five-number summary.

In addition to learning these graphical displays, we will develop a vocabulary to
describe the shape of a distribution. Concepts will include the notion of modes or peaks
of a distribution, the symmetry or skew of a distribution, and the length of the tails of a
distribution.

2.3.1 Histogram

A histogram is a visual representation of the distribution of a data set. At a glance, the
viewer should be able to see where there is a relatively large amount of data, and where
there is very little. Figure 2.11 is a histogram of the waiting variable from the data set
faithful, recording the waiting time between eruptions of Old Faithful. The histogram is
created with the hist() function. Its simplest usage is just hist(x), but many alternatives
exist. This histogram has two distinct peaks or modes.

Univariate data 55

Figure 2.11 Histogram of waiting
variable in faithful data set

Figure 2.11 was created with these commands:

> attach(faithful)
> hist(waiting)

The graphic is similar, but not identical, to a barplot. The histogram also uses bars to
indicate frequency or proportion, but for an interval not a category. The construction is as
follows. First, a contiguous collection of disjoint intervals, called bins, covering all the
data points is chosen. “Disjoint” means no overlap, so the intervals look like (a,b] or
[a,b). That is, the first interval contains all the values from a to b including b but not a,
and the second all the values including a but not b. Next, the number of data points, or
frequency, in each of these intervals is counted. Finally, a bar is drawn above the interval
so that the area of the bar is proportional to the frequency. If the intervals defining the
bins all have the same length, then the height of the bar is proportional to the frequency.

Finding the mean and median from a histogram As described for the strip chart,
the mean is a balance point. From a histogram the mean can be estimated from the
balance point of the graph, were the figure constructed from some uniform material. The
median, on the other hand, should visually separate the area into two equal-area pieces.

Creating histograms in R with hist()
When constructing a histogram, we make a decision as to which bins to use and how high
to draw the bars, as they need be only in the correct proportion. R has a few built-in
choices for the bin selection. Two common choices for the height of the bars are either
the frequency or total count, or the proportion of the whole. In the latter case, the total
area covered by the bars will be 1, a desirable feature when probability models are
considered.

For hist(), the bin size is controlled by the breaks=argument. This can be specified by
the name of an algorithm, the number of breaks desired, or the location of the breaks. For
example, these commands would all make histograms:

Using R for introductory statistics 56

> hist(waiting) # use defaults
> hist(waiting,breaks=10) # suggest 10 breaks
> hist(waiting,breaks=seq(43,108,length=10)) # use
these breaks
> hist(waiting,breaks="scott") # use “Scott” algorithm

If these graphs are made, we will be surprised that the second histogram has more than
ten bins, despite our suggestion. We directly specify the breaks as a vector of cut points
to get exactly what is wanted. The “Sturges” algorithm is the default; “Scott” is an
alternative, as is “Friedman-Diaconis,” which may be abbreviated as FD.

The choice to draw a histogram of frequencies or proportions is made by the argument
probability=. By default, this is FALSE and frequencies are drawn. Setting it to TRUE
will create histograms where the total area is 1. For example, the commands

> hist(waiting)
> hist(waiting,prob=T) # shortened
probability=TRUE

will create identical-looking graphs, but the y-axes will differ. We used prob=T to shorten
the typing of probability=TRUE. Although T can usually be used as a substitute for
TRUE, there is no guarantee it will work, as we can assign new values to a variable
named T.

By default, R uses intervals of the type (a,b]. If we want the left-most interval to be of
the type [a, b] (i.e., include a), we use the argument include. lowest=TRUE.

■ Example 2.8: Baseball’s on-base percentage Statistical summaries are very much
a part of baseball. A common statistic is the “on-base percentage” (OBP), which indicates
how successful a player is as a batter. This “percentage” is usually given as a
“proportion,” or a number between 0 and 1. The data set OBP (UsingR) contains the OBP
for the year 2002, according to the Sam Lahman baseball database
(http://www.baseball1.com/).

This command will produce the histogram in Figure 2.12.

> hist(OBP,breaks="Scott",prob=TRUE,col=gray(0.9))

The distribution has a single peak and is fairly symmetric, except for the one outlier on
the right side of the distribution. The outlier is Barry Bonds, who had a tremendous
season in 2002.

The arguments to hist() are good ones, but not the default. They are those from the
truehist() function in the MASS package, which may be used as an alternate to hist().

Univariate data 57

Figure 2.12 Histogram of on-base
percentage for the 2002 MLB season

Adding a title to a histogram or other graphic The hist() function adds a default title to
a histogram. This can be changed with the main=argument. This argument is common to
many of the plotting functions we will encounter. For example, this command produces a
histogram with a custom title:

> hist(OBP, main="My histogram of the OBP dataset")

Setting main= to an empty string or NULL will print no title. In this case, one can be
added at a later point with the title() function. In addition, this function can be used to
label the x- and y-axes with the arguments xlab= and ylab=.

Density estimates and frequency polygons
In many statistics books, a frequency polygon is presented in addition to a histogram.
Figure 2.13 displays such a frequency polygon for the waiting variable. To draw a
frequency polygon, we select the bins (all the same size) and find the frequencies, as we
would for the histogram. Rather than draw a bar, though, we draw a point at the midpoint
of the bin with height given by the frequency, then connect these points with straight
lines to form a polygon.

Creating a frequency polygon The commands to create the frequency polygon in
Figure 2.13 are:

> bins = seq(42, 109, by=10)
> freqs <− table(cut(waiting, bins))
> y.pts = c(0, freqs, 0)
> x.pts = seq(37,107,by=10)
> plot(x.pts,y.pts,type="l") # connect points with
lines
> rug(waiting) # show values

Using R for introductory statistics 58

Figure 2.13 Frequency polygon for
waiting variable of the faithful data
set

The plot() function is used to plot points. It will be discussed more thoroughly in the next
chapter. The type="1" argument to plot() is used to draw line segments between the
points instead of plotting the points. The rug() function is used to display the data points
using hash marks along the x-axis. This example shows how we can use the cut() function
and the table() function to turn continuous numeric data into discrete numeric data, or
even categorical data. The output of cut() is simply the bin that the data point is in, where
bins are specified with a vector of endpoints. For example, if this vector is c (1, 3, 5) then
the bins are (1, 3], (3, 5]. The left-most endpoint is not included by default; if the extra
argument include. lowest=TRUE is given, it will be included. (We could also use the
output from hist() to do most of this.)

The frequency polygon is used to tie in the histogram with the notion of a probability
density, which will be discussed when probabilities are discussed in Chapter 5. However,
it is more desirable to estimate the density directly, as the frequency polygon, like the
histogram, is very dependent on the choice of bins.

Estimating the density The density() function will find a density estimate from the
data. To use it, we give it the data vector and, optionally, an argument as to what
algorithm to use. The result can be viewed with either the plot() function or the lines()
function. A new graphic showing the densityplot is produced by the command plot
(density(x)). The example uses lines() to add to the existing graphic.

> attach(faithful)
> hist(waiting, breaks="scott", prob=TRUE,
main="",ylab="")
> lines(density(waiting)) # add to histogram
> detach(waiting) # tidy up

In Figure 2.14, the density estimate clearly shows the two peaks in this data set. It is
layered on top of the histogram plotted with total area 1 (from prob=TRUE).

Univariate data 59

Figure 2.14 Histogram of waiting
with density estimate

2.3.2 Modes, symmetry, and skew

Using the histogram and density estimate of a univariate data set, we can broadly classify
the distribution according to the number of peaks, the symmetry, and the size of the tails.
These attributes are essential to know when we want to make statistical inferences about
the data.

Modes
A mode of a distribution is a peak, or a local maximum, in its density (found using the
density estimate). A data set can be characterized by its number of modes. A unimodal
distribution has a single mode—it occurs at “the mode.” The mode is sometimes used to
represent the center of a distribution. Distributions with two modes are termed bimodal
distributions; those with two or more modes are multimodal distributions.

For example, the waiting data set shown in Figure 2.14 is bimodal. The data set
galaxies (MASS) shown in Figure 2.15 is an example of a multimodal data set. In the
same figure, we see that the OBP data set could be considered unimodal if the Barry
Bonds outlier is removed from the data.

Symmetry
A univariate data set has a symmetric distribution if it spreads out in a similar way to
the left and right of some central point. That is, the histogram or density estimate should
have two sides that are nearly mirror images of one another. The OBP data set (Figure
2.15) is an example of a symmetric data set if once again the Barry Bonds outlier is
removed. The waiting data set in Figure 2.14 is not symmetric.

Another type of a symmetric data set is the “well-shaped” distribution. These

Using R for introductory statistics 60

Figure 2.15 Galaxies data is
multimodal; OBP data is unimodal

distributions have very little in the middle and a lot at the ends. Surprisingly, these
distribution show up in unlikely places. Economic data can show this shape—e.g., the
vanishing middle class—as can grade distributions. A more theoretical example is the
location of the last tie in a game of chance. Imagine a coin is tossed 100 times, and a
running count of heads and tails is kept. After 100 tosses, the number of heads may be
more than the number of tails, the same, or less. The last tie is defined as the last toss on
which there were the same number of heads as tails. This is a number in the range of 0 to
100. A simulation of this was done 200 times. The results are stored in the data set last
.tie (UsingR). A histogram of the data is shown in Figure 2.16.

Figure 2.16 An example of a
symmetric, well-shaped distribution.
This graphic shows 200 simulations
of 100 coin tosses. For each
simulation, the location of the last
time there are an equal number of
heads and tails is recorded.

Univariate data 61

Tails of a distribution and skew
The tails of a distribution are the very large and very small values of the distribution.
They give the shape of the histogram on the far left and right—hence the name. Many
inferences about a distribution are affected by its tails. A distribution is called a long-
tailed distribution if the data set contains values far from the body of the data. This is
made precise after the normal distribution is introduced as a reference. Long tails are also
know as “fat tails.” Alternatively, a distribution is called a short-tailed distribution if
there are no values far from the body.

A distribution is a skewed distribution if one tail is significantly fatter or longer than
the other. A distribution with a longer left tail is termed skewed left; a distribution with a
longer right tail is termed skewed right.

We’ve seen how very large or very small values in a data set can skew the mean. We
will call a data point that doesn’t fit the pattern set by the majority of the data an outlier.
Outliers may be the result of an underlying distribution with a long tail or a mixture of
distributions, or they may indicate mistakes of some sort in the data.

■ Example 2.9: Asset distributions are long-tailed The distributions of assets, like
incomes, are typically skewed right. For example, the amount of equity a household has
in vehicles (cars, boats, etc.) is contained in the VEHIC variable of the cfb (UsingR) data
set. Figure 2.17 shows the long-tailed distribution. The summary() function shows a
significant difference between the median and mean as expected in these situations.

> attach(cfb) # it is a data frame
> summary(VEHIC)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0 3880 11000 15400 21300 188000
> hist(VEHIC,breaks="Scott",prob=TRUE)
> lines(density(VEHIC))
> detach(cfb)

Measures of center for symmetric data When a data set is symmetric and not too long
tailed, then the mean, trimmed mean, and median are approximately the same. In this
case, the more familiar mean is usually used to measure center.

Measuring the center for long-tailed distributions If a distribution has very long
tails, the mean may be a poor indicator of the center, as values far from the mean may
have a significant effect on the mean. In this case, a trimmed mean or median is preferred
if the data is symmetric, and a median is preferred if the data is skewed.

For similar reasons, the IQR is preferred to the standard deviation when summarizing
spread in a long-tailed distribution.

Using R for introductory statistics 62

Figure 2.17 Amount of equity in
vehicles

2.3.3 Boxplots

A histogram with a density is a good plot for visually finding the center, the spread, the
tails, and the shape of a distribution. However, it doesn’t work so well to compare
distributions, as histograms are hard to read when overlapped and take up too much space
when stacked on top of each other. We will use layered densityplots in the sequel instead.
But this too, works well only for a handful of data sets at once. A clever diagram for
presenting just enough information to see the center, spread, skew, and length of tails in a
data set is the boxplot or box-and-whisker plot. This graphic allows us to compare many
distributions in one figure.

A boxplot graphically displays the five-number summary, which contains the
minimum, the lower hinge, the median, the upper hinge, and the maximum. (The hinges
give essentially the same information as the quartiles.) The choice of hinges over the
quartiles was made by John Tukey, who invented the boxplot.

To show spread, a box is drawn with side length stretching between the two hinges.
This length is basically the IQR. The center is illustrated by marking the median with a
line through the box. The range is shown with whiskers. In the simplest case, these are
drawn extending from the box to the minimum and maximum data values. Another
convention is to make the length of the whiskers no longer than 1.5 times the length of
the box. Data values that aren’t contained in this range are marked separately with points.

Symmetry of the distribution is reflected in symmetry of the boxplot in both the
location of the median within the box and the lengths of the two whiskers.

■ Example 2.10: All-time gross movie sales Figure 2.18 shows a boxplot of the
Gross variable in the data set alltime .movies (UsingR). This records the gross domestic
(U.S.) ticket sales for the top 79 movies of all time. The mini-mum, lower hinge, median,
upper hinge, and maximum are marked. In addition, the upper whisker extends from the
upper hinge to the largest data point that is less than 1.5 times the H-spread plus the upper
hinge. Points larger than this are marked separately, including the one corresponding to
the maximum. This boxplot shows a data set that is skewed right. It has a long right tail
and short left tail.

Univariate data 63

Figure 2.18 Boxplot of all-time gross
movie revenues in United States

Making boxplots in R Boxplots are drawn in R with the boxplot () function. Figure 2.18
was made with these commands:

> attach(alltime.movies)
> boxplot(Gross,ylab="All-time gross sales")
> f= fivemun(Gross)
> text(rep(1.3,5),f,labels=c("minimum","lower hinge",
+ "median","upper hinge","maximum"))

The text() function places the values of labels=on the graphic as specified. Common
arguments for boxplot() are col= to set a color for the box, horizontal=TRUE to change
the orientation of the boxplot, and notch=TRUE to add a notch to the waist of the box
where the median is marked.

Getting the outliers If we are curious as to what the top five movies are that are
marked separately, we can use the fivemim() function to find out. (First we get the names
using the rownames() function.)

> f = fivenum(Gross)
> the.names = rownames(alltime.movies)
> the.names[Gross > f[4] + 1.5*(f[4]-f[2])]
[1] “Titanic "
[2] “Star Wars "
[3] “E.T. "
[4] “Star Wars: The Phantom Menace "
[5] “Spider-Man "
> detach(alltime.movies) # tidy up

Alternately, this information is available in the (invisible) output of the boxplot() function
in the list element named “out”.

Using R for introductory statistics 64

2.3.4 Problems

2.30 For the data sets bumpers (UsingR), firstchi (UsingR), and math (UsingR), make
histograms. Try to predict the mean, median, and standard deviation. Check your guesses
with the appropriate R commands.

2.31 We can generate random data with the “r” functions. For example,

> x=rnorm(100)

produces 100 random numbers with a normal distribution. Create two different
histograms for two different times of defining x as above. Do you get the same
histogram?

2.32 Fit a density estimate to the data set pi2000 (UsingR). Compare with the
appropriate histogram. Why might you want to add an argument like breaks =0:10−.5 to
hist()?

2.33 The data set normtemp (UsingR) contains body measurements for 130 healthy,
randomly selected individuals. The variable temperature contains normal body
temperature. Make a histogram. Estimate the sample mean body temperature, and then
check using mean().

2.34 The data set DDT (MASS) contains independent measurements of the pesticide
DDT on kale. Make a histogram and a boxplot of the data. From these, estimate the mean
and standard deviation. Check your answers with the appropriate functions.

2.35 There are several built-in data sets on the 50 United States. For instance, state.
area (,) showing the area of each U.S. state, and state. abb (,) showing a common
abbreviation. First, use state. abb to give names to the state. area variable, then find the
percent of states with area less than New Jersey (NJ). What percent have area less than
New York (NY)? Make a histogram of all the data. Can you identify the outlier?

2.36 The time variable of the nym. 2002 (UsingR) data set contains the time to finish
the 2002 New York City marathon for a random sample of runners. Make a histogram
and describe the shape. Can you explain why the shape is as it is?

2.37 The lawsuits (UsingR) data set contains simulated data on the settlement amounts
of 250 common fund class actions in $10,000s. Look at the differences between the mean
and the median. Explain why some would say the average is too high and others would
say the average is the wrong way to summarize the data.

2.38 The data set babyboom (UsingR) contains data on the births of 44 children in a
one-day period at a Brisbane, Australia, hospital. Make a histogram of the wt variable,
which records birth weight. Is it symmetric or skewed?

The variable running. time records the time after midnight of each birth. The
command diff (running.time) records the differences or inter-arrival times. Make a
histogram of this data. What is the general shape? Is it uniform?

2.39 The data set hall. fame (UsingR) contains baseball statistics for several baseball
players. Make histograms of the following variables and describe their shapes: HR, BA,
and OBP.

2.40 Find a graphic in the newspaper or on the web. Try to use R to produce a similar
figure.

2.41 Why are the boxplot whiskers chosen with the factor of 1.5? Why not some other
factor? You can see the results of other choices by setting the range=argument. Use

Univariate data 65

x=rnorm(1000) for your data. Try values of 0.5, 1, 1.5, and 2 to see which shows the tails
of the distribution best. (This random sample should not have a heavy tail or a light tail,
meaning it will usually have a handful of points beyond the whiskers in a sample of this
size.)

2.42 The data set cf b (UsingR) contains a sampling of the data from a survey of
consumer finances. For the variables AGE, EDUC, NETWORTH, and log (SAVING
+1), describe their distribution using the concepts of modes, symmetry, and tails. Can you
convince yourself that these distributions should have the shape they do? Why?

2.43 The brightness (UsingR) data set contains the brightness for 966 stars in a sector
of the sky. It comes from the Hipparcos catalog. Make a histogram of the data. Describe
the shape of the distribution.

2.44 It can be illuminating to view two different graphics of the same data set at once.
A simple way to stack graphics is to specify that a figure will contain two graphics by
using the command

> par(mfrow=c(2,1) # 2 rows, 1 column for
graphic figures

Then, if x is the data set, the commands

> hist(x)
> boxplot(x, horizontal=TRUE)

will produce stacked graphics. (The graphics device will remain divided until you change
it back with a command such as par (mfrow=c(1, 1)) or close the device.)

For the data set lawsuits (UsingR), make stacked graphics of lawsuits and log
(lawsuits). Could you have guessed where the middle 50% of the data would have been
without the help of the boxplot?

2.45 Sometimes a data set is so skewed that it can help if we transform the data prior
to looking at it. A common transformation for long-tailed data sets is to take the
logarithm of the data. For example, the exec.pay (UsingR) data set is highly skewed.
Look at histograms before and after taking a logarithmic transform. Which is better at
showing the data and why? (You can transform with the command log (1+exec. pay,
10).) Find the median and the mean for the transformed data. How do they correspond to
the median and mean of the untransformed data?

2.46 The skew of a data set is sometimes defined as

Explain why this might make sense as a measurement of skew. Find the skew for the
pi2000 (UsingR) data set and the exec. pay (UsingR) data sets.

Using R for introductory statistics 66

Chapter 3
Bivariate data

This chapter looks at data contained in two variables (bivariate data). With univariate
data, we summarized a data set with measures of center and spread and the shape of a
distribution with words such as “symmetric” and “long-tailed.” With bivariate data we
can ask additional questions about the relationship between the two variables.

Take, for instance, data on test scores. If two classes take the same test, the students’
scores will be two samples that should have similarly shaped distributions but will be
otherwise unrelated as pairs of data. However, if we focus on two exams for the same
group of students, the scores should be related. For example, a better student would be
expected to do better on both exams. Consequently, in addition to the characterization of
data as categorical or numeric, we will also need to know when the data is paired off in
some way.

3.1 Pairs of categorical variables

Bivariate, categorical data is often presented in the form of a (two-way) contingency
table. The table is found by counting the occurrences of each possible pair of levels and
placing the frequencies in a rectangular grid. Such tables allow us to focus on the
relationships by comparing the rows or columns. Later, statistical tests will be developed
to determine whether the distribution for a given variable depends on the other variable.

Our data may come in a summarized or unsummarized format. The data entry is
different for each.

3.1.1 Making two-way tables from summarized data

If the data already appears in tabular format and we wish to analyze it inside R, how is
the data keyed in? Data vectors were created using the c() function. One simple way to
make a table is to combine data vectors together as rows (with rbind()) or as columns
(with cbind()).

To illustrate: an informal survey of seat-belt usage in California examined the
relationship between a parent’s use of a seat belt and a child’s. The data appears in Table
3.1. A quick glance at the table shows a definite relationship between the two variables:
the child’s being buckled is greatly determined by the parent’s.

Table 3.1 Seat-belt usage in California
 Child
Parent buckled unbuckled
buckled 56 8
unbuckled 2 16

We can enter these numbers into R in several ways.
Creating the table as a combination of the row (or column) vectors is done as follows:

> rbind(c(56,8),c(2,16)) # combine rows
 [,1] [,2]
[1,] 56 8
[2,] 2 16
> cbind(c(56,2),c(8,16)) # bind as columns
 [,1] [,2]
[1,] 56 8
[2,] 2 16

Combining rows (or columns) of numeric vectors results in a matrix—a rectangular
collection of numbers. We can also make a matrix directly using the matrix() function. To
enter in the numbers we need only specify the correct size. In this case we have two rows.
The data entry would look like this:

> x = matrix(c(56,2,8,16),nrow=2)
> x

[,1] [,2]
[1,] 56 8
[2,] 2 16

The data is filled in column by column. Set byrow=TRUE to do this row by row.
Alternately, we may enter in the data using the edit() function. This will open a

spreadsheet (if available) when called on a matrix. Thus the commands

> x = matrix(1) # need to initialize x
> x = edit(x) # will edit matrix with
spreadsheet

will open the spreadsheet and store the answer into x when done. The 1 will be the first
entry. We can edit this as needed.

Giving names to a matrix It isn’t necessary, but it is nice to give the matrix row and
column names. The rownames() and colnames() functions will do so. As with the
names() function, these are used in a slightly different manner. As they modify the
attributes of the matrix, the functions appear on the left side of the assignment.

> rownames(x) = c("buckled","unbuckled")

Using R for introductory statistics 68

> colnames(x) = c("buckled","unbuckled")
> x
 buckled unbuckled
buckled 56 8
unbuckled 2 16

The dimnames() function can set both at once and allows us to specify variable names. A
list is used to specify these, as made by list(). Lists are discussed further in Chapter 4. For
this usage, the variable name and values are given in name=value format. The row
variable comes first, then the column.

> tmp = c("unbuckled","buckled") # less typing
> dimnames(x) = list(parent=tmp,child=tmp) # uses a
named list
> x
 child
parent unbuckled buckled
 unbuckled 56 8
 buckled 2 16

If the matrix is made with rbind(), then names for the row vectors can be specified in
name=value format. Furthermore, column names will come from the vectors if present.

> x = c(56,8); names(x) = c("unbuckled","buckled")
> y = c(2,16)
> rbind(unbuckled=x,buckled=y) # names rows, columns
come from x

unbuckled buckled
unbuckled 56 8
buckled 2 16

3.1.2 Making two-way tables from unsummarized data

With unsummarized data, two-way tables are made with the table() function, just as in the
univariate case. If the two data vectors are x and y, then the command table(x, y) will
create the table.

■ Example 3.1: Is past performance an indicator of future performance?
A common belief is that an A student in one class will be an A student in the next. Is

this so? The data set grades (UsingR) contains the grades students received in a math
class and their grades in a previous math class.

> library (UsingR) # once per session
> grades
 prev grade
1 B+ B+
2 A− A−
3 B+ A−
…

Bivariate data 69

122 B B
> attach(grades)
> table(prev, grade) # also table (grades) works
 grade
prev A A− B+ B B− C+ C D F
 A 15 3 1 4 0 0 3 2 0
 A− 3 1 1 0 0 0 0 0 0
 B+ 0 2 2 1 2 0 0 1 1
 B 0 1 1 4 3 1 3 0 2
 B− 0 1 0 2 0 0 1 0 0
 C+ 1 1 0 0 0 0 1 0 0
 C 1 0 0 1 1 3 5 9 7
 D 0 0 0 1 a a 4 3 1
 F 1 0 0 1 1 1 3 4 11

A quick glance at the table indicates that the current grade relates quite a bit to the
previous grade. Of those students whose previous grade was an A, fifteen got an A in the
next class; only three of the students whose previous grade was a B or worse received an
A in the next class.

3.1.3 Marginal distributions of two-way tables

A two-way table involves two variables. The distribution of each variable separately is
called the marginal distribution. The marginal distributions can be found from the table
by summing down the rows or columns. The sum() function won’t work, as it will add all
the values. Rather, we need to apply the sum() function to just the rows or just the
columns. This is done with the function apply(). The command apply(x, 1, sum) will sum
the rows, and apply (x, 2, sum) will sum the columns. The margin. table() function
conveniently implements this. Just remember that 1 is for rows and 2 is for columns.

For the seat-belt data stored in x we have:

> X
 child
parent unbuckled buckled
 unbuckled 56 8
 buckled 2 16
> margin.table(x,1) # row sum is for
parents
[1] 64 18
> margin.table(x,2) # column sum for kids
[1] 58 24

The two marginal distributions are similar: the majority in each case wore seat belts.
Alternatively, the function addmargins () will return the marginal distributions by

extending the table. For example:

> addmargins(x)
 child
parent unbuckled buckled Sum

Using R for introductory statistics 70

 unbuckled 56 8 64
 buckled 2 16 18
 Sum 58 24 82

Looking at the marginal distributions of the grade data also shows two similar
distributions:

> margin.table(table(prev,grade),1) # previous. Also
table(prev)
prev
A A− B+ B B− C+ C D F
 28 5 9 15 4 3 27 9 22
> margin.table(table(prev,grade),2) # current
grade
A A− B+ B B− C+ C D F
 21 9 5 14 7 5 20 19 22

The grade distributions, surprisingly, are somewhat “well-shaped.”

3.1.4 Conditional distributions of two-way tables

We may be interested in comparing the various rows of a two-way table. For example, is
there a difference in the grade a student gets if her previous grade is a B or a C? Or does
the fact that a parent wears a seat belt affect the chance a child does? These questions are
answered by comparing the rows or columns in a two-way table. It is usually much easier
to compare proportions or percentages and not the absolute counts.

For example, to answer the question of whether a parent wearing a seat belt changes
the chance a child does, we might want to consider Table 3.2.

Table 3.2 Proportions of children with seat belt
on

 Child
Parent buckled unbuckled
buckled 0.875 0.125
unbuckled 0.1111 0.8889

From this table, the proportions clearly show that 87.5% of children wear seat belts when
their parents do, but only 11% do when their parents don’t. In this example, the rows add
to 1 but the columns need not, as the rows were divided by the row sums.

For a given row or column, calculating these proportions is done with a command
such as x/sum(x). But this needs to be applied to each row or column. This can be done
with apply(), as described before, or with the convenient function prop.table(). Again, we
specify whether we want the conditional rows or columns with a 1 or a 2.

For example, to find out how a previous grade affects a current one, we want to look at
the proportions of the rows.

Bivariate data 71

> options("digits"=1) # to fit on the page
> prop.table(table(prev,grade),1)
 grade
prev A A− B+ B B− C+ C D F
 A 0.54 0.11 0.04 0.14 0.00 0.00 0.11 0.07 0.00
 …
 C 0.04 0.00 0.00 0.04 0.04 0.11 0.19 0.33 0.26
 D 0.00 0.00 0.00 0.11 0.00 0.00 0.44 0.33 0.11
 F 0.05 0.00 0.00 0.05 0.05 0.05 0.14 0.18 0.50
> options("digits"=4) # set back to original
> detach(grades) # tidy up

From comparing the rows, it is apparent that the previous grade has a big influence on the
current grade.

The opt ions () function is used to set the number of digits that are displayed in the
output of decimal numbers. It was set to 1 to make the table print without breaking in the
space provided.

3.1.5 Graphical summaries of two-way contingency tables

Barplots can be used effectively to show the data in a two-way table. To do this, one
variable is chosen to form the categories for the barplot. Then, either the bars for each
level of the category are segmented, to indicate the proportions of the other variable, or
separate bars are plotted side by side.

The barplot () function will plot segmented barplots when its first argument is a two-
way table. Levels of the columns will form the categories, and the sub-bars or segments
will be proportioned by the values in each column. Segmented bar graphs are the default;
use beside=TRUE to get side-by-side bars.

If x stores the seat-belt data, we have:

> barplot(x, xlab="Parent", main="Child seat-belt
usage")
> barplot(x, xlab="Parent", main="Child seat-belt
usage",beside=TRUE)

We can add a legend to the barplot with the argument legend. text=TRUE, or by
specifying a vector of names for legend. text=. For example, try

| > barplot(x,main="Child seat belt
usage",legend.text=TRUE)

For the seat-belt data, if we wanted the parents’ distribution (the rows) to be

Using R for introductory statistics 72

Figure 3.1 Segmented and side-by-
side barplots showing distribution of
child’s seat-belt usage depending on
whether parent is buckled or
unbuckled

the primary distribution, then we need to flip the table around. This is done with the
transpose function, t(), as in barplot(t(x)).

Sometimes a relationship is better presented as proportions than counts. To do this, we
apply prop. table() prior to the barplot.

3.1.6 Problems

3.1 Find an example of a two-way contingency table in the media. Identify the two
variables and summarize the data that is presented.

3.2 Wired magazine announced that as of July 2003 the percentage of all e-mail that is
spam (junk e-mail) is above 50% and climbing. A user may get over 100 e-mail messages
a day, making spam a time-consuming and expensive reality. Table 3.3 lists the amount
of spam in commercial e-mail and the total amount of commercial e-mail by year with
some predicted amounts. Enter in the data and then recreate the table. Make a segmented
barplot showing the amount of spam and the total amount of e-mail.

Table 3.3 Volume of spam in commercial e-mail
(in billions)

 2000 2001 2002 2003 2004 2005
spam 50 110 225 315 390 450
total 125 210 375 475 590 700
Source: Wired magazine September 2003

3.3 The data set coins (UsingR) contains the number of coins in a change bin and the
years they were minted. Do the following:

1. How much money is in the change bin?

Bivariate data 73

2. Make a barplot of the years. Is there a trend?

3. Try to fill in Table 3.4. (Use cut (), but look at ?cut and its arguments.)

Table 3.4 Fill in this table using coins
Year 1920–1929 1930–1939 1940–1949 1950–1959 1960–1969
Amount 3 2
Year 1970–1979 1980–1989 1990–1999 2000–2009
Amount 88

3.4 The data set dvdsales (UsingR) contains monthly sales of DVD players from their
initial time on the market through May 2004. Make side-by-side barplots of monthly
sales by year. (The data needs to be transposed using t(); otherwise the barplots will be
broken up by month.)

3.5 The f lorida (UsingR) data set contains county-by-county tallies of the votes cast in
the 2000 United States presidential election for the state of Florida. The main candidates
were George Bush and Al Gore. Make a segmented barplot of the proportion of Bush
votes versus the proportion of Gore votes by county. Are these proportions always close
to the 50% proportion for the state?

3.6 In 1996, changes in the United States welfare laws resulted in more monies being
spent on noncash assistance (child care, training, etc.) than on cash assistance. A table of
the percentages of cash assistance is given in Table 3.5. Make a segmented barplot
illustrating the percentages for both. The total spending is approximately $25 billion per
year.

Table 3.5 Shift in what welfare provides
 ’97 ’98 ’99 ’00 ’01 ’02
Cash assistance 76% 70% 68% 52% 48% 46%
source: New York Times October 13, 2003

3.7 The data set UScereal (MASS) contains information about cereals on a shelf of a
United States grocery store. Make a table showing the relationship between
manufacturer, mfr, and shelf placement, shelf. Are there any obvious differences between
manufacturers?

3.2 Comparing independent samples

In many situations we have two samples that may or may not come from the same
population. For example, a medical trial may have a treatment group and a control group.
Are any measured effects the same for each? A consumer may be comparing two car
companies. From samples, can he tell if the ownership costs will be about the same?
When two samples are drawn from populations in such a manner that knowing the
outcomes of one sample doesn’t affect the knowledge of the distribution of the other
sample, we say that they are independent samples. For independent samples, we may be

Using R for introductory statistics 74

interested in comparing their populations. Are the centers the same? The spreads? Do
they have the same shape distribution? In Chapter 7 we use statistical models to help
answer such questions. In this section, we learn to explore the relationships graphically to
gain insight into the answers.

3.2.1 Side-by-side boxplots

The stem-and-leaf plot and boxplot were very effective at summarizing a distribution.
The stem-and-leaf plot was used when the data set was small; the boxplot can be used on
larger data sets. By putting them side by side or back to back, we can make comparisons
of the two samples.

Table 3.6 Weight loss during ephedra trial (in
pounds)

placebo treatment ephedra treatment
42000 0 0

5 0 679
4443 1 13
775 1 66678

 2 01

Table 3.6 contains hypothetical data on weight loss during a clinical trial of the ephedra
supplement. As mentioned in Example 1.3, ephedra is a popular supplement that was
forced off the market due to its side effects.

The back-to-back stem-and-leaf plot shows that the ephedra group has a larger center.
The question of whether this is “significant” is answered using a t-test, which is covered
in Chapter 8.

The stem() function doesn’t make back-to-back stem-and-leaf plots. If the data set is
too large to make a stem-and-leaf plot by hand, side-by-side boxplots are useful for
highlighting differences. (These are better named parallel boxplots, as they may be
displayed horizontally or vertically.)

The command boxplot(x, y) will create side-by-side boxplots from two variables. The
names= argument is used to label the boxplots in Figure 3.2. The figure shows slightly
different distributions, with, perhaps, similar medians.

> pl = c(0, a, a, 2, 4, 5, 14, 14, 14, 13, 17, 17, 15)
> ep = c(0, 6, 7, 9, 11, 13, 16, 16, 16, 17, 18, 20,
21)
> boxplot(pl,ep, names=c("placebo","ephedra"))

Bivariate data 75

Figure 3.2 Left graphic shows side-
by-side boxplots of placebo and
ephedra group. Right graphic
contains densityplots of the two
variables.

3.2.2 Densityplots

We can compare distributions with two histograms, but it is difficult to put both on the
same graphic. Densityplots, however, lend themselves readily to this. *

We draw the first densityplot with the plot() function and add subsequent ones with
the lines () function. The argument lty=can be set to a value between 1 and 6, to change
the type of line drawn for identification purposes. For example, the densityplots in Figure
3.2 are made as follows:

*You can compare histograms by recording the graphs. In the Windows GUI, you can turn on
recording from the menu bar of the graph window. In general, you can store the current plot in a
variable with recordPlot(), and view this stored plot with replayPlot().

> plot(density(pi),ylim=c(0,0.07), main="densityplots
of ep and pi")
> lines(density(ep), lty=2)

The argument ylim=adjusts the y-axis to accommodate both densities. The value was
arrived at after we plotted both densities and found the maximum values.

3.2.3 Strip charts

Strip charts can compare distributions effectively when the values are similar and there
aren’t too many. To create a strip chart with multiple data vectors, we first combine the
data vectors into a list with the list() function. By using a named list the stripchart will be
drawn with labels for the data sets.

Using R for introductory statistics 76

> stripchart(list(ephedra=ep,placebo=pl), # named list
+ method = "stack", # stack multiples
+ pch=16,offset = 1/2, cex=3) # big circles—not
squares

Figure 3.3 shows the graphic (slightly modified).

Figure 3.3 Strip chart of placebo and
ephedra group

3.2.4 Quantile-quantile plots

The boxplot uses the quartiles (essentially) of a data set to graphically represent a data set
succinctly. If we use more of the quantiles, a very clear picture of the data can be had at
the expense of a more complicated graph to read. A quantile-quantile plot (q-q plot)
plots the quantiles of one distribution against the quantiles of another as points. If the
distributions have similar shapes, the points will fall roughly along a straight line. If they
are different, the points will not lie near a line, in a manner that can indicate why not.

A normal quantile plot plots the quantiles of a data set against the quantiles of a
benchmark distribution (the normal distribution introduced in Chapter 5). Again, the
basic idea is that if the data set is similar to the benchmark one, then the graph will
essentially be a straight line. If not, then the line will be “curved” in a manner that can be
interpreted from the graph.

Figure 3.4 shows the q-q plot for two theoretical distributions that are clearly not the
same shape. Each shaded region is 5% of the total area. The difference in the shapes
produces differences in the quantiles that curve the q-q plot.

Bivariate data 77

Figure 3.4 Quantile-quantile plot of
two distributions. The shaded areas
represent similar areas. As the
distributions have different shapes,
the q-q plot has a curve.

Creating q-q plots The R function to make a q-q plot is qqplot(), as in qqplot (x, y). The
qqnorm() function, as in qqnorm(x), will produce a normal quantile plot. In this case, a
reference line may be added with the qqline() function, as in qqline(x).

Figure 3.5 shows six normal quantile graphs for data that is a combination of
symmetric, or skewed right, and short, normal or long tailed. The combination
(normal/symmetric) looks like a straight line. Were we to plot a histogram of this data,
we would see the familiar bell-shaped curve. The figure (short/symmetric) shows what
happens with short tails. In particular, if the right tail is short, it forces the quantile graph
to curve down. In contrast, the graph (long/skewed) curves up, as this data has a long
right tail.

3.2.5 Problems

3.8 The use of a cell phone while driving is often thought to increase the chance of an
accident. The data set reaction, time (UsingR) is simulated data on the time it takes to
react to an external event while driving. Subjects with

Using R for introductory statistics 78

Figure 3.5 Six qqnorm() graphs for
different types of data

control =="C" are not using a cell phone, and those with control =="T" are. Their time to
respond to some external event is recorded in seconds.

Create side-by-side boxplots of the variable react ion. time for the two values of
control. Compare the centers and spreads.

3.9 For the data set twins (UsingR) make a boxplot of the Foster and Biological
variables. Do they appear to have the same spread? The same center?

3.10 The data set stud. recs (UsingR) contains 160 SAT scores for incoming college
students stored in the variables sat.v and sat.m. Produce sideby-side densityplots of the
data. Do the two data sets appear to have the same center? Then make a quantile-quantile
plot. Do the data sets appear to have the same shape?

3.11 For the data set morley, make a boxplot of the Speed variable for Expt ==1 and
Expt ==2. These data sets are the measurements of the speed of light for two different
experiments. Do they appear to have the same spread? The same center?

3.12 The data set normtemp (UsingR) contains normal body temperature
measurements for 130 healthy individuals recorded in the variable temperature. The
variable gender is 1 for a male subject and 2 for a female subject. Break the data up by
gender and create side-by-side boxplots. Does it appear that males and females have
similar normal body temperatures?

Bivariate data 79

3.3 Relationships in numeric data

There are many scientific relationships between numeric variables. Among them:
distance equals rate times time, pressure is proportional to temperature; and demand is
inverse to supply. Many relationships are not precisely known, prompting an examination
of the data. For instance, is there a relationship between a person’s height and weight?

If a bivariate data set has a natural pairing, such as (x1, y1), …, (xn,yn), then it likely
makes sense for us to investigate the data set jointly, as a two-way table does for
categorical data.

3.3.1 Using scatterplots to investigate relationships

A scatterplot is a good place to start when investigating a relationship between two
numeric variables. A scatterplot plots the values of one data vector against another as
points (xi, yi) in a Cartesian plane.

The plot() function will make a scatterplot. A basic template for its usage is
Plot (x, y)

where x and y are data vectors containing the paired data. The plot() function is used to
make many types of plots, including densityplots, as seen. For scatterplots, there are
several options to plot() that can adjust how the points are drawn, whether the points are
connected with lines, etc. We show a few examples and then collect them in Table 3.7.

■ Example 3.2: Home values Buying a home has historically been a good
investment. Still, there are expenses. Typically, a homeowner needs to pay a property tax
in proportion to the assessed value of the home. To ensure some semblance of fairness,
the assessed values should be updated periodically. In Maplewood, New Jersey,
properties were reassessed in the year 2000 for the first time in 30 years. The data set
homedata (UsingR) contains values for 150 randomly chosen homes. A scatterplot of
assessed values should show a rela-tionship, as homes that were expensive in 1970
should still have been expensive in 2000. We can use this data set to get an insight into
the change in property values for these 30 years.

The scatterplot is made after loading the data set.

> attach(homedata)
> plot(y1970, y2000) # make the scatterplot

Using R for introductory statistics 80

Figure 3.6 Assessed values of homes
in Maplewood, N.J. in 1970 and 2000

Figure 3.6 shows the scatterplot. The data falls more or less along a straight line, although
with some variation. A few questions immediately come to mind. For instance, what are
the distributions of each variable like? What is the change in price?

> summary(y1970)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 20300 57000 68500 71300 83500 139000
> summary(y2000)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 51600 163000 260000 274000 342000 745000 260000
> summary(y2000/y1970)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.10 2.89 3.80 3.68 4.30 5.97
 detach(homedata) # tidy up

For the 1970 data, the mean and the median are nearly the same. Not so for the 2000 data.
Property values are often skewed right. In this sampling, some houses went up in value
just over two times and others nearly six times. On average they went up 3.68 times.

When one is buying a home, it is obviously desirable to figure out which homes are
likely to appreciate more than others.

■ Example 3.3: Does the weather predict the stock market? As a large amount of
stock traders work in New York City, it may be true that unseasonably good or bad
weather there affects the performance of the stock market. The data set maydow
(UsingR) contains data for the Dow Jones Industrial Average (DJIA) and maximum
temperatures in Central Park for May 2003. This month was unseasonably cool and wet.
The data set contains only maximum temperature, so we can ask for that month, whether
there was a relationship between maximum temperature and the stock market?

> attach(maydow)
> names(maydow)
[1] "Day" "DJA" "max.temp"

Bivariate data 81

> plot(max.temp[−1], diff(DJA), main="Max. temp versus
daily change")
> detach(maydow)

Figure 3.7 Maximum temperature
versus daily change in DJIA

Figure 3.7 contains the plot of maximum daily temperature versus daily change in the
variable DJA calculated using the diff () function. We needed to drop the first day’s
temperature, as we have no difference data for that day. This was done using negative
indexing, max. temp [−1] . The scatterplot shows no trend. If the temperature does
influence the stock market, more data would be needed to see exactly how.

■ Example 3.4: Kids’ weights: the relationship between height and weight
The proportions of the human body have long been of interest to humankind. Even

Jonathan Swift wrote in Gulliver’s Travels (1726),

Then they measured my right Thumb, and desired no more; for by a
mathematical Computation, that twice round the Thumb is once round the
Wrist, and so on to the Neck and the Waist, and by the help of my old
Shirt, which I displayed on the Ground before them for a Pattern, they
fitted me exactly.

Just as it seems intuitive that the bigger you are the bigger your thumb, it seems clear that
the taller you are the heavier you are. What is the relationship between height and
weight? Is it linear? Nonlinear? The body mass index (BMI) is a ratio of weight to height
squared in the units of kilograms/meters2. This well-used statistic suggests height and
weight are in a squared relationship.

The data set kid. weights (UsingR) contains height and weight data for children ages a
to 12 years. A plot of height versus weight is found with the following. (The
pch=argument forces the plot character to be “M” for the boys and “F” for the girls.)

> attach(kid.weights)

Using R for introductory statistics 82

> plot(height, weight, pch=as.character(gender))
> detach(kid.weights)

Figure 3.8 Height versus weight for
kid.weights

Figure 3.8 indicates that weight may be related to the height squared. It certainly does not
appear to be a straight-line relationship.

Arguments for the plot() function The plot() function, and other graphing functions
like hist(), boxplot(), and lines(), take extra arguments that can control portions of the
graphic. Table 3.7 list some of the possible arguments. More details are found on the help
pages for the individual functions. Most of these arguments are graphics parameters that
may also be queried and set using par(). The documentation for these arguments is found
in the help page for par(). (This function is discussed more fully in Appendix D.) Some of
the arguments, such as main=, xlim=, and xlab=, can be used only with plotting

functions that set up a plot window (called high-level plotting functions).

Table 3.7 Useful arguments for plot() and other
graphic functions

main= Title to put on the graphic.
xlab= Label for the x-axis. Similarly for ylab=.
xlim= Specify the x-limits, as in xlim=c(0, 10), for the interval [0, 10].

Similar argument for the y-axis is ylim=.
type= Type of plot to make. Use "p" for points (the default), "1" (ell not one) for lines, and "h" for

vertical lines.
bty= Type of box to draw. Use "l" for “L”-shaped, default is "o", which is “O”-shaped. Details in

?par.
pch= The style of point that is plotted. This can be a number or a single character. Numbers

between a and 25 give different symbols. The command plot (0:25, pch=0:25) will show
those possible.

cex= Magnification factor. Default is 1.
lty= When lines are plotted, specifies the type of line to be drawn. Different numbers correspond

to different dash combinations. (See ?par for full details.)

Bivariate data 83

lwd= The thickness of lines. Numbers bigger than 1 increase the default.
col= Specifies the color to use for the points or lines.

3.3.2 The correlation between two variables

The correlation between two variables numerically describes whether larger- and smaller-
than-average values of one variable are related to larger- or smaller-thanaverage values of
the other variable.

Figure 3.9 shows two data sets: the scattered one on the left is weakly correlated; the
one on the right with a trend is strongly correlated. We drew horizontal and vertical lines
through breaking the figure into four quadrants. The correlated data shows that
larger than average values of the x variable are paired with larger-than-average values of
the y variable, as these points are concentrated in upper-right quadrant and not scattered
throughout both right quadrants. Similarly for smaller-than-average values.

For the correlated data, the products will tend to be positive, as this
happens in both the upper-right and lower-left quadrants. This is not the case with the
scattered data set. Because of this, the quantity will be useful in
describing the correlation between two variables. When the data is uncorrelated, the
terms will tend to cancel each other out; for correlated data they will not.

Figure 3.9 Two data sets with
horizontal and vertical lines drawn
through The data set on the left
shows weak correlation and data
spread throughout the four
quadrants of the plot. The data set
on the right is strongly correlated,
and the data is concentrated into
opposite quadrants.

To produce a numeric summary that can be used to compare data sets, this sum is scaled
by a term related to the product of the sample standard deviations. With this scaling, the

Using R for introductory statistics 84

correlation only involves the respective z-scores, and the quantity is always between −1
and 1.

When there is a linear relationship between x and y then values of r2 close to 1 indicate
a strong linear relationship, and values close to a a weak linear relationship. (Sometimes r
may be close to a, but a different type of relationship holds.)

The Pearson correlation coefficient
The Pearson correlation coefficient, r, of two data vectors x and y is defined by

(3.1)

The value of r is between −1 and 1.
In R this is found with the cor() function, as in cor(x, y).

We look at the correlations for the three data sets just discussed. First we attach the
variable names, as they have been previously detached.

> attach(homedata); attach(maydow); attach(kid.weights)

In Example 3.2, on Maplewood home values, we saw a nearly linear relationship between
the 1970 assessed values and the 2000 ones. The correlation in this case is

> cor(y1970,y2000)
[1] 0.9111

In Example 3.3, where the temperature’s influence on the Dow Jones average was
considered, no trend was discernible. The correlation in this example is

> cor(max.temp[−1],diff(DJA))
[1] 0.01029

In the height-and-weight example, the correlation is

> cor(height,weight)
[1] 0.8238

The number is close to 1, but we have our doubts that a linear relationship a correct
description.

The Spearman rank correlation
If the relationship between the variables is not linear but is increasing, such as the
apparent curve for the height-and-weight data set, we can still use the correlation
coefficient to understand the strength of the relationship. Rather than use the raw data for
the calculation, we use the ranked data. That is, the data is ordered from smallest to
largest, and a data point’s rank is its position after sorting, with 1 being the smallest and n

Bivariate data 85

the largest. Ties are averaged. The Spearman rank correlation is the Pearson
correlation coefficient computed with the ranked data.

The rank() function will rank the data.

> x = c(30,20,7,42,50,20)
> rank(x) # ties are averaged
[1] 4.0 2.5 1.0 5.0 6.0 2.5

The first three numbers are interpreted as: 30 is the fourth smallest value, 20 is tied for
second and third, and 7 is the smallest.

Computing the Spearman correlation is done with cor () using the argument
method="spearman" (which can be abbreviated). It can also be done directly combining
cor() with rank().

For our examples, the correlations are as follows:

homedata example, r = 0.9111
> cor(rank(y1970), rank(y2000))
[1] 0.907
Dow Jones example, r = 0.01029
> cor(max.temp[−1], diff(DJA), method="spearman") #
slight?
[1] 0.1316
height and weight example, r = 0.8238
> cor(height,weight, m="s") # abbreviated
[1] 0.8822
> detach(homedata); detach(maydow); detach(kid.weights)

The data on home values is basically linear, and there the Spearman correlation actually
went down. For the height-versus-weight data, the Spearman correlation coefficient
increases as expected, as the trend there appears to be more quadratic than linear.

3.3.3 Problems

3.13 For the homedata (UsingR) data set, make a histogram and density estimate of the
multiplicative change in values (the variable y2000/y1970). Describe the shape, and
explain why it is shaped thus. (Hint: There are two sides to the tracks.)

3.14 The galton on (UsingR) data set contains measurements of a child’s height and an
average of his or her parents’ heights (analyzed by Francis Galton in 1885). Find the
Pearson and Spearman correlation coefficients.

3.15 The data set normtemp (UsingR) contains body measurements for 130 healthy,
randomly selected individuals. The variable temperature measures normal body
temperature, and the variable hr measures resting heart rate. Make a scatterplot of the two
variables and find the Pearson correlation coefficient.

3.16 The data set fat (UsingR) contains several measurements of 252 men. The
variable body. fat contains body-fat percentage, and the variable BMI records the body
mass index (weight divided by height squared). Make a scatterplot of the two variables
and then find the correlation coefficient.

Using R for introductory statistics 86

3.17 The data set twins (UsingR) contains IQ scores for pairs of identical twins who
were separated at birth. Make a scatterplot of the variables Foster and Biological. Based
on the scatterplot, predict what the Pearson correlation coefficient will be and whether the
Pearson and Spearman coefficients will be similar. Check your guesses.

3.18 The state.x77 data set contains various information for each of the fifty United
States. We wish to explore possible relationships among the variables. First, we make the
data set easier to work with by turning it into a data frame.

> x77 = data.frame(state.x77)
> attach(x77)

Now, make scatterplots of Population and Frost; Population and Murder; Population and
Area; and Income and HS. Grad. Do any relationships appear linear? Are there any
surprising correlations?

3.19 The data set nym.2002 (UsingR) contains information about the 2002 New York
City Marathon. What do you expect the correlation between age and finishing time to be?
Find it and see whether you were close.

3.20 For the data set state. center do this plot:

> with(state.center,plot(x,y))

Can you tell from the shape of the points what the data set is?
3.21 The batting (UsingR) data set contains baseball statistics for the 2002 major

league baseball season. Make a scatterplot to see whether there is any trend. What is the
correlation between the number of strikeouts (SO) and the number of home runs (HR)?
Does the data suggest that in order to hit a lot of home runs one should strike out a lot?

3.22 The galton on (UsingR) data set contains data recorded by Gallon in 1885 on the
heights of children and their parents. The data is discrete, so a simple scatterplot does not
show all the data points. In this case, it is useful to “jitter” the points a little when plotting
by adding a bit of noise to each point. The jitter() function will do this. An optional
argument, fact or=, allows us to adjust the amount of jitter. Plot the data as below and
find a value for factor=that shows the data better.

> attach(galton)
> plot(jitter(parent,factor=1),jitter(child,factor=l))

3.4 Simple linear regression

In this section, we introduce the simple linear regression model for describing paired data
sets that are related in a linear manner. When we say that variables x and y have a linear
relationship in a mathematical sense we mean that y=mx+b, where m is the slope of the
line and b the intercept. We call x the independent variable and y the dependent one.

In statistics, we don’t assume these variables have an exact linear relationship: rather,
the possibility for noise or error is taken into account.

Bivariate data 87

In the simple linear regression model for describing the relationship between xi and
yi, an error term is added to the linear relationship:

yi=β0+β1xi+εi.
(3.2)

The value εi is an error term, and the coefficients β0 and β1 are the regression
coefficients.† The data vector x is called the predictor variable and y the

†These are Greek letters: ε is epsilon and β is beta.

response variable. The error terms are unknown, as are the regression coefficients. The
goal of linear regression is to estimate the regression coefficients in a reasonable manner
from the data.

The term "linear" applies to the way the regression coefficients are used. The model
would also be considered a linear model. The term “simple” is used

to emphasize that only one predictor variable is used, in contrast with the multiple
regression model, which is discussed in Chapter 10.

Estimating the intercept β0 and the slope β1 gives an estimate for the underlying linear
relationship. We use "hats" to denote the estimates. The estimated regression line is then
written

For each data point xi we have a corresponding value, with being a
point on the estimated regression line.

We refer to as the predicted value for yi, and to the estimated regression line as the
prediction line. The difference between the true value yi and this predicted value is the
residual, ei:

Using R for introductory statistics 88

Figure 3.10 Prediction line with
residual for (x3, y3) indicated

Geometrically, the residual is the signed vertical distance of the point (xi,yi) to the
prediction line as seem in Figure 3.10. If the estimated line is a good one, these distances
should be small. The method of least squares chooses the line (equivalently the
coefficients) so that the sum of the squared residuals is as small as possible. This is a
tractable problem and its solution gives

(3.3)

Interpreting, the regression line goes through the point and has slope given by

3.4.1 Using the regression model for prediction

One of the primary uses of simple linear regression is to make predictions for the
response value for new values of the predictor. For example, high school GPAs may be
used by colleges during the admission process to predict college GPAs. Once the
coefficients are estimated, the value of used for the prediction.

3.4.2 Finding the regression coefficients using lm()

The regression coefficients could certainly be found directly from the formulas, but we
would like to have some convenient function do it for us directly. R provides the lm()
function for linear models. The most basic usage is

lm(model.formula)

The model.formula is a formula that represents the simple linear regression model. The
notation for this is y ~ x. The ~ in this notation is read “is modeled by,” so the model
formula y ~ x would be read “y is modeled by x.” The model formula implicitly assumes
an intercept term and a linear model. The model formula approach is quite flexible, as we
will see. We approach the notation step by step, on a need-to-know basis. A
comprehensive description is contained in the manual An Introduction to R that
accompanies R.

■ Example 3.5: The regression line for the Maple wood home data
The data set homedata (UsingR) showed a strong linear trend between the 1970
assessments and the 2000 assessments. The regression coefficients are found from the
data as follows:

> attach(homedata)
> lm(y2000 ~ y1970)

Bivariate data 89

Call:
1m(formula = y2000 ~ y1970)
Coefficients:
(Intercept) y1970
 −1.13e+05 5.43e+00

The value of is indicated by (Intercept), and the value of appears under the variable
name y1970.

It is recommended that the results of the modeling be stored, as there are several ways
of extracting more information than is initially shown. For example, we assign the results
of the homedata model to the variable res.

> res=lm(y2000 ~ y1970) # type res to see
default output

The intercept is negative $113,000 and the slope is 5.43. Such a big negative intercept
might seem odd. Did we make a mistake? We doublecheck using the formulas:

> sxy = sum((y1970 − mean(y1970)) * (y2000 −
mean(y2000)))
> sx2 = sum((y1970 − mean(y1970))^2)
> sxy/sx2
[1] 5.429
> mean(y2000) − sxy/sx2 * mean(y1970)
[1] −113153

The negative intercept should be a warning not to use this model for prediction with a
really low 1970 home value. In general, predictions should be restricted to the range of
the predictor variable.

Adding the regression line to a scatterplot: abline()
Adding a regression line to the scatterplot is facilitated with the convenient, but oddly
named, abline() function. (Read it “a-b-line.”)

> plot(y1970,y2000, main="−113,000+5.43 x")
> abline(res)

The output of lm(), stored in res, is plotted by abline(). We see in Figure 3.11 that the
data tends to cluster around the regression line, although there is much variability.

In addition to adding regression lines, the abline() function can add other lines to a
graphic. The line y=a+bx is added with abline(a,b); the horizontal line y=c is added with
abline (h=c); and the vertical line x=c with abline(v=c).

Using the regression line for predictions
One of the uses of the regression line is to predict the y value for a given x value. For
example, the year-2000 predicted value of a house worth $50,000 dollars in 1970 is found
from the regression line with

Using R for introductory statistics 90

That is, the y-value on the prediction line for the given value of x. This is

> −113000+5.43 * 50000
[1] 158500

Figure 3.11 Home-data scatterplot
with least-squares regression line

The previous calculation can be done without having to type in the coefficients, possibly
adding round-off error to the answers. The coefficients are returned by the function
coef(). Multiplying by a vector of the type (1, x) and adding will produce

> betas = coef(res)
> sum(betas * c(1,50000)) # beta0 * 1+betal * 50000
[1] 158308 # no rounding in betas
this way

There are other useful extractor functions, such as coef(). For example, the function
residuals() returns the residuals, and predict() will perform predictions as above. To
illustrate for the data point (55100, 130200) we find the predicted and residual value.

To specify the x value desired for prediction to predict() requires a data frame with
properly named variables. Data frames will be discussed more fully in the next chapter.
For this usage, we note that the function data. frame() will create a data frame, and the
names are set with the format name=values.

To use predict() with xi=55,100 is done with

> predict(res, data.frame(y1970=55100))

Bivariate data 91

[1] 185997

The residual can then be computed by subtraction:

> 130200—predict(res, data.frame(y1970=55100))
[1] −55797

The residual is also returned by residuals() after finding out which index corresponds to
the data point:

> residuals(res)[which(y1970 == 55100 & y2000 ==
130200)]
 6688
−55797

We needed both conditions, as there are two homes with an assessed value of $55,100 in
1970.

More on model formulas Model formulas can be used with many R functions—for
instance, the plot() function. The plot() function is an example of a generic function in R.
For these functions, different implementations are used based on the first argument.
When the first argument of the plot() function is a model formula containing numeric
predictor and response variables, a scatterplot is created. Previously, we’ve seen that
when the argument is the output of the density() function a densityplot is produced. Other
usages will be introduced in the sequel. The scatterplot and regression line could then be
made as follows:

> plot(y2000 ~ y1970)
> res = lm(y2000 ~ y1970)
> abline(res)

A small advantage to this usage is that the typing can be reused with the history
mechanism. This could also be achieved by saving the model formula to a variable.

More importantly, the model formula offers some additional flexibility. With model
formula, the argument data= can usually be used to attach a data frame temporarily. This
convenience is similar to that offered more generally by the function with(). Both styles
provide an environment where R can reference the variables within a data frame by their
name, avoiding the trouble of attaching and detaching the data frame. Equally useful is
the argument subset=, which can be used to restrict the rows that are used in the data.
This argument can be specified by a logical condition or a specification of indices.

We will use both of these arguments in the upcoming examples.

3.4.3 Transformations of the data

As the old adage goes, “If all you have is a hammer, everything looks like a nail.” The
linear model is a hammer of sorts; we often try to make the problem at hand fit the
model. As such, it sometimes makes sense to transform the data to make the linear model
appropriate.

Using R for introductory statistics 92

■ Example 3.6: Kids’ weights: Is weight related to height squared?
In Figure 3.8, the relationship between height and weight is given for the kid. weights
(UsingR) data set. In Example 3.4, we mentioned that the BMI suggests a relationship
between height squared and weight. We model this as follows:

> height.sq = kid.weights$height^2
> plot(weight ~ height.sq, data=kid.weights)
> res = 1m(weight ~ height.sq, data=kid.weights)
> abline(res)
> res
Call:
1m(formula = weight ~ height.sq, data=kid.weights)
Coefficients:
(Intercept) height.sq
 3.1089 0.0244

Figure 3.12 Height squared versus
weight

Figure 3.12 shows a better fit with a linear model than before. However, the BMI is not
constant during a person’s growth years, so this is not exactly the expected relationship.

Using a model formula with transformations If we had tried the above example
using this model formula, we’d be in for a surprise:

> plot(weight ~ height^2, data=kid.weights) # not as
expected
> res = lm(weight ~ height^2, data=kid.weights)
> abline(res)

The resulting graph would look identical to the graph of height versus weight in Figure
3.8 and not the graph of height squared versus weight in Figure 3.12.

The reason for this is that the model formula syntax uses the familiar math notations *,
/, ^ differently. To use them in their ordinary sense, we need to insulate them in the
formulas with the I() function, as in:

Bivariate data 93

> plot(weight ~ I(height^2), data=kid.weights)
> res = lm(weight ~ I(height^2), data=kid.weights)
> abline(res)

3.4.4 Interacting with a scatterplot

When looking at a scatterplot we see the trend of the data as well as individual data
points. If one of these data points stands out, how can it be identified? Which index in the
data set corresponds to it? What are its x-and y-coordinates? If the data set is small, the
answers can be identified by visual inspection of the data. For larger data sets, better
methods are available.

The R function to identify points on a scatterplot by their corresponding index is
identify(). A template for its usage is

identify (x, y, labels=…,n=…)

In order to work, identify () must know about the points we want to identify. These are
specified as variables and not as a model formula. The value n= specifies the number of
points to identify. By default, identify() identifies points with each mouse click until
instructed to stop. (This varies from system to system. Typically it’s a right-click in
Windows, a middle-click in Linux, and the escape key in Mac OS X.) As points are
identified, R will put the index of the point next to it. The argument labels= allows for the
placement of other text. The identify() function returns the indices of the selected points.

For example, if our plot is made with plot(x,y), identify(x,y,n=1) will identify the
closest point to our first mouse click on the scatterplot by its index, whereas identify (x,y,
labels=names(x)) will let us identify as many points as we want, labeling them by the
names of x.

The function locator() will locate the (x, y) coordinates of the points we select with our
mouse. It is called with the number of points desired, as with locator (2). The return value
is a list containing two data vectors, x and y, holding the x and y positions of the selected
points.

■ Example 3.7: Florida 2000 The florida (UsingR) data set contains county-by-
county vote counts for the 2000 United States presidential election in the state of Florida.
This election was extremely close and was marred by several technical issues, such as
poorly designed ballots and outdated voting equipment. As an academic exercise only,
we might try to correct for one of these issues statistically in an attempt to divine the true
intent of the voters.

As both Pat Buchanan and George Bush were conservative candidates (Bush was the
Republican and Buchanan was an Independent), there should be some relationship
between the number of votes for Buchanan and those for Bush. A scatterplot (Figure
3.13) is illuminating. There are two outliers. We identify the outliers as follows:

> plot(BUCHANAN ~ BUSH, data=florida)
> res = 1m(BUCHANAN ~ BUSH, data=florida) # store
it
> abline(res)
> with(florida,
identify(BUSH,BUCHANAN,n=2,labels=County))

Using R for introductory statistics 94

[1] 13 50
> florida$County[c(13,50)]
[1] DADE PALM BEACH
67 Levels: ALACHUA BAKER BAY BRADFORD BREVARD …
WASHINGTON

(We use both with() and the dollar-sign notation instead of attaching the data frame.)

Figure 3.13 Scatterplot of Bush and
Buchanan votes by county in Florida

There is a strong linear relationship with two outliers. If the relationship were exactly
linear without intercept, this would say that Buchanan always had the same percentage of
conservative votes.

Palm Beach County’s infamous “butterfly ballot” design was believed to have caused
many people to cast votes incorrectly. Suppose this were true. How many votes might
this have cost Al Gore, the Democrat? Say that the extra Buchanan votes were to go to
Gore. How many extra Buchanan votes were there? One way to estimate the amount is to
use the regression line to make a prediction based on the number of Bush votes for that
county.

The predicted amount and residual for Palm Beach are found as follows:

> with(florida, predict(res, data.frame(BUSH =
BUSH[50])))
[1] 796.8
> residuals(res)[50]
 50
2610

This simple analysis indicates that Buchanan received 2,610 of Gore’s votes—many
more than the 567 that decided the state and the presidency. (The Palm Beach Post, using
different data, concluded that Gore lost 6,607 votes when voters marked more than one
name on the butterfly ballot.)

Bivariate data 95

3.4.5 Outliers in the regression model

For the simple linear regression model, there are two types of outliers. For the individual
variables, there can be outliers in the univariate sense—a data point that doesn’t fit the
pattern set by the bulk of the data. In addition, there can be outliers in the regression
model. These would be points that are far from the trend or pattern of the data. In the
Florida 2000 example, both Dade County and Palm

Beach County are outliers in the regression.
■ Example 3.8: Emissions versus GDP The emissions (UsingR) data set contains

data for several countries on CO2 emissions and per-capita gross domestic product
(GDP). A scatterplot with a regression line indicates one isolated point that seems to
“pull” the regression line upward. The regression line found

without this point has a much different slope.
> f=C02 ~ perCapita # save formula
> plot(f, data=emissions)
> abline(lm(C02 ~ perCapita, data=emissions))
> abline(lm(f, data=emissions, subset=−1) , lty=2)

Figure 3.14 Emissions data with and
without the United States data point

(In this example, we save the model formula for reuse and take advantage of the subset=
argument with model formulas.)

The isolated point is the United States. This point is an outlier for the CO2 variable
separately, but not for the per-capita GDP. It is an outlier in the bivariate sense, as it
stands far off from the trend set by the rest of the data. In addition, it is an influential
observation, as its presence dramatically affects the regression line.

3.4.6 Resistant regression lines: lqs () and rlm()

In the previous example, the regression line was computed two ways. In Figure 3.14 the
two lines are definitely different. Our eye should be able to see that the outlier pulls the
initial regression line up quite a bit; hence the first one has a bigger slope.

Using R for introductory statistics 96

Just like the mean and the standard deviation, the regression coefficients are subject to
strong influences from outliers. For the mean and standard deviation we discussed
resistant alternatives, such as the median or the IQR. As well, several resistant
alternatives exist for the regression line.

Least-trimmed squares
The trimmed mean finds the mean after first trimming off values from the left and right
of the distribution. This makes a measure of center that is less sensitive to outliers. The
method of least-trimmed squares is similar (but computationally much more difficult).

The least-squares regression line is found conceptually by calculating for each line the
sum of the squared residuals and then minimizing this value over all possible lines. Least-
trimmed squares does the same, only the sum of the squared residuals is replaced by the
sum of the q smallest squared residuals, where q is roughly n/2.

The least-trimmed squares algorithm is implemented in the lqs() function from the
MASS package. This package is not loaded automatically. The default algorithm for the
lqs() function is least-trimmed squares. As with 1m, the data is specified using a model
formula.

To illustrate on the emissions data, we add a least-trimmed squares line with line type
3:

> library(MASS) # load library if not
already done
> abline(lqs(f,data=emissions), lty=3)

Resistant regression using rlm()
Alternatively, we can use the rlm() function, also from the MASS package, for resistant
regression. It is not as resistant to outliers as lqs() by default but can be made so with the
method=“MM”. As with 1m() and lqs(), the function is called using a model formula.

> abline(rlm(f, data=emissions, method="MM"), lty=4)

R’s programmers strive to use a consistent interface to this type of function. Thus, it is no
more difficult to find any of these regression lines, though the mathematics behind the
calculations can be much harder.

Adding legends to plots
This example currently has a scatterplot and four different regression lines. We’ve been
careful to draw each line with a different line type, but it is hard to tell which line is
which without some sort of legend. The legend() function will do this for us.

To use legend(), we need to specify where to draw the legend, what labels to place,
and how things are marked. The placement can be specified in (x, y) coordinates or done
with the mouse using locator (n=1). The labels are speci-fied with the legend= argument.
Markings may be done with different line types (lty=), as above where we used line types
1–4; with different colors (col=); or even with different plot characters (pch=).

To add a legend to the plot shown in Figure 3.15, we issue the following commands:

Bivariate data 97

> the.labels = c("lm","lm w/o 1","least trimmed
squares”,
+ "rlm with MM")
> the.ltys = 1:4
> legend(5000,6000,legend=the.labels,lty=the.Itys)

Figure 3.15 Emissions data with four
different regression lines

3.4.7 Trend lines

If a scatterplot suggests some relationship, but not an obvious transformation to make a
linear relationship, we can still superimpose a “trend line” on top of the data using one of
the many scatterplot smoothing techniques available in R. These produce a smooth curve
summarizing the relationship between the two variables.

The stats package provides several functions for creating trend lines. The scatter.
smooth() function uses the loess() function from the same package to plot both the
scatterplot and a trend line. Additionally, smooth. spline() will fit the data using cubic
splines, and the supsmu() function will perform Friedman’s “super smoother” algorithm.

■ Example 3.9: Five years of temperature data Weather data should show seasonal
trends. The data set five.yr. temperature (UsingR) has five years of New York City
temperature data. A scatterplot shows a periodic, sinusoidal pattern. In Figure 3.16, three
trend lines are shown, although two are nearly identical.

> attach(five.yr.temperature)
> scatter.smooth(temps ~ days,col=gray(.75),bty="n”)
> lines(smooth.spline(temps ~ days), lty=2, lwd=2)
> lines(supsmu(days, temps), lty=3, lwd=2)
> legend(locator(1),lty=c(1,2,3),lwd=c(1,2,2),
+ legend=c("scatter.smooth","smooth.spline","supsmu")
)
> detach(five.yr.temperature)

Using R for introductory statistics 98

Figure 3.16 Temperature data with
three trend lines

3.4.8 Problems

3.23 Try to establish the relationship that twice around the thumb is once around the
wrist. Measure some volunteers’ thumbs and wrists and fit a regression line. What should
the slope be? While you are at it, try to find relationships between the thumb and neck
size, or thumb and waist. What do you think: Did Gulliver’s shirt fit well?

3.24 The data set fat (UsingR) contains ten body circumference measurements. Fit a
linear model modeling the circumference of the abdomen by the circumference of the
wrist. A 17-cm wrist size has what predicted abdomen size?

3.25 The data set wtloss (MASS) contains measurements of a patient’s weight in
kilograms during a weight-rehabilitation program. Make a scatterplot showing how the
variable Weight decays as a function of Days.

1. What is the Pearson correlation coefficient of the two variables?

2. Does the data appear appropriate for a linear model? (A linear model says that for
two comparable time periods the same amount of weight is expected to be lost.)

3. Fit a linear model. Store the results in res. Add the regression line to your
scatterplot. Does the regression line fit the data well?

4. Make a plot of the residuals, residuals (res), against the Days variable. Comment on
the shape of the points.

3.26 The data frame x77 contains data from each of the fifty United States. First
coerce the state. x77 variable into a data frame with

> x77 = data.frame(state.x77)

For each of the following models, make a scatterplot and add the regression line.

Bivariate data 99

1. The model of illiteracy rate (Illiteracy) modeled by high school graduation rate HS.
Grad.

2. The model of life expectancy (Life. Exp) modeled by (Murder()) the murder rate.
3. The model of income (Income) modeled by the illiteracy rate (Illiteracy).

Write a sentence or two describing any relationship. In particular, do you find it as
expected or is it surprising?

3.27 The data set batting (UsingR) contains baseball statistics for the year 2002. Fit a
linear model to runs batted in (RBI) modeled by number of home runs (HR). Make a
scatterplot and add a regression line. In 2002, Mike Piazza had 33 home runs and 98 runs
batted in. What is his predicted number of RBIs based on his number of home runs?
What is his residual?

3.28 In the American culture, it is not considered unusual or inappropriate for a man to
date a younger woman. But it is viewed as inappropriate for a man to date a much
younger woman. Just what is too young? Some say anything less than half the man’s age
plus seven. This is tested with a survey of ten people, each indicating what the cutoff is
for various ages. The results are in the data set too.young (UsingR). Fit the regression
model and compare it with the rule of thumb by also plotting the line y=7+(1/2)x. How do
they compare?

3.29 The data set diamond (UsingR) contains data about the price of 48 diamond
rings. The variable price records the price in Singapore dollars and the variable carat
records the size of the diamond. Make a scatterplot of carat versus price. Use pch=5 to
plot with diamonds. Add the regression line and predict the amount a one-third carat
diamond ring would cost.

3.30 The data set Animals (MASS) contains the body weight and brain weight of
several different animals. A simple scatterplot will not suggest the true relationship, but a
log-transform of both variables will. Do this transform and then find the slope of the
regression line.

Compare this slope to that found from a robust regression model using lqs().
Comment on any differences.

3.31 To gain an understanding of the variability present in a measurement, a
researcher may repeat or replicate a measurement several times. The data set breakdown
(UsingR) includes measurements in minutes of the time it takes an insulating fluid to
break down as a function of an applied voltage. The relationship calls for a log-transform.

Plot the voltage against the logarithm of time. Find the coefficients for simple linear
regression and discuss the amount of variance for each level of the voltage.

3.32 The motors (MASS) data set contains measurements on how long, in hours, it
takes a motor to fail. For a range of temperatures, in degrees Celsius, a number of motors
were run in an accelerated manner until they failed, or until time was cut off. (When time
is cut off the data is said to have been censored.) The data shows a relationship between
increased temperature and shortened life span.

The commands

> data(motors, package="MASS")
> plot(time ~ temp, pch=cens, data=motors)

Using R for introductory statistics 100

produce a scatterplot of the variable time modeled by temp. The pch=cens argument
marks points that were censored with a square; otherwise a circle is used. Make the
scatterplot and answer the following:

1. How many different temperatures were used in the experiment?

2. Does the data look to be a candidate for a linear model? (You might want to
consider why the data point (150,8000) is marked with a square.)

3. Fit a linear model. What are the coefficients?

4. Use the linear model to make a prediction for the accelerated lifetime of a motor run
at a temperature of 210°C.

3.33 The data set mw.ages (UsingR) contains census 2000 data on the age distribution
of residents of Maplewood, New Jersey. The data is broken down by male and female.

Attach the data set and make a plot of the Male and Female variables added together.
Connect the dots using the argument type="l". For example, with the command
plot(1:103,Male + Female,type="l").

Next, layer on top two trend lines, one for male and one for female, using the
supsmu() function. What age group is missing from this town?

Bivariate data 101

Chapter 4
Multivariate Data

Multivariate data can be summarized and viewed in ways that are similar to those
discussed for bivariate and univariate data, although differences exist, as there are many
more possible relationships. These differences can be handled by looking at all the
variables simultaneously, or by holding some variables constant while we look at others.

The tools used are similar to those for bivariate data, though if we enhance our data-
manipulation skills the work will be easier. This chapter includes more details on R’s
data frames, lists, and model formula notation. Also included is an introduction to R’s
lattice graphics package, which greatly enhances certain explorations of multivariate data.

4.1 Viewing multivariate data

In this chapter we look at three typical examples of multivariate data. The first
summarizes survey results (categorical data), the second compares independent samples;
and the third searches for relationships among many different variables.

4.1.1 Summarizing categorical data

Just as we used tables to summarize bivariate data, we use them for multivariate data as
well. However, as a table shows only two relationships at once, we will need to use
several when looking at three or more relationships.

■ Example 4.1: Student expenses The student. expenses (UsingR) data set contains
the results of a simple survey. Students were asked which of five different expenses they
incur. The data is in Table 4.1.

Even a small table like this contains too much information for us to identify

Table 4.1 Student expenses survey
Student cell.phone cable, tv dial.up cable.modem car
1 Y Y Y N Y
2 Y N N N N
3 N N N N Y
4 Y Y N Y Y
5 N N N N N
6 Y N Y N Y
7 Y N N Y N
8 N N N N Y
9 Y Y N N Y

10 Y N Y N N

any trends quickly. We would like to be able to summarize such data flexibly. We’ve
used the table() function to make two-way tables. We can use it here as well. Let’s look
at the relationship between having a cell phone and a car:

> library(UsingR) # once per session
> attach(student.expenses)
> names(student.expenses)
[1] "cell.phone" "cable.tv" “dial.up" "cable.modem"
[5] "car"
> table(cell.phone,car)
 car
cell.phone N Y
 N 1 2
 Y 3 4

In this small sample, almost all the students have at least one of the two, with both being
most common.

Three-way contingency tables (or, more generally, n-way contingency tables) show
relationships among three (or n) variables using tables. We fix the values of the extra
variable(s) while presenting a two-way table for the main relationship. To investigate
whether paying for a cable modem affects the relationship between having a cell phone
and a car, we can use a three-way table.

> table(cell.phone,car,cable.modem)
, , cable.modem = N
 car
cell.phone N Y
 N 1 2
 Y 2 3
, , cable.modem = Y
 car
cell.phone N Y
 N 0 0
 Y 1 1

It appears that paying for a cable modem requires cutbacks elsewhere.
The table() function uses the first two variables for the main tables and the remaining

variables to construct different tables for each combination of the variables. In this case,
two other tables for the levels of cable. modem.

Flattened contingency tables
This type of information is usually formatted differently to save space. In Table 4.2 the
tables are set side-by-side, with the column headings layered to indicate the levels of the
conditioning factor.

Multivariate data 103

Table 4.2 Student expenses
 Modem
 N Y
 Car Car
Cell phone N Y N Y
N 1 2 a a
Y 2 3 1 1

This layout can be achieved with the ftable() (flatten table) function. Its simplest usage is
to call it on the result of a table() command. For example:

> ftable(table(cell.phone,car,cable.modem))
not side-by-side

This isn’t quite what we want, as Table 4.2 has only one variable for the row. This is
done by specifying the desired row variables or column variables. The column variables
are set with the argument col. vars=. This argument expects a vector of variable names or
indices.

> ftable(table(cell.phone,car,cable.modem),
+ col.vars=c("cable.modem","car")) # specify column
variables
 cable.modem N Y
 car N Y N Y
cell.phone
N 1 2 0 0
Y 2 3 1 1
> detach(student.expenses)

4.1.2 Comparing independent samples

When we have data for several variables of the same type, we often want to compare
their centers, spreads, or distributions. This can be done quite effectively using boxplots.

■ Example 4.2: Taxi-in-and-out times at Newark Liberty International Airport
The data set ewr (UsingR) contains taxi-in-and-out data for airplanes landing at Newark
Liberty airport. The data set contains monthly averages for eight major carriers. An
examination of this data allows us to see which airlines take off and land faster than the
others. We treat the data as a collection of independent samples and use boxplots to
investigate the differences. Figure 4.1 shows the boxplots.

> attach(ewr)
> names(ewr)
[1] "Year" "Month" "AA" "CO" "DL" "HP"
[7] "NW" "TW" "UA" "US" "inorout"
> boxplot(AA,CO,DL,HP,NW,TW,US,US)
> detach(ewr)

Using R for introductory statistics 104

Figure 4.1 Taxi-in-and-out times at
Newark Liberty airport

From the boxplots we see that the second airline (Continental) appears to be the worst, as
the minimum, maximum, and median amount of time are all relatively large. However,
the fourth (America West) has the largest median.

The boxplot() function will make a boxplot for each data vector it is called with. This
is straightforward to use but has many limitations. It is tedious and prone to errors, as
much needs to be typed. As well, adding names to the boxplots must be done separately.
More importantly, it is a chore to do other things with the data. For example, the variable
inorout indicates whether the time is for taxi in or taxi out. Taxi-in times should all be
about the same, as airplanes usually land and go to their assigned gate with little delay.
Taxi-out times are more likely to vary, as the queue to take off varies in length depending
on the time of day. In the next section we see how to manipulate data to view this
difference.

4.1.3 Comparing relationships

Scatterplots are used to investigate relationships between two variables. They can also be
used when there are more than two variables. We can make multiple scatterplots, or plot
multiple relationships on the same scatterplot using different plot characters or colors to
distinguish the variables.

■ Example 4.3: Birth variables The data set babies (UsingR) contains several
variables collected from new mothers as part of a study on child health and development.
The variables include gestation period, maternal age, whether and how much the mother
smokes, and other factors, such as mother’s level of education. In all, there are 23
variables.

R has a built-in function for creating scatterplots of all possible pairs of variables. This
graphic is called a scatterplot matrix and is made with the pairs() function, as in pairs
(babies). For the babies data set this command will create over 500 graphs, as there are so
many variables. We hold off on using pairs() until we see how to extract subsets of the
variables in a data frame.

We can still explore the data with scatterplots, using different colors or plotting
characters to mark the points based on information from other factors. In this way, we
can see more than two variables at once. For example, the plot of gestation versus weight

Multivariate data 105

in Figure 4.2 shows a definite expected trend: the longer the gestation period the more
time a baby has to increase its birth weight. Do other factors, such as maternal smoking
or maternal weight, affect this relationship?

To plot with different plot characters, we set the pch=argument using another variable
to decide the plot character. First we recede the data with NA, as the data set uses 999 for
missing data (cf. ?babies).

> attach(babies)
> gestation[gestation == 999]= NA # 999 is code for NA
> plot(gestation,wt) # scatterplot
> plot(gestation,wt,pch=smoke) # different plot
characters
> table(smoke) # values of plot
characters
smoke
 0 1 2 3 9
544 484 95 103 10
> legend(locator(1),
+ legend=c("never","yes","until pregnant","long
ago","unknown"),
+ pch=c(0:3,9))

The table() function was used to find out the range of values of smoke. We consulted the
help page (?babies) to find out what the values mean.

Figure 4.2 is a little too crowded to tell if any further relationship exists.

Figure 4.2 Scatterplot of gestation
versus weight by smoke factor

Sometimes different colors will help where different plot characters don’t. To change
colors we set the col=argument in plot(). We use rainbow() to create five colors and then
extract these using the values of smoke as indices. We want our indices to be 1, 2, 3, 4, 5,
so we change the “9” to a “4” and then add 1. This is done as follows:

> smoke[smoke == 9] = 4

Using R for introductory statistics 106

> plot(gestation,wt, col = rainbow(5)[smoke+1])

If we make the scatterplot, it shows that changing colors tells more of a story than
changing the plot characters. Still, no additional trends show up.

What might be useful are different scatterplots for each level of the smoke factor. This
can be done by subsetting, as is described next, or by using the lattice package described
later on.

Plotting additional points and functions
Figure 4.2 is made all at once. There are times when we would like to add new points or
lines to an existing plot, as we did in the previous chapter when we added a regression
line to a graph. To do this, it helps to understand that R’s plotting functions come in two
types: “high-level” plot functions, like plot(), and “low-level” functions, like abline().
The difference between the two is that the high-level ones set up a graphic window and
produce a graphic, while the low-level ones add to the current graphic window. Table 4.3
collects many useful plotting functions used in the examples.

We redo Example 4.3 plotting just a few variables separately. For fun, we will add
regression lines.

First we need to make a plot. The following makes one for the occurrences where
smoke has a value of ().

Table 4.3 Various plotting functions for creating
or adding to figures

plot() When used for scatterplots, will plot points by default. Use argument type=“1” to produce
lines. High-level function, used to make many types of figures.

points() A low-level plot function with arguments similar to plot().
lines() Similar to points() but connects points with lines segments.
abline() Function for adding lines to a figure. The arguments a= and b= will plot the line y=a+bx,

the arguments h= and v= will plot horizontal or vertical lines.
curve() A high- or low-level plot function for adding the graph of a function of x. When argument

add=TRUE is given, will draw graph on the current figure using the current range of x
values. If add=TRUE is not given, it will produce a new graph over the range specified
with from= and to=. The defaults are a and 1. The function to be graphed may be specified
by name or written as a function of x.

rug() Adds lines along the x- or y-axis to show data values in a univariate data set. By default,
the lines are drawn on the x-axis; use side=2 to draw on the y-axis.

arrows() Adds arrows to a figure.
text() Adds text to a figure at specified points.
title() Adds labels to a figure. Argument main= will set main title, sub= the subtitle, xlab= and

ylab= will set x and y labels.
legend() Adds a legend to a figure.

> gestation[gestation == 999] = NA
> f = wt[smoke == a] ~ gestation[smoke == 0] # save
typing
> plot(f, xlab="gestatation", ylab="wt")
> abline(lm(f))

Multivariate data 107

We stored the model formula to save on typing.
To add to the graphic, we use points () with a similar syntax:

> f1 = wt[smoke == 1] ~ gestation[smoke == 1]
> points(f1, pch=16)
> abline(lm(fl), cex=2, lty=2)
> legend(150,175, legend=c("0 = never smoked","1 =
smokes now"),
+ pch=c(1,16), lty=1:2)
> detach(babies)

The choice of plot character allows us to see the different data sets easily, as illustrated in
Figure 4.3.

Figure 4.3 Scatterplot of gestation
versus weight with smoking status
added

4.1.4 Problems

4.1 The samhda (UsingR) data set contains variables from a Substance Abuse and Mental
Health survey for American teens. Make a three-way contingency table of the variables
gender, amt. smoke, and marijuana. Use the levels of gender to break up the two-way
tables. Are there any suspected differences?

Repeat using the variable live. with. father in place of gender.
4.2 The data set Cars93 (MASS) contains information on numerous cars. We want to

investigate, using tables, any relationships between miles per gallon, price, and type.
Before doing so, we turn numeric variables into categorical ones using cut ().

> library(MASS) # loads Cars93 data set
> mpg = with(Cars93,cut(MPG.city,c(0,17,25,55)))
> names(mpg)= c("bad","decent","excellent”)
> price = with(Cars93,cut(Price,c(0,10,20,62)))
> names(price) = c("cheap","mid-priced","expensive”)

Using R for introductory statistics 108

Make the above conversions, then make a flattened contingency table of mpg, price, and
Type. Do you see any patterns?

4.3 In the previous exercise, variables in the data set Cars93 (MASS) were
investigated with tables. Now, make a scatterplot of the variables MPG. city and Price,
marking the points according to their Type. Do you see any trend?

4.4 For the car safety (UsingR) data set, make a scatterplot of the variable Driver.
deaths versus Other. deaths. Use pch=as. numeric (type) to change the plot character
based on the value of type. Label any outliers with their make or model using identify ().
Do you notice any trends?

4.5 The cancer (UsingR) data set contains survival times for cancer patients organized
by the type of cancer. Make side-by-side boxplots of the variables stomach, bronchus,
colon, ovary, and breast. Which type has the longest tail? Which has the smallest spread?
Are the centers all similar?

4.6 The data set UScereal (MASS) lists facts about specific cereals sold in a United
States supermarket. For this data set investigate the following:

1. Is there a relationship between manufacturer (mfr), and vitamin type (vitamins by
shelf location (shelf)? Do you expect one? Why?

2. Look at the relationship between calories and sugars with a scatterplot. Identify the
outliers. Are these also fat-laden cereals?

3. Now look at the relationship between calories and sugars with a scatterplot using
different size points given by cex=2*sqrt (fat). (This is called a bubble plot. The area of
each bubble is proportional to the value of fat.) Describe any additional trend that is seen
by adding the bubbles.

Can you think of any other expected relationships between the variables?

4.2 R basics: data frames and lists

Multivariate data consists of multiple data vectors considered as a whole. We are free to
work with our data as separate variables, but there are many advantages to combining
them into a single data object. This makes it easier to save our work, is convenient for
many functions, and is much more organized. In R these “objects” are usually data
frames.

A data frame is used to store rectangular grids of data. Usually each row corresponds
to measurements on the same subject, statistical unit, or experimental unit. Each column
is a data vector containing data for one of the variables. The collection of entries need not
all be of the same type (e.g., numeric, character, or logical), but each column must
contain the same type of entry as they are data vectors. A rectangular collection of values,
all of the same type, may also be stored in a matrix. Although data frames are not
necessarily matrices, as their values need not be numbers, they share the same methods of
access.

Multivariate data 109

A list is a more general type of storage than a data frame. Think of a list as a collection
of components. Each component can be any R object, such as a vector, a data frame, a
function, or even another list. In particular, a data frame is a list with top-level
components given by equal-length data vectors. A list is a very flexible type of data
object. Many of the functions in R, such as lm(), have return values that are lists,
although only selected portions may be displayed when the return value is printed.

Lists can be used to store variables of different lengths, such as the cancer (UsingR)
data set, but it is usually more convenient to store such data in a data frame with two
columns—one column recording the measurements and the other a factor recording
which variable the value belongs to.

As a data frame is a special type of list, it can be accessed as either a matrix or a list.

4.2.1 Creating a data frame or list

Data frames are created with the data.frame() function, and lists are made with the list()
function. Data frames are also returned by read.table() and read, csv().

For example:

> x=1:2 # define x
> y=letters[1:2] # y=c("a","b”)
> z=1:3 # z has 3 elements, x,y
only 2
> data.frame(x,y) # rectangular, cols are
variables
 x y
1 1 a
2 2 b
> data.frame(x,y,z) # not all the same
size.
Error in data.frame(x, y, z) : arguments imply
differing number
of rows: 2, 3

Data frames must have variables of the same length.
Lists are created using the function list().

> list(x,y,z)
[[1]]
[1] 1 2
[[2]]
[1] "a" "b"
[[3]]
[1] 1 2 3

The odd-looking numbers that appear with the command list(x, y, z) specify where the
values are stored. The first one, [[1]], says this is for the first toplevel component of the
list, which is a data vector. The following [1] refers to the first entry of this data vector.

Using R for introductory statistics 110

One difference that isn’t apparent in the output, when using data.frame to create a data
frame, is that character variables, such as y, are coerced to be factors, unless insulated
with I. This coercion isn’t done by list(). This can cause confusion when trying to add
new values to the variable.

Adding names to a data frame or list
Just like data vectors, both data frames and lists can have a names attribute. These are
found and set by the names() function or when we define the object. The names of a list
refer to the top-level components. For data frames, these top-level components are the
variables. In the above examples, the command data.frame(x,y) assigns names of x and y
automatically, but the list() function does not. If we want to define names when using
data.frame() or list() we can use a name=value format, as in

> list(x.name=x,"y name"=y) # quotes may be needed
$x.name
[1] 1 2
$"y name”
[1] "a" "b"

The names() function can be used to retrieve or assign the names. When assigning names
it is used on the left side of the assignment (when using the equals sign). For example:

> eg=data.frame(x,y) # store the data frame
> names(eg) # the current names
[1] "x" "y"
> names(eg) = c("x.name","y name”) # change the names
> names(eg) # names are changed
[1] "x.name" "y name"

Data frames can also have their column names accessed with the function colnames() and
their rows named with rownames(). Both can be set at the same time with dimnames().
The row names must be unique, and it is recommended that column names be also. These
functions are applicable to matrix-like objects.

The size of a data frame or list
Data frames represent a number of variables, each with the same number of entries. The
ewr (UsingR) is an example. As this data is matrix-like, its size is determined by the
number of rows and columns. The dim() function returns the size of matrix-like objects:

> dim(ewr) # number or rows and
columns
[1] 46 11
> dim(ewr)[2] # number of cols is 2nd
[1] 11

Row and column sizes may also be found directly with nrow() and ncol().
A list need not be rectangular. Its size is defined by the number of top-level

components in it. This is found with the function length(). As data frames are lists whose

Multivariate data 111

top-level components are data vectors, the length of a data frame is the number of
variables it contains.

> length(ewr) # number of top-level
components
[1] 11

4.2.2 Accessing values in a data frame

The values of a data frame can be accessed in several ways. We’ve seen that we can
reference a variable in a data frame by name. Additionally, we see how to access
elements of each variable, or multiple elements at once.

Accessing variables in a data frame by name
Up to this point, most of the times that we have used the data in a data frame we have
“attached” the data frame so that the variables are accessible in our work environment by
their names. This is fine when the values will not be modified, but can be confusing
otherwise. When R attaches a data frame it makes a copy of the variables. If we make
changes to the variables, the data frame is not actually changed. This results in two
variables with the same names but different values.

The following example makes a data frame using data.frame() and then attaches it.
When a change is made, it alters the copy but not the data frame.

> x = data.frame(a=1:2,b=3:4) # make a data frame
> a # a is not there
Error: Object "a" not found
> attach(x) # now a and b are there
> a # a is a vector
[1] 1 2
> a[1] =5 # assignment
> a # a has changed
[1] 5 2
> x # not x though

a b
1 1 3
2 2 4
> detach(x) # remove x
> a # a is there and
changed
[1] 5 2
> x # x is not changed

a b
1 1 3
2 2 4

The with() function and the data= argument were mentioned in Chapter 1 as alternatives
to attaching a data frame. We will use these when it is convenient.

Using R for introductory statistics 112

Accessing a data frame using [,] notation
When we use a spreadsheet, we refer to the cell entries by their column names and rows
number. Data-frame entries can be referred to by their column names (or numbers) and/or
their row names (or numbers).

Entries of a data vector are accessed with the [] notation. This allows us to specify the
entries we want by their indices or names. If df is the data frame, the basic notation is

df[row, column]

There are two positions to put values, though we may leave them blank on purpose. In
particular, the value of row can be a single number (to access that row), a vector of
numbers (to access those rows), a single name or vector of names (to match the row
names), a logical vector of the appropriate length, or left blank to match all the rows.
Similarly for the value of column. As with data vectors, rows and columns begin
numbering at 1.

In this example, we create a simple data frame with two variables, each with three
entries, and then we add row names. Afterward, we illustrate several styles of access.

> df=data.frame(x=1:3,y=4:6) # add in column names
> rownames(df)=c("row 1","row 2","row 3") # add row
names
> df
 x y
row 1 1 4
row 2 2 5
row 3 3 6
> df[3,2] # row=3,col=2
[1] 6
> df["row 3","y"] # by name
[1] 6
> df[1:3,1] # rows 1, 2 and 3;
column 1
[1] 1 2 3
> df[1:2,1:2] # rows 1 and 2, columns
1 and 2
 x y
row 1 1 4
row 2 2 5
> df[,1] # all rows, column 1,
returns vector
[1] 123
> df [1,] # row 1, all columns
 x y
row 1 1 4
> df[c(T,F,T),] # rows 1 and 3 (T=TRUE)
 x y
row 1 1 4
row 3 3 6

■ Example 4.4: Using data-frame notation to simplify tasks

Multivariate data 113

The data-frame notation allows us to take subsets of the data frames in a natural and
efficient manner. To illustrate, let’s consider the data set babies (UsingR) again. We wish
to see if any relationships appear between the gestation time (gestation), birth weight
(wt), mother’s age (age), and family income (inc).

Again, we need to massage the data to work with R. Several of these variables have a
special numeric code for data that is not available (NA). Looking at the documentation of
babies (UsingR) (with ?babies), we see that gestation uses 999, age uses 99, and income
is really a categorical variable that uses 98 for “not available.”

We can set these values to NA as follows:

bad idea, doesn’t change babies, only copies
> attach(babies)
> gestation[gestation == 999] = NA
> age[age == 99] = NA
> inc[inc == 98] = NA
> pairs(babies[,c("gestation","wt","age","inc")])

But the graphic produced by pairs() won’t be correct, as we didn’t actually change the
values in the data frame babies; rather we modified the local copies produced by attach().

A better way to make these changes is to find the indices that are not good for the
variables gestation, age, and inc and use these for extraction as follows:

> rm(gestation); rm(age); rm(inc) # clear out copies
> detach(babies); attach(babies) # really clear out
> not.these = (gestation == 999) | (age == 99) | (inc
== 98)
A logical not and named extraction
> tmp = babies[!not.these,
c("gestation","age","wt","inc")]
> pairs(tmp)
> detach(babies)

The pairs() function produces the scatterplot matrix (Figure 4.4) of the new data frame
tmp. We had to remove the copies of the variables gestation, age, and inc that were
created in the previous try at this. To be sure that we used the correct variables, we
detached and reattached the data set. Trends we might want to investigate are the
relationship between gestation period and birth weight and the relationship of income and
age.

Using R for introductory statistics 114

Figure 4.4 Scatterplot matrix of four
variables from babies

■ Example 4.5: Accessing a data frame with logical vectors The data set ewr (UsingR)
contains the taxi-in and taxi-out times at Newark Liberty airport. In Example 4.2 we
noted that it would be nice to break up the data based on the variable inorout. We do this
by extracting just those rows that have an inorout value of in (or out). Noting that
columns 3 through 10 are for the

airlines, we can construct the side-by-side boxplots with these commands:

> attach(ewr)
> boxplot(ewr[inorout == "in", 3:10], main="Taxi in")
> boxplot(ewr[inorout == "out", 3:10], main="Taxi out")
> detach(ewr)

Figure 4.5 Taxi in and out times by
airline

The “rows” argument to the ewr data frame is a logical vector of the correct length.
From Figure 4.5, as expected, we see that the airlines have less spread when taxiing in

and that the taxi-in times are much shorter than the out times, as there is no takeoff queue
to go through.

Multivariate data 115

The argument to boxplot() is a data frame and not a data vector. If the first argument
to boxplot() is a list, then each component is plotted with separate boxplots. As a data
frame is a list, this behavior makes using boxplot() much easier than typing in all the
variable names. When a boxplot is called with a list, any names for the list are used to
label the boxplot.

The subset() function An alternate to using using the [,] notation to extract values
from a data frame is to use the subset() function:

new.df=subset (old.df, subset=…, select=…)

The subset=argument works as it does in the formula interface by using a logical
condition to restrict the rows used; select=, on the other hand, is used to restrict the
columns when given a vector of the desired variable names or indices. (See ?subset for
more clever uses.) When we use subset (), the variable names are searched within the
data frame. There is no need to attach the data frame or use with ().

The previous examples could have been completed as follows:

> ewr.in = subset(ewr,subset= inorout ==
"in", select=3:10)
> ewr.out = subset(ewr,subset= inorout == "out",
select=3:10)
> boxplot(ewr.in, main="Taxi in")
> boxplot(ewr.out, main="Taxi out")

■ Example 4.6: Sorting a data frame by one of its columns
The sort() function can be used to arrange the values of a data vector in increasing or

decreasing order. For example, sorting the miles per gallon variable (mpg) of the mtcars
data frame is done as follows:

> attach(mtcars)
> sort(mpg)
[1] 10.4 10.4 13.3 14.3 14.7 15.0 15.2 15.2 15.5 15.8
16.4 17.3

Or from largest to smallest with

> sort(mpg, decreasing=TRUE)
[1] 33.9 32.4 30.4 30.4 27.3 26.0 24.4 22.8 22.8 21.5
21.4 21.4

Often, we would like to sort a data frame by one of its columns and have the other
columns reflect this new order. For this, sort() will not work; rather we need to work a bit
harder. The basic idea is to rearrange, or permute, the row indices so that the new data
frame is sorted as desired. The function that does the rearranging is order(). If x and y are
data vectors, then the command order(x) will return the indices of the sorted values of x,
so x [order(x)] will be x sorted from smallest to largest. The command order (x, y) will
find the order of x and break ties using the order of y. More variables are possible. The
command order (x, decreasing=TRUE) will sort in decreasing order.

Using R for introductory statistics 116

To illustrate, without the output, we show how to sort the data set mtcars in various
ways:

> mtcars[order(mpg),] # sort by miles per
gallon
> mtcars[order(mpg, decreasing=TRUE),] # best mpg
first
> rownames(mtcars[order(mpg, decreasing=TRUE),]) #
only names
> mtcars[order(cyl,hp),] # by cylinders then
horsepower
> detach(mtcars)

Accessing a list
The [,] notation for accessing a data frame is inherited from the notation for a matrix,
which in R is a rectangular collection of values of the same type. Data frames, which are
also lists, can be accessed using the notation for lists described next.

List access using [[]] The double-square-bracket notation, [[]], is used to access list
components, as in 1st [[position]]. It can match using a number for position or a name (if
the list has names). If position is a vector, then recursive indexing occurs (cf. ?Extract).

For example:

> 1st = list(a=1:2,b=letters[1:3],c=FALSE)
> lst[[1]] # first component
[1] 1 2
> 1st[[’a’]] # by name
[1] 1 2

The $ notation The convenient syntax lst$varname is a shortcut for the notation 1st [
[“varname”]]. The variable name may need to be quoted.

> 1st = list(one.to.two=1:2, "a-e"=letters[1:5])
> lst$one.to.two # access with $
[1] 1 2
> lst$o # unique shortening
[1] 1 2
> lst$a-e # needs quotes to work
Error: Object "e" not found
> lst$"a-e"
[1] "a" "b" "c" "d" "e"

This example also illustrates that R will match names even if they are not exactly the
same. It will match, as long as we use enough letters to identify that name uniquely
among the possible names. When the name includes blanks or other special characters, it
needs to be quoted.

Lists as vectors The vector notation, [], can be used with lists just as it is with vectors.
It returns a list of those components specified by the indices. When 1st is a list, 1st [1]

Multivariate data 117

returns a list with just the first component of 1st, whereas 1st [[1]] returns the first
component.

For example, we define a list and then access the first element as a vector:

> 1st = list(a=1:2,b=letters[1:2],c=FALSE)
> lst[1]
$a
[1] 1 2

A list with just the first component is returned as indicated by the $a that is printed in the
output. This is the name of that component. When a list prints [[1]], it indicates that the
first component has no name.

The vector notation for data frames is different from that for lists, as the return value
remains a data frame. Suppose we do the above with a data frame using just the first two
variables.

> df=data.frame(a=1:2,b=letters[1:2])
> df [1]
 a
1 1
2 2

If df were treated as a list, and not a data frame, then the return value would be a list with
the specified top-level components. The different formatting of the

Table 4.4 Different ways to access a data frame
mtcars mpg cyl disp hp drat wt qsec vs
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
…
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1
…
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1

To access the row “Honda Civic”
 mtcars[’Honda Civic’,] By row name
 mtcars[’Honda’,] Can shorten the name
if unique match
 mtcars[19,] It is also the 19th
row in the data set
To access the column “mpg”
 mtcars[,’mpg’] By column name
 mtcars [,1] It is column 1
 mtcars$mpg list access by name

Using R for introductory statistics 118

 mtcars[[’mpg’]] Alternate list access.
Note, mtcars [’mpg’] is not a
 vector but a data
frame.
To access the value “30.4”
 mtcars[’Honda’,’mpg’] By name (with match)
 mtcars[19,1] By row and column
number
 mtcars$mpg[19] mtcars$mpg is a
vector, this is the 19th entry.

output indicates that this isn’t the case. In the data-frame case, this list is then coerced
into a data frame. The vector notation specifies the desired variables.

Table 4.4 summarizes the various ways to access elements of a data frame.

4.2.3 Setting values in a data frame or list

We’ve seen that we can’t change a data frame’s values by attaching it and then assigning
to the variables, as this modifies the copy. Rather, we must assign val¬ ues to the data
frame directly. Setting values in a data frame or list is similar to setting them in a data
vector. The basic expressions have forms like

df[rows, cols]=values
1st$name=value, or
1st$name[i]=value.

In the [,] notation, if values does not have the same size and type as the values that we are
replacing, recycling will be done; if the length of values is too big, however, an error
message is thrown. New rows and columns can be created by assigning to the desired
indices. Keep in mind that the resulting data frame cannot have any empty columns
(holes).

> df = data.frame(a=1:2,b=3:4) # with names
> df[1,1]=5 # first row, first
column
> df[,2]=9:10 # all rows, second
column
> df[1:2,3:4] = cbind(11:12,13:14) # rows and columns
at once
> df # new columns added
 a b c d
1 5 9 11 13
2 2 10 12 14
> df[1:2, 10:11]=cbind(11:12,13:14) # would create a
hole
Error in "[<-.data.frame"('*tmp* …
 new columns would leave holes after existing
columns
> df[,2:3]=a # recycling occurs
> df

Multivariate data 119

 a b c d
1 5 0 0 13
2 2 0 0 14

Using $ with a list refers to a data vector that can be set accordingly, either all at once or
position by position, as with:

> 1st = list(a=1:2,b=l:4,c=c("A","B","C"))
> lst$a = 1:5 # replace the data
vector
> lst$b[3] = 16 # replace single
element
> lst$c[4]= “D" # appends to the
vector
> 1st
$a
[1] 1 2 3 4 5
$b
[1] 1 2 16 4
$c
[1] "A" "B" "C" "D"

The c() function can be used to combine lists using the top-level components. This can be
used with data frames with the same number of rows, but the result is a list, not a data
frame. It can be turned into a data frame again by using data.frame().

4.2.4 Applying functions to a data frame or list

In Chapter 3 we noted that apply() could be used to apply a function to the rows or
columns of a matrix. The same can be done for a data frame, as it is matrix-like.
Although many functions in R adapt themselves to do what we would want, there are
times when ambiguities force us to work a little harder by using this technique. For
example, if a data frame contains just numbers, the function mean() will find the mean of
each variable, whereas median() will find the median of the entire data set. We illustrate
on the ewr (UsingR) data set:

> df = ewr[, 3:10] # make a data frame of
the times
> mean(df) # mean is as desired
 AA CO DL HP NW TW UA US
17.83 20.02 16.63 19.60 15.80 16.28 17.69 15.49
> median(df) # median is not as
desired
Error in median(df) : need numeric data
> apply(df,2,median) # median of columns
 AA CO DL HP NW TW UA US
16.05 18.15 15.50 18.95 14.55 15.65 16.45 14.45

Using R for introductory statistics 120

We can apply functions to lists as well as matrices with the lapply () function or its user-
friendly version, sapply (). Either will apply a function to each top-level component of a
list or the entries of a vector. The lapply () function will return a list, whereas sapply ()
will simplify the results into a vector or matrix when appropriate.

For example, since a data frame is also a list, the median of each variable above could
have been found with

> sapply(df,median)
 AA CO DL HP NW TW UA US
16.05 18.15 15.50 18.95 14.55 15.65 16.45 14.45

(Compare this to the output of lapply (df, median).)

4.2.5 Problems

4.7 Use the data set mtcars.

1. Sort the data set by weight, heaviest first.

2. Which car gets the best mileage (largest mpg)? Which gets the worst?

3. The cars in rows c(1:3, 8:14, 18:21, 26:28, 30:32) were imported into the United
States. Compare the variable mpg for imported and domestic cars using a boxplot. Is
there a difference?

4. Make a scatterplot of weight, wt, versus miles per gallon, mpg. Label the points
according to the number of cylinders, cyl. Describe any trends.

4.8 The data set cfb (UsingR) contains consumer finance data for 1,000 consumers.
Create a data frame consisting of just those consumers with positive INCOME and
negative NETWORTH. What is its size?

4.9 The data set hall, fame (UsingR) contains numerous baseball statistics, including
Hall of Fame status, for 1,034 players.

1. Make a histogram of the number of home runs hit (HR).
2. Extract a data frame containing at bats (AB), hits (hits), home runs (HR), and runs

batted in (RBI) for all players who are in the Hall of Fame. (The latter can be found
with Hall.Fame.Membership!="not a member".) Save the data into the data frame hf.

3. For the new data frame, hf, make four boxplots using the command:

 boxplot(lapply(hf,scale))

(The scale() function allows all four variables to be compared easily.)
Which of the four variables has the most skew?

Use matrix notation, list notation, or the subset() function to do the above.

Multivariate data 121

4.10 The data set dvdsales (UsingR) can be viewed graphically with the command

> barplot(t(dvdsales), beside=TRUE)

1. Remake the barplots so that the years increase from left to right.

2. Which R commands will find the year with the largest sales?

3. Which R commands will find the month with the largest sales?

4.11 Use the data set ewr (UsingR). We extract just the values for the times with
df=ewr [,3:10]. The mean of each column is found by using mean (df). How would you
find the mean of each row? Why might this be interesting?

4.12 The data set u2 (UsingR) contains the time in seconds for albums released by the
band U2 from 1980 to 1997. The data is stored in a list.

1. Make a boxplot of the song lengths by album. Which album has the most spread?
Are the means all similar?

2. Use sapply() to find the mean song time for each album. Which album has the
shortest mean? Repeat with the median. Are the results similar?

3. What are the three longest songs? The unlist() function will turn a list into a vector.
First unlist the song lengths, then sort.

Could you use a data frame to store this data?
4.13 The data set normt emp (UsingR) contains measurements for 130 healthy,

randomly selected individuals. The variable temperature contains body temperature, and
gender contains the gender, coded 1 for male and 2 for female. Make layered densityplots
of temperature, splitting the data by gender. Do the two distributions look to be the same?

4.14 What do you think this notation for data frames returns: df [,] ?

4.3 Using model formula with multivariate data

In Example 4.5 we broke up a variable into two pieces based on the value of a second
variable. This is a common task and works well. When the value of the second variable
has many levels, it is more efficient to use the model-formula notation. We’ve already
seen other advantages to this approach, such as being able to specify a data frame to find
the variables using data=and to put conditions on the rows considered using subset=.

4.3.1 Boxplots from a model formula

In Example 4.4 the inc variable is discrete and not continuous, as it has been turned into a
categorical factor by binning, using a bin size of $2,500. Rather than plot gestation versus
inc with a scatterplot, as is done in a panel of Figure 4.4, a boxplot would be more

Using R for introductory statistics 122

appropriate. The boxplot allows us to compare centers and spreads much more easily. As
there are nine levels to the income variable, we wouldn’t want to specify the data with
commands like gestation [inc == 1]. Instead, we can use the model formula gestation ~
inc with boxplot(). We read the formula as gestation is modeled by inc, which is
interpreted by boxplot() by splitting the variable gestation into pieces corresponding to
the values of inc and creating boxplots for each.

We use this approach three times. The last appears in Figure 4.6, where the argument
varwidth=TRUE is specified to show boxes with width depending on the relative size of
the sample.

> boxplot(gestation ~ inc, data=babies) # not yet
> boxplot(gestation ~ inc, subset=gestation != 999 &
inc != 98,
+ data=babies) # better
> boxplot(gestation ~ inc, subset=gestation != 999 &
inc != 98,
+ data=babies,varwidth=TRUE, # variable width to see
sizes
+ xlab="income level”, ylab="gestation (days)")

Figure 4.6 Boxplot of gestation times
for income levels

4.3.2 The plot () function with model formula

Both boxplot() and plot() are generic functions allowing the programmers of R to write
model-formula interfaces to them. The boxplot() function always draws boxplots, but
we’ve seen already that the plot() function can draw many types of plots (depending on
its first argument). In Example 3.6 the plot() command was called with a model formula
of the type numeric ~ numeric, resulting in a scatterplot. If x and y are paired, numeric
data vectors, then the model formula y ~ x represents the model yi=β0+β1xi+εi. The
typical plot for viewing this type of model is the scatterplot.

Multivariate data 123

A model formula of the type numeric ~ factor represents the statistical model
That is, for each level i of the factor, there is a sample,

with mean described by µi.
As this model says something about the means of the different samples, multiple

boxplots are useful for viewing the data. A boxplot allows us to compare the medians,
which are basically the mean if the data is not skewed. Consequently, it is the plot made
when the plot () function encounters such a model formula. That is, if x is a numeric data
vector and f a factor indicating which group the corresponding element of x belongs to,
then the command plot (x ~ f) will create side-by-side boxplots of values of x split up by
the levels of f.

For example, Figure 4.6 could also have been made with the commands

> plot(gestation ~ factor(inc), data=babies,
varwidth=TRUE,
+ subset = gestation != 999 & inc !=98,
+ xlab="income level", ylab="gestation (days)")

The function factor() explicitly makes inc a factor and not a numeric data vector.
Otherwise, the arguments are identical to those to the boxplot() function that created
Figure 4.6.

4.3.3 Creating contingency tables with xtabs()

We saw in Example 4.1 how to make a three-way contingency table using the table()
function starting with raw data. What if we had only the count data? How could we enter
it in to make a three-way contingency table? We can enter the data in as a data frame and
then use xtabs() to create contingency tables. The xtabs() function offers a formula
interface as an alternative to table().

The function as.data.frame() inverts what xtabs() and table() do. It will create a data
frame with all possible combinations of the variable levels and a count of frequencies
when called on a contingency table.

■ Example 4.7: Seat-belt usage factors The three-way table in Table 4.5 shows
percentages of seat-belt usage for two years, broken down by type of law enforcement
and type of car. Law enforcement is primary if a driver can be pulled over and ticketed
for not wearing a seat belt, and secondary if a driver can be ticketed for this offense only
if pulled over for another infraction. This data comes from a summary of the 2002
Moving Traffic Study as part of NOPUS (http://www.nhtsa.gov/), which identified these
two factors as the primary factors in determining seat-belt usage.

We show how to enter the data into R using a data frame, and from there

Table 4.5 Seat-belt data by type of law and
vehicle

Enforcement primary secondary
Year 2001 2002 2001 2002
Car type
passenger 71 82 71 71

Using R for introductory statistics 124

pickup 70 71 50 55
van/SUV 79 83 70 73
a source: 2002 NOPUS

recreate the table.
Though this is not count data, the data entry is similar. First we turn the contingency

table into a data frame by creating the proper variables. We enter the percentages in
column by column. After doing this, we create variables for car, year, and enforcement
that have values matching the percentages. Using rep() greatly reduces the work.

> percents = c(71,70,79,82,71,83,71,50,70,71,55,73)
> car = rep(c("passenger","pickup","van/suv"), 4)
> year = rep(rep(2001:2002,c(3,3)), 2)
> enforcement = rep(c("primary","secondary"), c(6,6))
> seatbelts = data.frame(percents, car, year,
enforcement)
> seatbelts
 percents car year enforcement
1 71 passenger 2001 primary
2 70 pickup 2001 primary
…
12 73 van/suv 2002 secondary

The xtabs() function creates contingency tables using a model-formula interface. The
formula may or may not have a response. If no response is present, xtabs() will tabulate
the data as though it has not been summarized in the way table() does. We have the
equivalent of summarized data stored in percents, so we will use this variable as the
response. The cross-classifying variables on the right side of the model formula are
“added” in with +. The first two variables form the main tables; any additional ones are
used to break up the contingency tables. For example:

> tab = xtabs(percents ~ car+year+enforcement,
data=seatbelt)
> tab
, , enforcement = primary

year
car 2001 2002

passenger 71 82

pickup 70 71

van/suv 79 83
, , enforcement = secondary
 year
car 2001 2002
 passenger 71 71
 pickup 50 55

Multivariate data 125

 van/suv 70 73

The ftable() command can again be used to flatten the tables. We specify the column
variables to make the output look like Table 4.5.

> ftable(tab, col.vars=c("enforcement","year"))
 enforcement primary secondary
 year 2001 2002 2001 2002
car
 passenger 71 82 71 71
 pickup 70 71 50 55
 van/suv 79 83 70 73

4.3.4 Manipulating data frames: split () and stack ()

When a formula interface isn’t available for a function, the split() function can be used to
split up a variable by the levels of some factor. If x stores the data and f is a factor
indicating which sample the respective data values belong to, then the command split(x,
f) will return a list with top-level components containing the values of x corresponding to
the levels of f. For example, the command boxplot(split(x,f)) produces the same result as
the command boxplot(x ~ f).

Applying a single function to each component of the list returned by split() may also
be done with the tapply() function. The basic format is

tapply (x, f, function)

The function can be a named function, such as mean, or one we define ourselves, as will
be discussed in Chapter 6.

Inverse to split() is stack(), which takes a collection of variables stored in a data frame
or list and stacks them into two variables. One contains the values, and the other indicates
which variable the data originally came from. The function unstack() reverses this
process and is similar to split(), except that it returns a data frame (and not a list), if
possible.

For example, the data set cancer (UsingR) contains survival times for different types
of cancer. The data is stored in a list, not a data frame, as the samples do not have the
same length. We can create a data object, for which the model formula will work using
stack().

> cancer
$stomach
 [1] 124 42 25 45 412 51 1112 46 103 876 146
340
[13] 396
…
$breast
[1] 1235 24 1581 1166 40 727 3808 791 1804 3460 719
> stack(cancer)
 values ind
1 124 stomach

Using R for introductory statistics 126

2 42 stomach
…
63 3460 breast
64 719 breast

The variable names in the output of stack() are always values to store the data and ind to
indicate which sample the data is from. When we use stack(), it is important that the
variables in the data frame or list have names, so that ind can indicate which variable the
data is from.

4.3.5 Problems

4.15 The data set MLBattend (UsingR) contains attendance data for major league
baseball between the years 1969 and 2000. For each year, make boxplots of attendance.
Can you pick out two seasons that were shortened by strikes? (There were three, but the
third is hard to see.)

4.16 The data set MLBattend (UsingR) contains several variables concerning
attendance at major league baseball games from 1969 to 2000. Compare the mean
number of runs scored per team for each league before and after 1972 (when the
designated hitter was introduced). Is there a difference? Hint: the function tapply() can be
used, as in

> tapply(runs.scored,league,mean)
 AL NL
713.3 675.4

However, do this for the data before and after 1972.
4.17 The data set npdb (UsingR) contains malpractice-award information for the years

2000 to 2003 in the United States. The variable ID contains an identification number
unique to a doctor. The command table (table (ID)) shows that only 5% of doctors are
involved in multiple awards. Perhaps these few are the cause of the large insurance
payouts? How can we check graphically?

We’ll make boxplots of the total award amount per doctor broken down by the number
of awards that doctor has against him and investigate. First though, we need to
manipulate the data.

1. The command tmp=split (award, ID) will form the list tmp with each element
corresponding to the awards for a given doctor. Explain what these commands do:
sapply (tmp, sum) and sapply (tmp, length).

2. Make a data frame with the command

> df = data.frame(sum = sapply(x,sum), number =
sapply(x,length))

With this, create side-by-side boxplots of the total amount by a doctor broken
down by the number of awards.
What do you conclude about these 5% being the main cause of the damages?

Multivariate data 127

4.18 The data set morley contains measurements of the speed of light. Make side-by-side
boxplots of the Speed variable for each experiment recorded by Expt. Are the centers
similar or different? Are the spreads similar or different?

4.19 For the data set PlantGrowth, make boxplots of the weight variable for each level
of group. Are the centers similar or different? Are the spreads similar or different?

4.20 For the data set Insect Sprays, make boxplots of the count variable for levels C,
D, and E. Hint: These can be found with a command such as

> spray %in% c("C" ,"D" , “E")

Use this with the model notation and the argument subset= when making the boxplots.
4.21 The pairs() function also has a model-formula interface. We can redo Example

(4.4) with the command

> pairs(~ gestation + age + wt + inc, data = babies,
+ subset = gestation < 999 & age < 99 & inc < 98)

For the US cereal (MASS) data set, use the formula interface to make a scatterplot matrix
of the variables calories, carbo, protein, fat, fibre, and sugars. Which relationships show a
linear trend?

4.4 Lattice graphics

In Figure 4.2 various colors and plotting characters were used to show whether the third
variable, smoke, affected the relationship between gestation time and birth weight. As we
noted, the figure was a bit crowded for this approach. A better solution would be to create
a separate scatterplot for each level of the third variable. These graphs can be made using
the lattice graphics package.

The add-on package lattice is modeled after Cleveland’s Trellis graphics concepts and
uses the newer, low-level plotting commands available in the grid package. These two are
recommended packages and should be part of a standard R installation.

The graphics shown below are useful and easy to create. Many other usages are
possible. If the package is loaded (with library (lattice)), a description of lattice graphics
is available in the help system under ?Lattice. The help page ?xyplot also contains
extensive documentation.*

The basic idea is that the graphic consists of a number of panels. Each panel
corresponds to some value(s) of a conditioning variable. The lattice graphing functions
are called using the model-formula interface. The formulas have the format

response ~ predictor|condition

The response variable is not always present. For univariate graphs, such as histograms, it
is not given; for bivariate graphs, such as scatterplots, it is. The optional condition
variable is either a factor or a numeric value. If it is a factor, there is a separate panel for
each level. If it is numeric, “shingles” are created that split up the range of the variable to

Using R for introductory statistics 128

make several panels. Each panel uses the same scale for the axes, allowing for easy
comparison between the graphics.

Before beginning, we load the lattice package and override the default background
color, as it is not the best for reproduction.

> library(lattice) # load in the package
> trellis.device(bg="white") # set background to white.

This can also be achieved by setting the lattice “theme,” using options ():

> options(lattice.theme="col.whitebg")

If we desire, this command can be placed into a startup file† to change the default
automatically.

What follows are directions for making several types of graphs using the lattice
package.

Histograms Histograms are univariate. The following command shows histograms of
birth weight (wt) for different levels of the factor smoke. Note that the response variable
is left blank.

> histogram(~ wt | factor(smoke), data=babies,
+ subset=wt != 999, type="density")

The last argument, type=“density”, makes the total area of the histogram add to 1. (The
argument prob=TRUE was used with hist().)

Densityplots The density estimate is an alternative to a histogram. Density estimates
are graphed with the densityplot() function, as in

* Some online documentation exists in Volume 2/2 of the R News newsletter (http://cran.r-
project.org/doc/Rnews) and the grid package author’s home page
(http://www.stat.auckland.ac.nz/~paul/grid/grid.html).
† See Appendix A for information about startup files.

densityplot(~ wt | factor(smoke), data=babies)

Boxplots Boxplots can be univariate or multivariate.
The relationship between gestation time and income was investigated in Figure 4.6. A

similar graph can be made with the function bwplot (). (A boxplot is also known as a
box-and-whisker plot, hence the name.)

> bwplot(gestation ~ factor(inc), data=babies,
+ subset = gestation != 999)

Figure 4.7 shows this broken down further by the smoking variable.

> bwplot(gestation ~ factor(inc) | factor(smoke),
data=babies,

Multivariate data 129

+ subset = gestation != 999)

Figure 4.7 Gestation versus income
level by smoking status

Scatterplots The lattice function xyplot() produces scatterplots. As these are graphs of
bivariate relationships, a response variable is needed. This example will plot the
relationship between gestation time and weight for each level of the factor smoke.

| > xyplot(wt ~ gestation | factor(smoke), data =
babies,
+ subset = (wt != 999 & gestation != 999))

Scatterplots with regression line The last example can be improved if we add a
regression line, as was done using abline(). However, the panels of the scatterplot do not
allow this type of command directly. Rather, lines are added as the panels are drawn. To
override the default graphic, we specify a panel-drawing function. The following
command creates a panel function called plot. regression. (User-defined functions will be
discussed in Chapter 6.)

> plot.regression=function(x,y) {
+ panel.xyplot(x,y) # make x-y plot
+ panel.abline(1m(y ~ x)) # add a regression line
+}

This function is used as the value of the panel= argument:

> xyplot(wt ~ gestation | factor(smoke), data=babies,

Using R for introductory statistics 130

+ subset=(wt != 999 & gestation != 999),
+ panel=panel.regression) # a new panel function

Figure 4.8 contains the graphic. We might ask, “Are the slopes similar?” and, “What
would it mean if they aren’t?”

Figure 4.8 Gestation versus weight
for levels of smoke

4.4.1 Problems

4.22 The kid. weights (UsingR) data set contains measurements for several children.
There is a clear relationship between height and weight. Break the data down by the age
of the child. As age is numeric, it helps to turn it into a factor: cut (age/12, 3*(0:4)). Do
you see the same trend for all the age groups?

4.23 For the kid.weights (UsingR) data set, explore the relationship of weight and
gender for the age ranges 0–3, 3–6, 6–9, and 9–12. Is the relationship always the same?

4.24 The female. inc (UsingR) data set contains income and race data for females in
the United States for the year 2001. Make a boxplot of the income variable broken up by
the race variable. Do there appear to be any major differences among the races? In
addition, compute the summary statistics for each racial group in the data.

4.25 The data set ToothGrowth contains measurements of tooth growth for different
dosages of a supplement. Use the function bwplot() to make boxplots of len for each level
of dose broken up by the levels of supp. You need to make dose a factor first. Also,
repeat the graphic after reversing the role of the two factors.

4.26 The car safety (UsingR) data set contains data on accident fatalities per million
vehicles for several types of cars. Make boxplots of Driver. deaths broken down by type.

Multivariate data 131

Which type of car has the largest spread? Repeat using the variable Driver.deaths+Other
.deaths. Which has the largest spread? Are there any trends?

4.27 The data set Orange contains data on the growth of five orange trees. Use
xyplot() to make a scatterplot of the variable circumference modeled by age for each
level of Tree. Are the growth patterns similar?

4.28 The data set survey (MASS) contains survey information on students.

1. Make scatterplots using xyplot() of the writing-hand size (Wr.Hnd) versus non-
writing-hand size (NW.Hnd), broken down by gender (Sex). Is there a trend?

2. Make boxplots using bwplot() of Pulse() for the four levels of Smoke broken down
by gender Sex. Are there any trends? Differences?

Do you expect any other linear relationships among the variables?

4.5 Types of data in R

(This section may be skipped initially. It is somewhat technical and isn’t used directly in
the remainder of the text.)

The basic structures for storing data in R are data vectors for univariate data, matrices
and data frames for rectangular data, and lists for more general needs. Each data vector
must contain the same type of data. The basic types are numeric, logical, and character.

Many objects in R also have a class attribute given by the class() function. It is the
class of an object that is used by R to give different meanings to generic functions, such
as plot() and summary().

4.5.1 Factors

Factors should also be considered to be another storage type, as they are handled
differently than a data vector. Recall, factors keep track of categorical data, as can a data
vector, yet unlike other data types, their values can come only from the specified levels of
the factor. Manipulating the levels requires knowing how to do a few things: creating a
factor, listing the levels, adding a level, dropping levels, and ordering levels.

Creating factors
Factors are made with factor() or as. factor(). These functions coerce the data into a factor
and define the levels of the new factor. For example:

> x = 1:3; fac=letters[1:3]
> factor(x) # default uses sorted
order
[1] 1 2 3
Levels: 1 2 3
> factor(fac) # same with characters
[1] a b c
Levels: a b c

Using R for introductory statistics 132

When a factor is printed, the levels also appear.
It is important to realize that these are factors and not numbers. For example, we can’t

add factors.

> x + factor(x)
[1] NA NA NA
Warning message:
"+" not meaningful for factors in: Ops.factor(x,
factor(x))

Adding levels: levels=and levels()
When defining a factor, the levels= argument can be used to specify the levels.

> factor(x,levels=1:10) # add more levels than 3
[1] 1 2 3
Levels: 1 2 3 4 5 6 7 8 9 10
> factor(x,levels=fac) # get NA if not in levels
[1] <NA> <NA> <NA>
Levels: a b c

The values of data vector being coerced into a factor should match those specified to
levels=.

The levels() function can list the levels of a factor directly and allows us to change or
add to the levels.

> x = factor(1:5)
> x
[1] 1 2 3 4 5
Levels: 1 2 3 4 5
> levels(x) # character vector
[1] "1" "2" "3" "4" "5"

The levels() function can also change the levels of a factor. As levels() changes an
attribute of the data vector, like names(), it appears on the other side of the assignment.
For example:

> x = factor(1:3)
> x
[1] 1 2 3
Levels: 1 2 3
> levels(x) = letters [1:3]
> x
[1] a b c
Levels: a b c
> levels(x) = 1:10 # add more
levels
> x
[1] 1 2 3
Levels: 1 2 3 4 5 6 7 8 9 10

Multivariate data 133

The number of new levels must be at least as great as the current number.

Dropping levels of factors
If we take a subset from a factor, we may want the levels to be shortened to match only
those values in the subset. By default, our subset will contain all the old levels.
Releveling can be done in a few ways. The levels () function won’t work, as that expects
the same or more levels. However, factor () will work:

> x = factor(letters[1:5])
> x
[1] a b c d e
Levels: a b c d e
> x[1:3]
[1] a b c
Levels: a b c d e
> factor(x[1:3])
[1] a b c
Levels: a b c

A more direct way to relevel is to use the drop=TRUE argument when doing the
extraction:

> x[1:3,drop=TRUE]
[1] a b c
Levels: a b c

Ordering levels in a factor
The ordering of the levels is usually done alphabetically (according to the result of sort
(unique(x)). If we want a specific ordering of the levels, we can set the levels directly in
the levels= argument of factor() or using levels().

For example:

> 1 = letters [1:5] # the first 5 letters
> factor(1) # order of levels is by
ASCII
[1] a b c d e
Levels: a b c d e
> factor(1,levels=rev(1)) # specific order of levels
[1] a b c d e
Levels: e d c b a

If we want a certain level to be considered first, the relevel() function can be used, as in
relevel (factor, ref =…).

4.5.2 Coercion of objects

Using R for introductory statistics 134

Coercion is the act of forcing one data type into another. This is typically done with an
“as.” function, such as as.data.frame(), although we’ll see that some coercion happens
implicitly.

Coercing different data types
We use the language data vector to refer to an indexed set of data of length n all of the
same type. The types we have encountered are “numeric” for storing numbers,
“character” for storing strings, “factor” for storing factors, and “logical” for storing
logical expressions. We can convert from one type to another with the “as.” functions,
such as as.numeric() or as. character(). We can check the type with the corresponding
“is.” functions. For example:

> x = 1:5
>
c(is.numeric(x),is.character(x),is.factor(x),is.logical
(x))
[1] TRUE FALSE FALSE FALSE
> x = as.character(x)
> x
[1] "1" "2" "3" "4" "5"
>
c(is.numeric(x),is.character(x),is.factor(x),is.logical
(x))
[1] FALSE TRUE FALSE FALSE
> x = as.factor(x)
> x
[1] 12345
Levels: 12345
>
c(is.numeric(x),is.character(x),is.factor(x),is.logical
(x))
[1] FALSE FALSE TRUE FALSE
> as.logical(x)
[1] NA NA NA NA NA

Each type prints differently. When coercion fails, a value of NA is returned. The coercion
to logical is picky. Values like a or “F” or “FALSE” will coerce to FALSE, but not
values like “0” (a character) or “f.”

A caveat: although we use the term “data vector” to describe these data sets, the is.
vector() function does not consider factors to be vectors.

Coercing factors to other types
Coercing factors can be tricky, as they print differently from how they are stored. An
artificial example will illustrate:

> f = factor(letters[1:5])
> f
[1] a b c d e
Levels: a b c d e

Multivariate data 135

> unclass(f) # shows how f is stored
[1] 1 2 3 4 5
attr(,"levels”)
[1] “a” “b” “c” “d” “e”
> as.vector(f) # coerce to vector type
[1] “a” “b” “c” “d” “e”
> as.integer(f) # coerce to integers
[1] 1 2 3 4 5

The unclass() function shows that a factor is stored using an internal coding involving
numbers. The attribute “levels” gives the levels. The coercion to a vector gives a
character vector in this case; the coercion to an integer returns the internal codes.

The final one can cause confusion. Consider this example:

> g = factor(2:4)
> g
[1] 2 3 4
Levels: 2 3 4
> as.numeric(g)
[1] 1 2 3
> as.numeric(as.character(g))
[1] 2 3 4

The as. numeric() command by itself returns the codes when applied to a factor. To get
the levels as numbers, we convert to character, then to numeric:

> as.numeric(as.character(x))
[1] 2 3 4

As a convenience, when factors are used to label graphs, say with the labels= argument of
the text() function, this conversion is done automatically.

Coercing vectors, data frames, and lists
There are “as.” functions to coerce data storage from one type to another. But they can’t
do all the work.

Coercing a vector to a data frame If we want to coerce a vector into a data frame we
can do it with the function as.data. frame(). If x is a vector, then as.data.frame(x) will
produce a data frame with one column vector. By default, strings will be coerced to
factors.

We may want to create a matrix from our numbers before coercing to a data frame.
This can be achieved by setting the dim() attribute of the data vector. The dim() function
takes a vector where each component specifies the size of that dimension. As usual, rows
first, then columns.

> x = 1:8
> dim(x)=c(2,4) #2 rows 4 columns
> x # column by column
 [,1] [,2] [,3] [,4]

Using R for introductory statistics 136

[1,] 1 3 5 7
[2,] 2 4 6 8
> as.data.frame(x) # turn matrix to data frame
 V1 V2 V3 V4
1 1 3 5 7
2 2 4 6 8

Coercing a data frame or list into a vector To coerce a list or data frame into a vector,
we should start out with all the same type of data, otherwise the data will be coerced
implicitly. The unlist() function, when applied to a list, will form a vector of all the
“atomic” components of the list, recursively traversing through a list to do so. When
applied to a data frame it goes column by column creating a vector. For example:

> x = 1:8;dim(x) = c(2,4);df = data.frame(x)
> df
 X1 X2 X3 X4
1 1 3 5 7
2 2 4 6 8
> unlist(df)
X11 X12 X21 X22 X31 X32 X41 X42
 1 2 3 4 5 6 7 8

Multivariate data 137

Chapter 5
Describing populations

Statistical inference is the process of forming judgments about a population based on a
sample from the population. In this chapter we describe populations and samples using
the language of probability.

5.1 Populations

In order to make statistical inferences based on data we need a probability model for the
data. Consider a univariate data set. A single data point is just one of a possible range of
values. This range of values will be called the population. We use the term random
variable to be a random number drawn from a population. A data point will be a
realization of some random variable. We make a distinction between whether or not we
have observed or realized a random variable. Once observed, the value of the random
variable is known. Prior to being observed, it is full of potential—it can be any value in
the population it comes from. For most cases, not all values or ranges of values of a
population are equally likely, so to fully describe a random variable prior to observing it,
we need to indicate the probability that the random variable is some value or in a range of
values. We refer to a description of the range and the probabilities as the distribution of
a random variable.

By probability we mean some number between a and 1 that describes the likelihood of
our random variable having some value. Our intuition for probabilities may come from a
physical understanding of how the numbers are generated. For example, when tossing a
fair coin we would think that the probability of heads would be one-half. Similarly, when
a die is rolled the probability of rolling a would be one-sixth. These are both examples
in which all outcomes are equally likely and finite in number. In this case, the probability
of some event, a collection of outcomes, is the number of outcomes in the event divided
by the total number of outcomes. In particular, this says the probability of any event is
between a and 1.

For situations where our intuition comes about by performing the same action over
and over again, our idea of the probability of some event comes from a proportion of
times that event occurs. For example, the batting average of a baseball player is a running
proportion of a player’s success at bat. Over the course of a season, we expect this
number to get closer to the probability that an official at bat will be a success. This is an
example in which a long-term frequency is used to give a probability.

For other populations, the probabilities are simply assigned or postulated, and our
model is accurate as far as it matches the reality of the data collected. We indicate
probabilities using a P() and random variables with letters such as X. For example,
P(X≤5) would mean the probability the random variable X is less than or equal to 5.

5.1.1 Discrete random variables

Numeric data can be discrete or continuous. As such, our model for data comes in the
same two flavors.

Let X be a discrete random variable. The range of X is the set of all k where P(X=k]>0.
The distribution of X is a specification of these probabilities. Distributions are not
arbitrary, as for each k in the range, P(X=k)>0 and P(X=k)≤1. Furthermore, as X has
some value, we have ∑k P(X=k)=1.

Here are a few examples for which the distribution can be calculated.
■ Example 5.1: Number of heads in two coin tosses If a coin is tossed two times we

can keep track of the outcome as a pair. (H, T), for example, denotes “heads” then “tails.”
The set {(H,H), (H, T), (T,H),(T, T}} contains all possible outcomes. If X is the number of
heads, then X is either 0, 1, or 2. Intuitively, we know that for a fair coin all the outcomes
have the same probability, so P(X= 0)=1/4, P(X=1)=1/2, and P(X=2)=1/4.

■ Example 5.2: Picking balls from a bag Imagine a bag with N balls, of which R are
red and N—R are green. We pick a ball, note its color, replace the ball, and repeat. Let X
be the number of red balls. As in the previous example, X is 0, 1, or 2. The probability
that X=2 is intuitively (R/N)·(R/N) as R/N is the probability of picking a red ball on any
one pick. The probability that X=0 is ((N−R)/N)2 by the same reasoning, and as all
probabilities add to 1, P(X=1)=2(R/N)((N−R)/N). This specifies the distribution of X.

The binomial distribution describes the result of selecting n balls, not two.
The intuition that leads us to multiply two probabilities together is due to the two

events being independent. Two events are independent if knowledge that one occurs
doesn’t change the probability of the other occurring. Two events are disjoint if they
can’t both occur for a given outcome. Probabilities add with disjoint events.

■ Example 5.3: Specifying a distribution We can specify the distribution of a
discrete random variable by first specifying the range of values and then assigning to
each k a number pk=P(X=k) such that ∑pk=1 and pk≥0. To visualize a physical model
where this can be realized, imagine making a pie chart with areas proportional to pk,
placing a spinner in the middle, and spinning. The ending position determines the value
of the random variable.

Figure 5.1 shows a spike plot of a distribution and a spinner model to realize values of
X. A spike plot shows the probabilities for each value in the range of X as spikes,
emphasizing the discreteness of the distribution. The spike plot is made with the
following commands:

> k = 0:4
> p=c(1,2,3,2,1)/9
> plot(k,p,type="h",xlab="k",
ylab="probability",ylim=c(0,max(p)))
> points(k,p,pch=16,cex=2) # add the balls to top
of spike

The argument type="h" plots the vertical lines of the spike plot.

Describing populations 139

Figure 5.1 Spike plot of distribution
of X and a spinner model to realize
values of X with the specified
probabilities

Using sample() to generate random values
R will generate observations of a discrete random variable with the sample () function. If
the data vector k contains the values we are sampling from, and p contains the
probabilities of each value being selected, then the command sample(k, size=1, prob=p)
will select one of the values of k with proba-bilities specified by p.

For example, the number of heads for two coin tosses can be simulated as follows:

> k = 0:2
> p = c(1,2,1)/4
> sample(k,size=1,prob=p)
[1] 0
> sample(k,size=1,prob=p)
[1] 2

The default probabilities for prob= make each value of k equally likely. We can use this
to simulate rolling a pair of dice and adding their values:

> sample(1:6,size=1) +sampled :6, size=1)
[1] 12
> sampled: 6, size=1)+sampled : 6, size=1)
[1] 5

The mean and standard deviation of a discrete random variable
For a data set, the mean and standard deviation are summaries of center and spread. For
random variables these concepts carry over, though the definitions are different.

The population mean is denoted by µ (the Greek letter mu). If X is a random variable
with this population, then the mean is also called the “the expected value of X” and is
written E(X). A formula for the expected value of a discrete random variable is

 (5.1)

Using R for introductory statistics 140

This is a weighted average of the values in the range of X.
On the spike plot, the mean is viewed as a balancing point if there is a weight assigned

to each value in the range of X proportional to the probability.
The population standard deviation is denoted by σ (the Greek letter sigma). The

standard deviation is the square root of the variance. If X is a discrete random variable,
then its variance is defined by σ2=VAR(X)=E((X−µ)2). This is the expected value of the
random variable (X−µ)2. That is, the population variance measures spread in terms of the
expected squared distance from the mean.

5.1.2 Continuous random variables

Continuous data is modeled by continuous random variables. For a continuous random
variable X, it is not fruitful to specify probabilities like P(X=k) for each value in the
range, as the range has too many values. Rather, we specify probabilities based on the
chance that X is in some interval. For example, P(a< X≤b), which would be the chance
that the random variable is more than a but less than or equal to b.

Rather than try to enumerate values for all a and b, these probabilities are given in
terms of an area for a specific picture.

A function f(x) is the density of X if, for all b, P(X≤b) is equal to the area under the
graph of f and above the x-axis to the left of b. Figure 5.2 shows this by shading the area
under f to the left of b. Although in most cases computing these areas is more advanced
than what is covered in this text, we can find their values for many different densities
using the appropriate group of functions in R.

Figure 5.2 P(X≤b) is defined by the
area to left of b under the density of
X

Using our intuitive notions of probability, for f(x) to be a density of X the total area under
f(x) should be 1 and f(x)≥0 for all x. Otherwise, some intervals could get negative
probabilities. Areas can also be broken up into pieces, as Figure 5.3 illustrates, showing
P(a<X≤b)=P(X≤b)−P(X≤a). This reasoning also gives the useful complement rule: for
any b, P(X≤b)=1−P(X>b).

Describing populations 141

Figure 5.3 Shaded areas can be
broken into pieces and manipulated.
This illustrates P(a < X ≤ b)=P(X
≤b)- P(X ≤ a).

For example, the uniform distribution on [0, 1] has density f(x)=1 on the interval [0, 1]
and is 0 otherwise. Let X be a random variable with this density.

Then P(X≤b)=b if 0≤b≤1, as the specified area is a rectangle with length b and height
1. As well, P(X>b)=1−b for the same reason. Clearly, we have P(X≤b)=1−P(X>b).

The p.d.f. and c.d.f.
For a discrete random variable it is common to define a function f(k) by f(k)= P(X=k).
Similarly, for a continuous random variable X, it is common to denote the density of X by
f(x). Both usages are called p.d.f.’s. For the discrete case, p.d.f. stands for probability
distribution function, and for the continuous case, probability density function. The
cumulative distribution function, c.d.f., is F(b)=P(X≤b). In the discrete case this is given
by ∑k≤bP(X=k), and in the continuous case it is the area to the left of b under the density
f(x).

The mean and standard deviation of a continuous random variable
The concepts of the mean and standard deviation apply for continuous random variables,
although their definitions require calculus. The intuitive notion for the mean of X is that it
is the balancing point for the density of X. The notation µ or E(X) is used for the mean,
and σ or SD(X) is used for the standard deviation.

If X has a uniform distribution on [0, 1], then the mean is 1/2. This is clearly the
balancing point of the graph of the density, which is constant on the interval. The
variance can be calculated to be 1/12, so σ is about .289.

Quantiles of a continuous random variable
The quantiles of a data set roughly split the data by proportions. Let X be a continuous
random variable with positive density. Referring to Figure 5.2, we see that for any given
area between a and 1 there is a b for which the area to the right of b under f is the desired
amount. That is, for each p in [0, 1] there is a b such that P(X≤b)=p. This defines the p-
quantile or 100· p percentile of X. The quantile function is inverse to the c.d.f., as it
returns the x value for a given area, whereas the c.d.f. returns the area for a given x value.

Using R for introductory statistics 142

5.1.3 Sampling from a population

Our probability model for a data point is that it is an observation of a random variable
whose distribution describes the parent population. To perform statistical inference about
a parent population, we desire a sample from the population. That is, a sequence of
random variables X1,X2,…, Xn. A sequence is identically distributed if each random
variable has the same distribution. A sequence is independent if knowing the value of
some of the random variables does not give additional information about the distribution
of the others. A sequence that is both independent and identically distributed is called an
i.i.d. sequence, or a random sample.

Toss a coin n times. If we let Xi be 1 for a heads on the ith coin toss and 0 otherwise,
then clearly X1, X2, …, Xn is an i.i.d. sequence. For the spinner analogy of generating
discrete random variables, the different numbers will be i.i.d. if the spinner is spun so
hard each time that it forgets where it started and is equally likely to stop at any angle.

If we get our random numbers by randomly selecting from a finite population, then the
values will be independent if the sampling is done with replacement. This might seem
counterintuitive, as there is a chance a member is selected more than once, so the values
seem dependent. However, the distribution of a future observation is not changed by
knowing a previous observation.

Random samples generated by sample()
The sample() function will take samples of size n from a discrete distribution by
specifying size=n. The sample will be done with replacement if we specify
replace=TRUE. This is important if we want to produce an i.i.d. sample. The default is to
sample without replacement.

toss a coin 10 times. Heads=1, tails=0
> sample(0:1,size=10,replace=TRUE)
[1] 0 0 1 1 1 1 1 0 1 0
> sampled:6,size=10,replace=TRUE) ## roll a die 10
times
[1] 1422214644
sum of dice roll 10 times
> sampled: 6, size=10,replace=TRUE) + sampled : 6,
size=10,replace=TRUE)
[1] 7 7 7 9 12 4 7 9 5 4

■ Example 5.4: Public-opinion polls as random samples
The goal of a public-opinion poll is to find the proportion of a target population that
shares a given attitude. This is achieved by selecting a sample from the target population
and finding the sample proportion who have the given attitude. A public-opinion poll can
be thought of as a random sample from a target population if each person polled is
randomly chosen from the entire population with replacement. Assume we know that the
target population of 10,000 people has 6,200 that would answer “yes” to our survey
question. Then a sample of size 10 could be generated by

> sample(rep(0:1,c(3200,6800)),size=10,replace=T)
[1] 1 0 1 0 1 1 1 1 1 0

Describing populations 143

The rep() function produces 10,000 values: 3,200 O’s and 6,800 1’s.
The target population is different from the “population,” or distribution, of the random

variables. For the responses, the possible values are coded with a 0 or 1 with respective
probabilities 1−p and p. Using this distribution, a random sample can also be produced by
specifying the probabilities using prob=:

> sample(0:1,size=10,replace=T,prob=c(l-.62,.62))
[1] 0 1 0 1 0 0 0 1 1 0

5.1.4 Sampling distributions

A statistic is a value derived from a random sample. Examples are the sample mean,
and the sample median. Since a statistic depends on a

random sample, it, too, is a random variable. To emphasize this, we use a capital The
distribution of a statistic is known as its sampling distribution.

The sampling distribution of a statistic can be quite complicated. However, for many
common statistics, properties of the sampling distribution are known and are related to
the population parameters. For example, the sample mean of a random sample has

That is, the mean of is the same as the mean of the parent population, and the standard
deviation of is related to the standard deviation of the parent population, but it differs
as it is smaller by a factor of These facts allow us to use to make inferences
about the population mean.

5.1.5 Problems

5.1 Toss two coins. Let X be the resulting number of heads and Y be the number of tails.
Find the distribution of each.

5.2 Roll a pair of dice. Let X be the largest value shown on the two dice. Use sample ()
to simulate five values of X.

5.3 The National Basketball Association lottery to award the first pick in the draft is
held by putting 1,000 balls into a hopper and selecting one. The teams with the worst
records the previous year have a greater proportion of the balls. The data set nba.draft
(UsingR) contains the ball allocation for the year 2002. Use sample() with Team as the
data vector and prob=Balls to simulate the draft. What team do you select? Repeat until
Golden State is chosen. How long did it take?

5.4 Let be the p.d.f. of a triangular random variable X. Find

5.5 Let X have the uniform distribution on [0, 1]. That is, it has density f(x)=1 for
0≤x≤1. For 0≤p≤1 find the quantile function that returns b, where P(X≤b)=p.

5.6 Repeat the previous problem for the triangular distribution with density

Using R for introductory statistics 144

5.7 Toss two coins. Let X be the number of heads and Y the number of tails. Are X and
Y independent?

5.2 Families of distributions

In statistics there are a number of distributions that come in families. Each family is
described by a function that has a number of parameters characterizing the distribution.
For example, the uniform distribution is a continuous distribution on the interval [a,b]
that assigns equal probability to equal-sized areas in the interval. The parameters are a
and b, the endpoints of the intervals.

5.2.1 The d, p, q, and r functions

R has four types of functions for getting information about a family of distributions.
The “d” functions return the p.d.f. of the distribution, whereas the “p” functions return the
c.d.f. of the distribution. The “q” functions return the quantiles, and the “r” functions
return random samples from a distribution.

These functions are all used similarly. Each family has a name and some parameters.
The function name is found by combining either d, p, q, or r with the name for the family.
The parameter names vary from family to family but are consistent within a family.

For example, the uniform distribution on [a,b] has two parameters. The family name
is unif. In R the parameters are named min= and max=.

> dunif(x=1, min=0, max=3)
[1] 0.3333
> punif(q=2, min=0, max=3)
[1] 0.6667
> qunif(p=1/2, min=0, max=3)
[1] 1.5
> runif(n=1, min=0, max=3)
[1] 1.260

The above commands are for the uniform distribution on [0, 3]. They show that the
density is 1/3 at x=1 (as it is for all 0≤x≤3); the area to the left of 2 is 2/3; the median or
.5-quantile is 1.5; and a realization of a random variable is 1.260. This last command will
vary each time it is run.

It is useful to know that the arguments to these functions can be vectors, in which case
other arguments are recycled. For example, multiple quantiles can be found at once.
These commands will find the quintiles:

> ps = seq(0,1,by=.2) # vector
> names(ps)=as.character(seq(0,100,by=20)) # give names
> qunif(ps, min=0, max=1)
 0 20 40 60 80 100
0.0 0.2 0.4 0.6 0.8 1.0

Describing populations 145

This command, on the other hand, will find five uniform samples from five different
distributions.

> runif(5, min=0, max=1:5) # recycle min,
[1] 0.6331 0.6244 1.9252 2.8582 3.0076

5.2.2 Binomial, normal, and some other named distributions

There are a few basic distributions that are used in many different probability models:
among them are the Bernoulli, binomial, and normal distributions.

Bernoulli random variables
A Bernoulli random variable X is one that has only two values: a or 1. The distribution
of X is characterized by p=P(X = 1). We use Bernoulli (p) to refer to this distribution.
Often the term “success” is given to the event when X=1 and “failure” to the event when
X=a. If we toss a coin and let X be 1 if a heads occurs, then X is a Bernoulli random
variable where the value of p would be 1/2 if the coin is fair. A sequence of coin tosses
would be an i.i.d. sequence of Bernoulli random variables, also known as a sequence of
Bernoulli trials.

A Bernoulli random variable has a mean µ=p and a variance σ2=p(1−p).
In R, the sample() command can be used to generate random samples from this

distribution. For example, to generate ten random samples when p=1/4 can be done with

> n = 10; p = 1/4
> sample(0:1, size=n, replace=TRUE,prob=c(1-p,p))
[1] 0 0 0 0 0 0 0 1 0 0

Binomial random variables
A binomial random variable X counts the number of successes in n Bernoulli trials.
There are two parameters that describe the distribution of X: the number of trials, n, and
the success probability, p. Let Binomial (n, p) denote this distribution. The possible range
of values for X is 0, 1, …, n. The distribution of X is known to be

The term is called the binomial coefficient and is defined by

where n! is the factorial of n, or n·(n−1)…2·1. By convention, 0!=1. The binomial
coefficient, counts the number of ways k objects can be chosen from n distinct objects
and is read “n choose k.” The choose() function finds the binomial coefficients.

The mean of a Binomial (n, p) random variable is µ=np, and the standard deviation is

Using R for introductory statistics 146

In R the family name for the binomial is binom, and the parameters are labeled size=
for n and prob= for p.

■ Example 5.5: Tossing ten coins Toss a coin ten times. Let X be the number of
heads. If the coin is fair, X has a Binomial(10,1/2) distribution.

The probability that X=5 can be found directly from the distribution with the choose()
function:

> choose(10,5) * (1/2)^5 * (1/2)^(10–5)
[1] 0.2461

This work is better done using the “d” function, dbinom():

> dbinom(5, size=10, prob=1/2)
[1] 0.2461

The probability that there are six or fewer heads, P(X≤6)=∑k≤6 P(X=k), can be given
either of these two ways:

> sum(dbinom(0:6,size=10,prob=l/2))
[1] 0.8281
> pbinom(6,size=10,p=1/2)
[1] 0.8281

If we wanted the probability of seven or more heads, we could answer using
P(X≥7)=1−P(X≤6), or using the extra argument lower .tail=FALSE.

This returns P(X>k) rather than P(X≤k).
> sum(dbinom(7:10,size=10,prob=l/2))
[1] 0.1719
> pbinom(6,size=10,p=1/2)
[1] 0.1719
> pbinom(6,size=10,p=1/2, lower.tail=FALSE) # k=6 not
7!
[1] 0.1719

A spike plot (Figure 5.4) of the distribution can be produced using dbinom():

> heights=dbinom(0:10,size=10,prob=1/2)
> plot(0:10, heights, type="h",
+ main="Spike plot of X", xlab="k", ylab="p.d.f.")
> points(0:10, heights, pch=16,cex=2)

■ Example 5.6: Binomial model for a public-opinion poll In a public-opinion poll, the
proportion of “yes” respondents is used to make inferences about the population
proportion. If the respondents are chosen by sampling with replacement from the
population, and the “yes” responses are coded by a 1 and the “no”

Describing populations 147

Figure 5.4 Spike plot of
Binomial(10,1/2) distribution

responses by a 0, then the sequence of responses is an i.i.d. Bernoulli sequence with
parameter p, the population proportion. The number of “yes” respondents is then a
Binomial(n, p) random variable where n is the size of the sample.

For instance, if it is known that 62% of the population would respond favorably to the
question were they asked, and a sample of size 100 is asked, what is the probability that
60% or less of the sample responded favorably?

> pbinom(60, size=100, prob=0.62)
[1] 0.3759

Normal random variables
The normal distribution is a continuous distribution that describes many populations in
nature. Additionally, it is used to describe the sampling distribution of certain statistics.
The normal distribution is a family of distributions with density given by

The two parameters are the mean, µ, and the standard deviation, a. We use Normal(µ, σ)
to denote this distribution, although many books use the variance, σ2, for the second
parameter.

The R family name is norm and the parameters are labeled mean= and sd=.
Figure 5.5 shows graphs of two normal densities, f(x|µ=0,σ=1) and f(x|µ=4, σ=1/2).

The curves are symmetric and bell-shaped. The mean, µ, is a point of symmetry for the
density. The standard deviation controls the spread of the curve. The distance between
the inflection points, where the curves change from opening down to opening up, is two
standard deviations.

The figure also shows two shaded areas. Let Z have Normal(0, 1) distribution and X
have Normal(4,1/2) distribution. Then the left shaded region is P(Z≤1.5) and the right one
is P(X≤4.75). The random variable Z is called a standard normal, as it has mean a and

Using R for introductory statistics 148

variance 1. A key property of the normal distribution is that for any normal random
variable the z-score, (X−µ)/σ, is a standard normal. This says that areas are determined by
z-scores. In Figure 5.5 the two shaded areas are the same, as each represents the area to
the left of 1.5 standard deviations above the mean.

We can verify this with the “p” function:

> pnorm(1.5, mean=0,sd=1)
[1] 0.9332
> pnorm(4.75, mean=4,sd=1/2) # same z-score as
above
[1] 0.9332

Figure 5.5 Two normal densities: the
standard normal, f(x|0,1), and
f(x|4,1/2). For each, the shaded area
corresponds to a z-score of 3/2 or
less.

It is useful to know some areas for the normal distribution based on z-scores. For
example, the IQR is the range of the middle 50%. We can find this for the standard
normal by breaking the total area into quarters.

> qnorm(c(.25,.5,.75))
[1] −0.6745 0.0000 0.6745

We use qnorm() to specify the area we want. The mean and standard deviation are taken
from the defaults of 0 and 1. For any normal random variable, this says the IQR is about
1.35σ.

How much area is no more than one standard deviation from the mean? We use
pnorm() to find this:

> pnorm(1)−pnorm(−1)
[1] 0.6827

Describing populations 149

We see that roughly 68% of the area is in this range. For two and three standard
deviations the numbers are 95% and 99.7%. We illustrate two ways to find these:

> 1–2*pnorm(−2) # subtract area of two tails
[1] 0.9545
> diff(pnorm(c(−3,3))) # use diff to subtract
[1] 0.9973

This says that 95% of the time a normal random variable is within two standard
deviations of the mean, and 99.7% of the time it is within three standard deviations of its
mean. These three values, 68%, 95%, and 99.7%, are useful to remember as rules of
thumb.

■ Example 5.7: What percent of men are at least 6 feet tall? Many distributions in
nature are well approximated by the normal distribution. For example, the population of
heights for adult males within an ethnic class. Assume for some group the mean is 70.2
inches, and the standard deviation is 2.89 inches. What percentage of adult males are
taller than 6 feet? What percentage are taller than 2 meters? Assuming the model applies
for all males, what does it predict for the tallest male on the planet?

We convert 6 feet into 72 inches and use pnorm to see that 73% are 6 feet or shorter:

> mu = 70.2; sigma = 2.89
> pnorm(72,mean = mu,sd = sigma)
[1] 0.7332

To answer the question for meters we convert to metric. Each inch is 2.54 centimeters, or
0.0254 meters.

> conv = 0.0254
> pnorm(2/conv,mean = mu, sd = sigma)
[1] 0.9984

That is, fewer than 1% are 2 meters or taller.
Finally, the tallest man could be found using quantiles. There are roughly 2.5 billion

males, so the tallest man would be in the top 1/(2.5 billion) quantile:

> p=1–1/2500000000
> qnorm(p,mu,sigma)/12
[1] 7.33

This predicts 7 feet 4 inches, not even the tallest in the NBA. Expecting a probability
model with just two parameters to describe a distribution like this completely is asking
too much. •

■ Example 5.8: Testing the rules of thumb We can test the rules of thumb using
random samples from the normal distribution as provided by rnorm().

First we create 1,000 random samples and assign them to res:

> mu = 100; sigma = 10

Using R for introductory statistics 150

> res = rnorm(1000,mean = mu,sd = sigma)
> k = 1;sum(res > mu − k*sigma & res < mu + k*sigma)
[1] 694
> k = 2;sum(res > mu − k*sigma & res < mu + k*sigma)
[1] 958
> k = 3;sum(res > mu − k*sigma & res < mu + k*sigma)
[1] 998

Our simulation has 69.4%, 95.8%, and 99.8% of the data within 1, 2, and 3 standard
deviations of the mean. If we repeat this simulation, the answers will likely differ, as the
1,000 random numbers will vary each time.

5.2.3 Popular distributions to describe populations

Many populations are well described by the normal distribution; others are not. For
example, a population may be multimodal, not symmetric, or have longer tails than the
normal distribution. Many other families of distributions have been defined to describe
different populations. We highlight a few.

Uniform distribution
The uniform distribution on [a,b] is useful to describe populations that have no preferred
values over their range. For a finite range of values, the sample() function can choose one
with equal probabilities. The uniform distribution would be used when there is a range of
values that is continuous.

The density is a constant on [a,b]. As the total area is 1, the height is 1/(b− a). The
mean is in the middle of the interval, µ=(a+b)/2. The variance is (b—a)2/12. The
distribution has short tails.

As mentioned, the family name in R is unif, and the parameters are min= and max=
with defaults a and 1. We use Uniform(a, b) to denote this distribution. The left graphic
in Figure 5.6 shows a histogram and boxplot of 25 random samples from Uniform(0, 10).
On the histogram are superimposed the empirical density and the population density. The
random sample is shown using the rug() function.

> res = runif(50, min=0, max=10)
fig= setting uses bottom 35% of diagram
> par(fig=c(0,1,0,.35))
> boxplot(res,horizontal=TRUE, bty="n", xlab="uniform
sample")
fig= setting uses top 75% of figure
> par(fig=c(0,1,.25,1), new=TRUE)
> hist(res, prob=TRUE, main="", col=gray(.9))
> lines(density(res),lty=2)
> curve(dunif(x, min=0, max=10), lwd=2, add=TRUE)
> rug(res)

(We overlaid two graphics by using the fig=argument to par(). This parameter sets the
portion of the graphic device to draw on. You may manually specify the range on the x-

Describing populations 151

axis in the histogram using xlim=to get the axes to match. Other layouts are possible, as
detailed in the help page ?lay out.)

Figure 5.6 Histogram and boxplot of
50 samples from the Uniform(0, 10)
distribution and the Exponential(1/5)
distribution. Both empirical
densities and population densities
are drawn.

Exponential distribution
The exponential distribution is an example of a skewed distribution. It is a popular model
for populations such as the length of time a light bulb lasts. The density is f(x\λ)=λe−λx,
x≥0. The parameter λ is related to the mean by µ=1/λ and to the standard deviation by
σ=1/λ.

In R the family name is exp and the parameter is labeled rate=. We refer to this
distribution as Exponential (λ).

The right graphic of Figure 5.6 shows a random sample of size 50 from the
Exponential (1/5) distribution, made as follows:

> res = rexp(50, rate=1/5)
boxplot
> par(fig=c(0,1,0,.35))
> boxplot(res, horizontal=TRUE, bty="n",
xlab="exponential sample”)
histogram
> par(fig=c(0,1,.25,1), new=TRUE)
store values, then find largest y one to set ylim=
> tmp.hist = hist(res, plot=FALSE)
> tmp.edens = density(res)
> tmp.dens = dexp(0, rate=1/5)
> y.max = max(tmp.hist$density, tmp.edens$y, tmp.dens)
make plots

Using R for introductory statistics 152

> hist(res, ylim=c(0,y.max), prob=TRUE, main="",
col=gray(.9))
> lines(density(res), lty=2)
> curve(dexp(x, rate=1/5), lwd=2, add=TRUE)
> rug(res)

Plotting the histogram and then adding the empirical and population densities as shown
may lead to truncated graphs, as the y-limits of the histogram may not be large enough. In
the above, we look first at the maximum y-values of the histogram and the two densities.
Then we set the ylim= argument in the call to hist(). Finding the maximum value differs
in each case. For the hist() function, more is returned than just a graphic. We store the
result and access the density part with tmp. hist$density. For the empirical density, two
named parts of the return value are x and y. We want the maximum of the y value.
Finally, the population density is maximal at 0, so we simply use the dexp() function at a
to give this. For other densities, we may need to find the maximum by other means.

Lognormal distribution
The lognormal distribution is a heavily skewed continuous distribution on the positive
numbers. A lognormal random variable, X, has its name as log(X) is normally distributed.
Lognormal distributions describe populations such as income distribution.

In R the family name is Inorm. The two parameters are labeled meanlog= and sdlog=.
These are the mean and standard deviation of log(X), not of X.

Figure 5.7 shows a sample of size 50 from the lognormal distribution, with parameters
meanlog=0 and sdlog=1.

Figure 5.7 Histogram and boxplot of
50 samples from lognormal
distribution with meanlog=0 and
sdlog=1

5.2.4 Sampling distributions

Describing populations 153

The following three distributions are used to describe sampling distributions. These are
the t-distribution, the F-distribution, and the chi-squared distribution (sometimes written
using the Greek symbol χ).

The family names in R are t, f, and chisq. Their parameters are termed “degrees of
freedom” and are related to the sample size when used as sampling distributions. For the t
and chi-squared distributions, the degrees-of-freedom argument is df=. For the F-
distribution, as two degrees of freedom are specified, the arguments are df1= and df2=.

For example, values l and r for each distribution containing 95% of the area can be
found as follows:

> qt(c(.025,.975), df=10) # 10 degrees of
freedom
[1] −2.228 2.228
> qf(c(.025,.975), dfl=10, df2=5) # 10 and 5 degrees of
freedom
[1] 0.2361 6.6192
> qchisq(c(.025,.975), df=10) # 10 degrees of
freedom
[1] 3.247 20.483

5.2.5 Problems

5.8 A die is rolled five times. What is the probability of three or more rolls of four?
5.9 Suppose a decent bowler can get a strike with probability p=.3. What is the chance

he gets 12 strikes in a row?
5.10 A fair coin is tossed 100,000 times. The number of heads is recorded. What is the

probability that there are between 49,800 and 50,200 heads?
5.11 Suppose that, on average, a baseball player gets a hit once every three times she

bats. What is the probability that she gets four hits in four at bats?
5.12 Use the binomial distribution to decide which is more likely: rolling two dice

twenty-four times and getting at least one double sixes, or rolling one die four times and
getting at least one six?

5.13 A sample of 100 people is drawn from a population of 600,000. If it is known
that 40% of the population has a specific attribute, what is the probability that 35 or fewer
in the sample have that attribute?

5.14 If Z is Normal(0, 1), find the following:

1. P(Z≤2.2)
2. P(−1<Z≤2)
3. P(Z>2.5)
4. b such that P(−b<Z≤b)=0.90.

5.15 Suppose that the population of adult, male black bears has weights that are
approximately distributed as Normal(350,75). What is the probability that a randomly
observed male bear weighs more than 450 pounds?

5.16 The maximum score on the math ACT test is 36. If the average score for all high
school seniors who took the exam was 20.6 with a standard deviation of 5.5, what percent
received the passing mark of 22 or better? If 1,000,000 students took the test, how many

Using R for introductory statistics 154

more would be expected to fail if the passing mark were moved to 23 or better? Assume a
normal distribution of scores.

5.17 A study found that foot lengths for Japanese women are normally distributed with
mean 24.9 centimeters and standard deviation 1.05 centimeters. For this population, find
the probability that a randomly chosen foot is less than 26 centimeters long. What is the
95th percentile?

5.18 Assume that the average finger length for females is 3.20 inches, with a standard
deviation of 0.35 inches, and that the distribution of lengths is normal. If a glove
manufacturer makes a glove that fits fingers with lengths between 3.5 and 4 inches, what
percent of the population will the glove fit?

5.19 The term “six sigma” refers to an attempt to reduce errors to the point that the
chance of their happening is less than the area more than six standard deviations from the
mean. What is this area if the distribution is normal?

5.20 Cereal is sold by weight not volume. This introduces variability in the volume
due to settling. As such, the height to which a cereal box is filled is random. If the heights
for a certain type of cereal and box have a Normal(12, 0.5) distribution in units of inches,
what is the chance that a randomly chosen cereal box has cereal height of 10.7 inches or
less?

5.21 For the f height variable in the father. son (UsingR) data set, compute what
percent of the data is within 1, 2, and 3 standard deviations from the mean. Compare to
the percentages 68%, 95%, and 99.7%.

5.22 Find the quintiles of the standard normal distribution.
5.23 For a Uniform(0, 1) random variable, the mean and variance are 1/2 and 1/12.

Find the area within 1, 2, and 3 standard deviations from the mean and compare to 68%,
95%, and 99.7%. Do the same for the Exponential(l/5) distribution with mean and
standard deviation of 5.

5.24 A q-q plot is an excellent way to investigate whether a distribution is
approximately normal. For the symmetric distributions Uniform(0, 1), Normal(0, 1) and t
with 3 degrees of freedom, take a random sample of size 100 and plot a quantile-normal
plot using qqnorm(). Compare the three and comment on the curve of the plot as it relates
to the tail length. (The uniform is short-tailed; the t-distribution with 3 degrees of
freedom is long-tailed.)

5.25 For the t-distribution, we can see that as the degrees of freedom get large the
density approaches the normal. To investigate, plot the standard normal density with the
command

> curve(dnorm(x),−4,4)

and add densities for the t-distribution with k=5,10,25,50, and 100 degrees of freedom.
These can be added as follows:

> k=5; curve(dt(x,df=k), lty=k, add=TRUE)

5.26 The mean of a chi-squared random variable with k degrees of freedom is k. Can you
guess the variance? Plot the density of the chi-squared distribution for k=2, 8, 18, 32, 50,
and 72, and then try to guess. The first plot can be done with curve (), as in

Describing populations 155

> curve(dchisq(x,df=2), 0, 100)

Subsequent ones can be added with

> k=8; curve(dchisq(x,df=k), add=TRUE)

5.3 The central limit theorem

It was remarked that for an i.i.d. sample from a population the distribution of the sample
mean had expected value µ and standard deviation where µ and σ are the
population parameters. For large enough n, we see in this section that the sampling
distribution of is normal or approximately normal.

5.3.1 Normal parent population

When the sample X1, X2, …, Xn is drawn from a Normal(µ, σ) population, the distribution
of is precisely the normal distribution. Figure 5.8 draws densities for the population,
and the sampling distribution of for n=5 and 25 when µ=0 and σ=1.

> n=25; curve(dnorm(x,mean=0,sd=l/sqrt(n)), −3,3,
+ xlab="x",ylab="Densities of sample mean",bty="1")
> n=5; curve(dnorm(x,mean=0,sd=l/sqrt(n)), add=TRUE)
> n=1; curve(dnorm(x,mean=0,sd=l/sqrt(n)), add=TRUE)

The center stays the same, but as n gets bigger, the spread of gets smaller and smaller.
If the sample size goes up by a factor of 4, the standard deviation goes down by 1/2 and
the density concentrates on the mean. That is, with greater and greater probability, the
random value of is close to the mean, µ, of the parent population. This phenomenon of
the sample average concentrating on the mean is known as the law of large numbers.

For example, if adult male heights are normally distributed with mean 70.2 inches and
standard deviation 2.89 inches, the average height of 25 randomly

Using R for introductory statistics 156

Figure 5.8 Density of for n=5 and
n=25 along with parent population
Normal(0, 1). As n increases, the
density concentrates on µ.

chosen males is again normal with mean 70.2 but standard deviation 1/5 as large. The
probability that the sample average is between 70 and 71 is found with

> mu=70.2; sigma=2.89; n=25
> diff(pnorm(70:71, mu, sigma/sqrt(n)))
[1] 0.5522

Compare this to the probability for a single person

> diff(pnorm(70:71, mu, sigma))
[1] 0.1366

5.3.2 Nonnormal parent population

The central limit theorem states that for any parent population with mean µ and standard
deviation σ, the sampling distribution of for large n satisfies

where Z is a standard normal random variable. That is, for n big enough, the distribution
of once standardized is approximately a standard normal distribution. We also refer to
this as saying is asymptotically normal.

Figure 5.9 illustrates the central limit theorem for data with an Exponential (1)
distribution. This parent population and simulations of the distribution of for n=5, 25,
and 100 are drawn. As n gets bigger, the sampling distribution of becomes more and
more bell shaped.

Describing populations 157

Figure 5.9 was produced by simulating the sampling distribution of Simulations
will be discussed in the next chapter.

■ Example 5.9: Average service time The time it takes to check out at a

Figure 5.9 Density estimates for
when n=5,25,100 for an
Exponential(1) population. As n
increases, density becomes bell
shaped and concentrates on µ=1.

grocery store can vary widely. A certain checker has a historic average of oneminute
service time per customer, with a one-minute standard deviation. If she sees 20
customers, what is the probability that her check-out times average 0.9 minutes or less?

We assume that each service time has the unspecified parent population with µ=1 and
σ=1 and the sequence of service times is i.i.d. As well, we assume that n is large enough
that the distribution is approximately Normal Then is given by

> pnorm(.9, mean=1, sd = 1/sqrt(20))
[1] 0.3274

There are other consequences of the central limit theorem. For example, if we replace σ
with the sample standard deviation s when we standardize we still have

This fact will be behind many of the statements in the next two chapters. This does not
tell us what the sampling distribution is when n is not large; that will be discussed later.

In this next example, we show how the central limit theorem applies to the binomial
distribution for large n.

■ Example 5.10: The normal approximation to the binomial distribution For an
i.i.d. sequence of Bernoulli trials X1, X2, Xn with success probability p, the sample mean,

is simply the number of successes divide by n, or the proportion of successes. We will

Using R for introductory statistics 158

use the notation of in this case. The central limit theorem says that asymptotically
normal with mean p and standard deviation

If X is the number of successes, then X is Binomial(n, p). Since we know that

X is approximately normal with mean np and variance That is, a binomial
random variable is approximately normal if n is large enough.

Let X have a Binomial(30,2/3) distribution. Figure 5.10 shows a plot of the
distribution over [10,30]. The shaded boxes above each integer k have base 1 and height
P(X=k), so their area is equal to P(X=k). The normal curve that is added to the figure has

mean and standard deviation equal to that of X: µ=30·2/3=20 and
From, the figure, we can see that the area of the shaded boxes, P(k≤22), is well
approximated by the area to the left of 22.5 under the normal curve. This says P(X≤22) ≈
P(Z≤(22.5−µ)/σ) for a standard normal Z. For a general binomial random variable with
mean µ and standard deviation σ, the approximation P(a≤X ≤b)≈P((a−1/2− µ)/σ≤
Z≤(b+1/2−µ)/σ) is an improvement to the central limit theorem.

Figure 5.10 Plot of Binomial (30, 2/3)
distribution marked by dots. The
area of the rectangle covering k is
the same as the probability of k
successes. The drawn density is the
normal distribution with the same
population mean and standard
deviation as the binomial.

5.3.3 Problems

5.27 Compare the exact probability of getting 42 or fewer heads in 100 coin tosses to the
probability given by the normal approximation.

5.28 Historically, a certain baseball player has averaged three hits every ten official at
bats (he’s a .300 hitter). Assume a binomial model for the number of hits in a 600-at-bat

Describing populations 159

season. What is the probability the player has a batting average higher than .350? Use the
normal approximation to answer.

5.29 Assume that a population is evenly divided on an issue (p=1/2). A random
sample of size 1,000 is taken. What is the probability the random sample will have 550 or
more in favor of the issue? Answer using a normal approximation.

5.30 An elevator can safely hold 3,500 pounds. A sign in the elevator limits the
passenger count to 15. If the adult population has a mean weight of 180 pounds with a
25-pound standard deviation, how unusual would it be, if the central limit theorem
applied, that an elevator holding 15 people would be carrying more than 3,500 pounds?

5.31 A restaurant sells an average of 25 bottles of wine per night, with a variance of 4.
Assuming the central limit theorem applies, what is the probability that the restaurant will
sell more than 775 bottles in the next 30 days?

5.32 A traffic officer writes an average of four tickets per day, with a variance of one
ticket. Assume the central limit theorem applies. What is the probability that she will
write fewer than 75 tickets in a 21-day cycle?

Using R for introductory statistics 160

Chapter 6
Simulation

One informal description of insanity is “repeating the same action while expecting a
different result.” By this notion, the act of simulating a distribution could be considered
somewhat insane, as it involves repeatedly sampling from a distribution and investigating
the differences in the results. But simulating a distribution is far from insane. Simulating
a distribution can give us great insight into the distribution’s shape, its tails, its mean and
variance, etc. We’ll use simulation to justify the size of n needed in the central limit
theorem for approximate normality of the sample mean. Simulation is useful with such
specific questions, as well as with those of a more exploratory nature.

In this chapter, we will develop two new computer skills. First for loops will be
introduced. These are used to repeat something again and again, such as sampling from a
distribution. Then we will see how to define simple functions in R.Defining functions not
only makes for less typing; it also organizes your work and train of thought. This is
indispensable when you approach larger problems.

6.1 The normal approximation for the binomial

We begin with a simulation to see how big n should be for the binomial distribution to be
approximated by the normal distribution. Although we know explicitly the distribution of
the binomial, we approach this problem by taking a random sample from this distribution
to illustrate the approach of simulation.

To perform the simulation, we will take m samples from the binomial distribution for
some n and p. We should take m to be some large number, so that we get a good idea of
the underlying population the sample comes from. We will then compare our sample to
the normal distribution with µ=np, and σ2=np(1−p). If the sample appears to come from
this distribution; we will say the approximation is valid.

Let p=1/2. We can use the rbinom() function to generate the sample of size m. We try
n=5, 15, and 25. In Figure 6.1 we look at the samples with histograms that are overlaid
with the corresponding normal distribution.

> m = 200; p = 1/2;
> n = 5
> res = rbinom(m,n,p) # store results
> hist(res, prob=TRUE, main="n = 5") # don’t forget
prob=TRUE
> curve(dnorm(x, n*p, sqrt(n*p*(1-p))), add=TRUE) # add
density
repeat last 3 commands with n=15, n=25

Figure 6.1 Histograms of normal
approximation to binomial with
p=1/2 and n=5, 10, and 25

We see from the figure that for n=5 the approximation is not valid at all—the discreteness
of the binomial distribution is still apparent. By n=15 and 25, the approximation looks
pretty good. This agrees with the rule of thumb that when np and n(1−p) are both greater
than 5 the normal approximation is valid.

A better way to judge normality than with a histogram is with the quantilenormal plot
made by qqnorm(). If the sampling distribution is normal then this plot will show an
approximate straight line.

> m = 200; p = 1/5; n = 25
> res = rbinom(m,n,p)
> qqnorm(res)

Figure 6.2 shows the graph. The discreteness of the binomial shows through, but we can
see that the points are approximately on a straight line, as they should be if the
distribution is approximately normal.

6.2 for loops

Generating samples from the binomial distribution was straightforward due to the
rbinom() function. For other statistics, we can generate samples, but perhaps only one at a
time. In this case, to get a large enough sample to investigate the sampling distribution,
we use a for loop to repeat the sampling.

Using R for introductory statistics 162

Figure 6.2 Quantile-normal plot of
binomial sample for n=25, p=1/5

The central limit theorem tells us that the sampling distribution of is approximately
normal if n is large enough. To see how big n needs to be we can repeat the above
approach. That is, we find a large sample from the sampling distribution of and
compare it to the normal distribution.

Assume our population is Uniform(0,1), and we want to investigate whether
is normally distributed when n=10. A single sample from the sampling

distribution of can be found with the command mean (runif (10)).
To draw repeated samples, we can use a for loop. A for loop will repeat itself in a

predictable manner. For example, these commands will repeat the sampling 100 times,
storing the answer in the res variable.

> res = c()
> for(i in 1:100) {
+ res[i] = mean(runif(10))
+ }

The variable res now holds 100 samples of for n=10 and each Xi being Uniform (0,1).

The basic format of a for loop is
for(variable.name in values) {
block_of.commands
}

The keyword for is used. The variable .name is often something like i or j but can be any
valid name. Inside the block of the for loop the variable takes on a different value each
time through. The values can be a vector or a list. In the example it is 1:100, or the
numbers 1 through 100. It could be something like letters to loop over the lowercase
letters, or x to loop over the values of x. When it is a list, the value of variable .name
loops over the top-level components.

Simulation 163

6.3 Simulations related to the central limit theorem

We use a for loop to investigate the normality of for different parent populations and
different sample sizes. For example, if the Xi are Uniform(0, 1) we can simulate for
n=2, 10, 25, and 100 with these commands:

set up plot window
> plot(0,0,type="n",xlim=c(0,1),ylim=c(0,13.5),
+ xlab="Density estimate",ylab="f(x)")
> m = 500;a=0;b=1
> n = 2
> for (i in 1:m) res[i]=mean(runif(n,a,b))
> lines(density(res),lwd=2)
repeat last 3 lines with n=10, 25, and 100

Figure 6.3 Density estimates for for
n=2, 10, 25, and 100 with Uniform(0,
1) data

In Figure 6.3 a density estimate is plotted for each simulation. Observe how the densities
squeeze in and become approximately bell shaped, as expected, even for n=10. As the
standard deviation of is if n goes up four times (from 25 to 100, for example),
the standard deviation gets cut in half. Comparing the density estimate for n=25 and
n=100, we can see that the n=100 graph has about half the spread.

In this example the for loop takes the shortened form

for(i in values) a_single_command

If there is just a single command, then no braces are necessary. This is convenient when
we use the up arrow to edit previous command lines.

In the problems, you are asked to simulate for a variety of parent populations to
verify that the more skewed the data is, the larger n must be for the normal distribution to
approximate the sampling distribution of

Using R for introductory statistics 164

6.4 Defining a function

In the previous examples, we have found a single sample of using a command like

> mean(runif(n))

This generates n i.i.d. samples from the uniform distribution and computes their sample
mean. It is often convenient to define functions to perform tasks that require more than
one step. Functions can simplify our typing, organize our thoughts, and save our work for
reuse. This section covers some of the basics of functions—their basic structure and the
passing of arguments. More details are available in Appendix E.

A basic function in R is conceptually similar to a mathematical function. In R, a
function has a name (usually), a rule (the body of the function), a way of defining the
inputs (the arguments to a function), and an output (the last command evaluated).

Functions in R are created with the f unction() keyword. For example, we define a
function to find the mean of a sample of size 10 from the Exponential (1) distribution as
follows:

> f = function() {
+ mean(rexp(10))
+}

To use this function, we type the name and parentheses

> f()
[1] 0.7301

This function is named f. The keyword function() creates a function and assigns it to f.
The body of the function is enclosed in braces: {}. The return value is the last line
evaluated. In this case, only one line is evaluated—the one finding the mean(). (As with
for loops, in this case the braces are optional.) In the next example we will discuss how to
input arguments into a function.

If we define a function to find a single observation from the sampling distribution,
then our simulation can be done with generic commands such as these:

> res = c()
> ford in 1:500) res[i] = f()

6.4.1 Editing a function

An advantage of using functions to do our work is that they can be edited. The entire
function needn’t be retyped when changes are desired. Basic editing can be done with
either the fix() function or the edit() function. For example, the command fix(f) will open
an editor (in Windows this defaults to notepad) to the definition of your function f. You
make the desired changes to your function then exit the editor. The changes are assigned
to f which can be used as desired.

Simulation 165

The edit() function works similarly, but you must assign its return value, as in

> f = edit(f)

6.4.2 Function arguments

A function usually has a different answer depending on the value of its arguments.
Passing arguments to R functions is quite flexible. We can do this by name or position.
As well, as writers of functions, we can create reasonable defaults.

Let’s look at our function f, which finds the mean of ten exponentials. If we edit its
definition to be

f=function(n=10){
mean(rexp(n))
}

then we can pass in the size of the sample, n, as a parameter. We can call this function in
several ways: f(), f(10), and f(n=10) are all the same and use n=10. This command uses
n=100: f(100). The first argument to f is named n and is given a default value of 10 by the
n=10 specification in the definition. Calling f by f() uses the defaults values. Calling f by
f(100) uses the position of the argument to assign the values inside the function. In this
case, the 100 is assigned to the only argument, n=. When we call f with f(n=100) we use
a named argument. With this style there is no doubt what value n is being set to.

With fdefined, simulating 200 samples of for n=50 can be done as follows:

> res = c()
> ford in 1:200) res[i]=f(n = 50)

Better still, we might want to pass in a parameter to the exponential. The rate of the
exponential is 1 over its mean. So changing f to

f = function(n = 10, rate = 1) {
mean(rexp(n, rate = rate))
}

sets the first argument of f to n with a default of 10 and the second to rate with a default
of 1. This allows us to change the size and rate as in f(50,2), which would take 50 Xi’s
each with rate 2 or mean 1/2. Alternately, we could do f(rate=1/2), which would use the
default of 10 for n and use the value of 1/2 for rate. (Note that f (1/2) will not do this, as
the 1/2 would match the position for n and not that of rate.)

The arguments of a function are returned by the args() command. This can help you
sort out the available arguments and their names as a quick alternative to the more
informative help page. When consulting the help pages of R’s builtin functions,
the…argument appears frequently. This argument allows the function writer to pass along
arbitrarily named arguments to function calls inside the body of a function.

Using R for introductory statistics 166

6.4.3 The function body

The function body is a block of commands enclosed in braces. As mentioned, the braces
are optional if there is a single command. The return value for a function is the last
command executed. The function return() will force the return of a function, with its
argument becoming the return value.

Some commands executed during a function behave differently from when they are
executed at the command line—in particular, printing and assignment.

During interactive usage, typing the name of an R object causes it to be “printed.” This
shows the contents in a nice way, and varies by the type of object. For example, factors
and data vectors print differently. Inside a function, nothing is printed unless you ask it to
be.* The function print() will display an object as though it were typed on the command
line. The function cat() can be used to concatenate values together. Unlike print(), the
cat() function will not print a new line character, nor the element numbers, such as [1]. A
new line can be printed by including "\n" in the cat() command. When a function is
called, the return value will print unless it is assigned to some object. If you don’t want
this, such as when producing a graphic, the function invisible() will suppress the printing.

Assignment inside a function block is a little different. Within a block, assignment to a
variable masks any variable outside the block. This example defines x to be 5 outside the
block, but then assigns x to be 6 inside the block. When x is printed inside the block the
value of 6 shows; however, x has not changed once outside the block.

> x = 5
> f = function() {
+ x = 6
+ x
+}
> f()
[1] 6
> x
[1] 5

If you really want to force x to change inside the block, the global assignment operator
<<− can be used, as can the function assign(). Consult the help pages ?"<<−" and ?assign
for more detail.

In the example above, the value of x used inside the block is the one assigned inside
the block. If none had been assigned, R would have looked for a definition outside the
block. For example:

> x = 5
> f = function() print (x)
> f()
[1] 5
> rm(x)
> f ()
Error: Object “x” not found

When no variable named x is be found, an error message is issued.

Simulation 167

* In Windows you may need to call flush, console() () to get the output. See the FAQ for details.

6.5 Investigating distributions

■ Example 6.1: The sample median
The sample median, M, is a measurement of central tendency like the sample mean. Does
it, too, have an approximately normal distribution? How does the sampling distribution of
M reflect the parent distribution of the sample? Will M converge to some parameter of
the parent distribution as converges to µ?

Figure 6.4 Density estimates for
simulations of the sample median
from exponential data. As n
increases, the sampling distribution
appears to become normally
distributed and concentrates on the
median of the parent population.

To investigate these questions, we will perform a simulation. Assume we have a random
sample X1, X2, …, Xn taken from the Exponential(1) distribution. This distribution has
mean 1 and median log(2) = .6931. We perform a simulation for n = 25, 100, and 400.
First we define a function to find the median from the sample:

> f = function(n) median(rexp(n))

Now we generate samples for different sizes of n.

> m = 500
> res.25 = c(); res.100 = c(); res.400 = c()
> ford in 1:m) res.25[i] = f(25)
> for(i in 1:m) res.100[i] = f(100)
> for(i in 1:m) res.400[i] = f(400)

Using R for introductory statistics 168

> summary(res.25)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.237 0.571 0.688 0.707 0.822 1.640
> summary(res.100)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.393 0.629 0.682 0.699 0.764 1.090
> summary(res.400)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.539 0.659 0.692 0.693 0.727 0.845

The summary() commands show that the mean and median are similar for each sample
and appear to be centered around the median of the parent population.

We plot three density estimates to see the shape of the distribution in Figure 6.4. We
plot the one for n=400 first, so the y-axis is large enough to accommodate the three
graphs.

> plot(density(res.400), xlim = range(res.25),
type="1", main="",
+ xlab="sampling distributions of median for n=25, 100,
400")
)
> lines(density(res.100))
> lines(density(res.25))

As n gets large, the sampling distribution tends to a normal distribution which is centered
on the median of the parent population.

■ Example 6.2: Comparing measurements of spread Simulations can help guide us
in our choices. For example, we can use either the standard deviation or the IQR to
measure spread. Why would we choose one over the other? One good reason would be if
the sampling variation of one is significantly smaller than that of the other.

Let’s compare the spread of the sampling distribution for both statistics using
boxplots. First, define two functions f() and g() as

> f = function(n) sd(rnorm(n))
> g = function(n) IQR(rnorm(n))

Then we can simulate with

> res.sd = c(); res.iqr = c()
> for(i in 1:200) {
+ res.sd[i] = f(100)
+ res.iqr[i] = g(100)
+}
> boxplot(list(sd=res.sd, iqr=res.iqr))

Figure 6.5 shows side-by-side boxplots illustrating that the spread of the IQR is wider
than that of the mean. For normal data, the standard deviation is a better measure of
spread.

Simulation 169

The standard deviation isn’t always a better measure of spread. We will repeat the
simulation with exponential data and investigate. Before doing so, we look at script files,
which save a sequence of commands to be executed.

6.5.1 Script files and source()

R can “read” the contents of a file and execute the commands as though they were typed
in at the command line. The command to do this is source(), as in
source(file=“filename”). (Most of the GUIs have this ability.)

For example, if a file named “sim.R” contains these
commands
file sim.R
f = function(n) sd(rexp(n))
g = function(n) IQR(rexp(n))

Figure 6.5 Boxplot of standard
deviation and IQR for normal data

res.sd = c(); res.iqr = c()
for(i in 1:200){
res.sd[i] = f(100)
res.iqr[i] = g(100)
}
boxplot(list(sd=res.sd, iqr=res.iqr))

then the command

> source("sim.R")

will read and evaluate these commands producing a graph similar to Figure 6.6. With
exponential data, the spread of each statistic is similar. The more skewed or long-tailed
the data is, the wider the spread of the standard deviation compared to the IQR.

By using a separate file to type our commands, we can more easily make changes than
with the command line, and we can save our work for later use.

Using R for introductory statistics 170

6.5.2 The geometric distribution

In a sequence of i.i.d. Bernoulli trials, there is a time of the first success. This can happen
on the first trial, the second trial, or at any other point. Let X be the time of the first
success. Then X is a random variable with distribution on the positive integers. The
distribution of X is called the geometric distribution and is

f(k)=P(X=k)=(1−p)k−1p.

Let’s simulate the random variable X to investigate its mean. To find a single sample
from the distribution of X we can toss coins until we have a success. A while() loop is
ideal for this type of situation, as we don’t know in advance how many times we will
need to toss the coin.

Figure 6.6 Simulation of standard
deviation and IQR for Exponential(1)
data

first.success = function(p) {
k = a;
success = FALSE
while(success == FALSE) {
k = k + 1
if(rbinom(1,1,p) == 1) success = TRUE
}
k

The while loop repeats a block of commands until its condition is met. In this case, the
value of success is not FALSE. Inside the while loop, an if statement is used. When the if
statement is true, it sets the value of success to TRUE, effectively terminating the while
loop. The command rbinom(1, 1, p) is one sample from the Binomial(1, p) distribution—
basically a coin toss.

We should expect that if the success probability is small, then the time of the first
success should be large. We compare the distribution with p=.5 and with p=.05 using
summary().

Simulation 171

> res.5 = c();res.05 = c()
> for(i in 1:500) {
+ res.5[i] = first.success(0.5)
+ res.05[i] = first.success(0.05)
+ }
> summary(res.5)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.00 1.00 1.00 2.01 2.00 11.00
> summary(res.05)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.0 6.0 13.0 20.1 28.0 120.0

From the output of summary() it appears that the sampling distribution has mean 2=1/0.5
and 20=1/0.05 respectively. For any p in [0, 1] the mean of the geometric distribution is
1/p.

6.6 Bootstrap samples

The basic idea of a bootstrap sample is to sample with replacement from the data,
thereby creating a new random sample of the same size as the original. For this random
sample the value of the statistic is computed. Call this a replicate. This process is
repeated to get the sampling distribution of the replicates. From this, inferences are made
about the unknown parameters.

For example, we can estimate µ with the bootstrap. Let the replicate, be the sample
mean of the i th bootstrap sample. We estimate µ with the sample mean of these
replicates. In doing so, we get an estimate for the population parameter and a sense of the
variation in the estimate.

■ Example 6.3: Albatross by catch
The by catch (UsingR) data set† contains the number of albatross incidentally caught by
squid fishers for 897 hauls of fishing nets, as measured by an observer program.

We wish to investigate the number of albatross caught. We can summarize this with
the sample mean, but to get an idea of the underlying distribution of the sample mean, we
generate 1,000 bootstrap samples and look at their means.

First, the data in by catch (UsingR) is summarized for compactness. We expand it to
include all 897 hauls.

> data(bycatch)
> hauls = with(bycatch, rep(no.albatross,no.hauls))
> n = length(hauls)

Now n is 897, and hauls is a data vector containing the number of albatross caught on
each of the 897 hauls. A histogram shows a skewed distribution. Usually, none are
caught, but occasionally many are. As the data is skewed, we know the sample mean can
be a poor predictor of the center. So we create 1,000 bootstrap samples as follows, using
sample().

Using R for introductory statistics 172

> xbarstar = c()
> ford in 1:1000) {
+ boot.samp = sample(hauls, n, replace=TRUE)
+ xbarstar[i] = mean(boot.samp)
+ }

For each bootstrap sample we find the replicate The data vector xbarstar contains
1,000 realizations. Estimates for the population mean and variance are

> mean(xbarstar)
[1] 0.2789
> sd(xbarstar)
[1] 0.04001

Furthermore, we can find out where the sample mean usually is with the quantile()
function:

> quantile(xbarstar,c(0.05,0.95))
57, 957.
0.2107 0.3467

† From Hilborn and Mangel, The Ecological Detective

Which says that 90% of the time it is in [.2107, .3467].

6.7 Alternates to for loops

Although for loops are a good way to approach a problem of repeating something, they
are not necessarily the preferred approach to a problem in R. For practical reasons,
alternatives to for loops can be faster. For aesthetic reasons, a vectorized approach may
be desired. In this approach, we use a function on multiple values at once, rather than one
at a time as in a for loop.

The speed issue can often be overcome by using a matrix. We illustrate by using a
matrix to simulate the sample mean. We create a matrix with m=100 rows and n=10
columns of random numbers using matrix() as follows:

> m = 100; n = 10
> tmp = matrix(rnorm(m*n), nrow=m)

The rnorm(m*n) command returns 1,000 normal samples, which are placed in a matrix
with 100 rows. This is specified by the argument nrow=m. We want to find the mean of
each row. We do so with apply():

> xbar = apply(tmp,1, mean)

Simulation 173

We did simulations by repeatedly calling a function to generate a realization of our
statistic. Conceptually, we can picture this as applying the function to each value in the
vector of values looped over in the for loop. The sapply() function also does just that, so
we can use sapply() to replace the for loop in a simulation.

For example, this command will generate ten random samples of the mean of 25
random numbers:

> m = 10; n = 25
> sapply(1:m, function(x) mean(rnorm(n)))
[1] −0.06627 0.09835 −0.29290 −0.42287 0.47297
−0.26416
[7] −0.39610 −0.04068 −0.08084 0.20296

The sim() function in the UsingR package uses sapply() to produce simulations of the
sampling distribution of many statistics for user-specified populations. The above
simulation would be done as

> library(UsingR)
> sim(n=25, m=10, statistic="mean”, family="norm”,
mean=0, sd=1)

The argument statistic=is the name of the desired statistic and family= the family name of
the R function that produces the desired random sample.

6.8 Problems

6.1 Do simulations of the binomial for n=100 and p=0.02 and for n=100 and p=0.2. Do
both distributions appear to be approximately normal? Discuss.

6.2 The data set lawsuits (UsingR) is very long tailed. However, the central limit
theorem will apply for the sampling distribution of To see how big n needs to be for
approximate normality, repeat the following simulation for different values of n until the
sampling distribution of appears normal.

> data(lawsuits)
> res = c()
> n = 5
> ford in 1:300) res[i] =
mean(sample(lawsuits,n,replace=TRUE))
> plot(density(scale(res)))

The scale() command finds the z-scores for each value in the data vector. After scaling,
compare the shapes of distributions with different means and standard deviations. This
way you can layer subsequent density estimates with the command lines (density
(scale(res))) and look for normality.

How big should n be to get a bell-shaped sampling distribution for

Using R for introductory statistics 174

6.3 For what value of n does look approximately normal when each is Uniform(0,
1)? (Run several simulations for different n’s and decide where the switch to normality
begins.)

6.4 For what value of n does look approximately normal when each Xi is
(Exponential(1) (rexp(n, 1))?

6.5 For what value of n does look approximately normal when each Xi has a t-
distribution with 3 degrees of freedom (rt (n, 3))?

6.6 Compare the distributions of the sample mean and sample median when the Xi
have the t distribution with 3 degrees of freedom and n=10. Which has a bigger spread?

6.7 The χ2 distribution arises when we add a number of independent, squared standard
normals. Instead of using rchisq() to generate samples, we can simulate by adding
normally distributed numbers. For example, we can simulate a χ2 distribution with 4
degrees of freedom with

> res = c()
> for(i in 1:500) res[i] = sum(rnorm(4)^2)
> qqnorm(res)

Repeat the above for 10, 25, and 50 degrees of freedom. Does the data ever appear
approximately normal? Why would you expect that?

6.8 The correlation between and s2 depends on the parent distribution. For a normal
parent distribution the two are actually independent. For other distributions, this isn’t so.

To investigate, we can simulate both statistics from a sample of size 10 and
observe their correlation with a scatterplot and the cor() function.

> xbar = c();std = c()
> for(i in 1:500) {
+ sam = rnorm(10)
+ xbar [i] = mean(sam); std[i] = sd(sam)
+}
> plot(xbar,std)
> cor(xbar,std)
[1] 0.09986

The scatterplot (not shown) and small correlation is consistent with known independence
of the variables.

Repeat the above with the t-distribution with 3 degrees of freedom (a longtailed
symmetric distribution) and the exponential distribution with rate 1 (a skewed
distribution). Are there differences? Explain.

6.9 For a normal population the statistic has a normal
distribution. Let

That is, σ is replaced by s, the sample standard deviation. The sampling distribution of T
is different from that of Z.

Simulation 175

To see that the sampling distribution is not a normal distribution, perform a simulation
for n=3, 10, 25, 50, and 100. Compare normality with a q-q plot. For n=3 this is done as
follows:

> n = 3; m = 200;
> res = c()
> for(i in 1:m) {
+ x = rnorm(n) # mu = 0, sigma = 1
+ res[i] = (mean(x)−0)/ (sd(x)/sqrt(n))
+}
> qqnorm(res)

For which values of n is the sampling distribution long tailed? For which values is it
approximately normal?

6.10 In the previous exercise it is seen that for a normal population the sampling
distribution of

is not the normal distribution. Rather, it is the t-distribution with n−1 degrees of freedom.
Investigate this with a q-q plot using a random sample from the t-distribution to compare
with the simulation of T. For n=3 this is done as follows:

> n=3; m=1000;
> res=c()
> for(i in 1:m) {
+ x=rnorm(n) # mu=0, sigma=1
+ res[i]=(mean(x)−0)/ (sd(x)/sqrt(n))
+}
> qqplot(res,rt(m, df=n−1))

Verify this graphically for n=3, 10, 25, 50, and 100.
6.11 In the previous exercise, the sampling distribution of

was seen to be the t-distribution when the sample comes from a normally distributed
population. What about other populations? Repeat the above with the following three
mean-zero distributions: the t-distribution with 15 degrees of freedom (symmetric,
longish tails), the t-distribution with 2 degrees of freedom (symmetric with long tails),
and exponential with rate 1 minus 1 (rexp(10) −1), which is skewed right with mean 0.
Do all three populations result in T having an approximate t-distribution? Do any?

6.12 We can use probability to estimate a value of π. How? The idea dates to 1777 and
Georges Buffon. Pick a point at random from a square of side length 2 centered at the
origin. Inside the square draw a circle of radius 1. The probability that the point is inside
the circle is equal to the area of the circle divided by the area of the square:
(π·12)/(22)=π/4. We can simulate the probability and then multiply by 4 to estimate π.

Using R for introductory statistics 176

This function will do the simulation and make the plot:

simpi <− function(n = 1000) {
draw box, circle plot points, and return no inside
plot(0,0,pch=" ",xlim=c(−1,1),ylim=c(−1,1))
polygon(c(−1,−1,1,1,−1),c(−1,1,1,−1,−1)) # square
theta = seq(0,2*pi,length = 100)
polygon(cos(theta),sin(theta)) # circle
x = runif(n,min=−1,max=1)
y = runif(n,min=−1,max=1)
inorout = x^2+y^2 < 1
points(x,y,pch=as.numeric(inorout))
return(sum(inorout))
}

The simulation could be done with just one line:

> n = 1000; x = runif(n,−1,1);y =
runif(n,−1,1);sum(x~2+y^2<1)/n

Do a simulation to estimate π. What do you get? Use the binomial model and the known
value of π to find the standard deviation of the random variable you estimated.

Simulation 177

Chapter 7
Confidence intervals

In this chapter we use probability models to make statistical inferences about the parent
distribution of a sample. A motivating example is the way in which a public-opinion poll
is used to make inferences about the unknown opinions of a population.

7.1 Confidence interval ideas

■ Example 7.1: How old is the universe? The age .universe (UsingR) data set contains
estimates for the age of the universe, dating back to some early estimates based on the
age of the earth. As of 2003, the best estimate for the age of the universe is 13.7 billion
years old, as computed by the Wilkinson microwave anisotropy probe
(http://map.gsfc.nasa.gov/). This is reported to have a margin of error of 1% with 95%
confidence. That is, the age is estimated to be in the interval (13.56, 13.84) with high
probability. Figure 7.1 shows other such intervals given by various people over time.
Most, but not all, of the modern estimates contain the value of 13.7 billion years. This
does not mean any of the estimates were calculated incorrectly. There is no guarantee,
only a high probability, that a confidence interval will always contain the unknown
parameter.

7.1.1 Finding confidence intervals using simulation

To explore the main concepts of a confidence interval, let’s consider the example of a
simple survey. We’ll assume the following scenario. A population exists of 10,000
people; each has a strong opinion for or against some proposition. We

Figure 7.1 Various estimates for the
age of universe, some historic, some
modern. Ranges are represented by
dotted lines. When the estimate is a
lower bound, only a bottom bar is
drawn. The current best estimate of
13.7 billion years old is drawn with a
horizontal line. This estimate has a
margin of error of 1%.

wish to know the true proportion of the population that is for the proposition. We can’t
afford to ask all 10,000 people, but we can survey 100 at random. If our sample
proportion is called and the true proportion is p, what can we infer about the unknown
p based on

Sometimes it helps to change the question to one involving simple objects. In this
case, imagine we have 10,000 balls inside a box with a certain proportion, p, labeled with
a “1,” and the remaining labeled with a “0.” We then select 100 of the balls at random
and count the 1’s.

In order to gain some insight, we will do a simulation for which we know the answer
(the true value of p). Suppose the true proportion for the population is p=0.56. That is
5,600 are for the proposition and 4,400 are against. To sample without replacement we
use the sample() command. A single sample is found as follows:

> pop = rep(0:1,c(10000–5600, 5600))
> phat = mean(sample(pop,100))
> phat
[1] 0.59

In this example, using the mean() function is equivalent to finding the proportion. If we
simulate this sampling 1,000 times we can get a good understanding of the sampling
distribution of from the repeated values of phat. The following will do so and store the
results in a data vector called res.

Confidence intervals 179

> res = c()
> for(i in 1:1000) res[i] = mean(sample(pop,100))

From the values in res we can discern intervals where we are pretty confident will be.
In particular, using the quantile () function, we have these intervals for 80%, 90%, and
95% of the data (see Figure 7.2):

> quantile(res,c(0.1,0.9)) # 80% of the time
10% 90%
0.50 0.63
> quantile(res,c(0.05,0.95)) # 90% of the time
 5% 95%
0.48 0.64
> quantile (res, c (0.025,0.975)) # 95% of the time
2.5% 97.5%
0.47 0.66

Figure 7.2 Percent of values in the
indicated intervals

These suggest the following probability statements:

We interpret these by envisioning picking one of the 1,000 samples at random and asking
the probability that it is in that range. This should be close to the true probability that is
in the range, as we have generated many realizations of

In this example, we know that p=0.56. Rewriting 0.50=p−0.06, for example, the first
one becomes

Using R for introductory statistics 180

which, when we subtract p from all sides, becomes

This says that the distance between p and is less than 0.07 with 80% probability. We
could have done this for any percentage, not just 80%. So we get this relationship: If we
fix a probability, we can find an amount whereby the distance between p and is less
than this amount with the given probability.

Continuing, we turn this around by subtracting from all sides (and flipping the
signs) to get

That is, from a single randomly chosen value of we can find an interval,
that contains p with probability 0.80.

As before, something similar is true for other probabilities. If we specify a probability,
then we can find an interval around a randomly chosen sample value, that contains p
with the specified probability. This interval is called a confidence interval, as we have a
certain confidence (given by the probability) that the parameter, p, is in this random
interval.

7.2 Confidence intervals for a population proportion, p

In the previous example, the exact distribution of is hypergeometric, as we sampled
without replacement. If we sampled with replacement, then the distribution would be
Binomial(100, p) divided by 100. Unless p is very close to 1 or 0, the distribution of
should be normal by the normal approximation to the binomial. Thus, we should expect
that is approximately normal, as the differences between sampling with or without
replacement should be slight when there are 10,000 in the population and only 100
chosen.

If we know that the distribution of is approximately normal, we can find confidence
intervals that use this known distribution rather than a simulation. This will allow us to
make general statements about the relationship between the confidence probability and
the size of the interval.

In order to use the normal approximation we need to make some assumptions about
our sampling. First, we either sample with replacement or sample from a population that
is so much bigger in size than the size of the sample that it is irrelevant. Next, we need to
assume that np and n(1−p) are both bigger than 5, even though p is unknown.

Assuming the binomial model applies, we can derive that the mean of is p and

Thus, if we let 1−α be our confidence probability, then we can
find from the normal distribution a corresponding z* for which

p(−z*≤Z≤z*)=1−α

Confidence intervals 181

As is approximately normal, we standardize it to get this relationship:

 (7.1)

That is, with probability 1−α, p is in the interval
This almost specifies a confidence interval, except that involves the unknown

value of p. There are two ways around this problem. In this case, we can actually solve
the equations and get an interval for p in terms of alone. However, for instructive
purposes, we will make another assumption to simplify the math. Let’s assume that the
value of is approximately The central
limit still applies with this divisor. Consequently, for n large enough

The value is called the standard error of It is known from the sample and is
found by replacing the unknown population parameter in the standard deviation with the
known statistic. This assumption is good provided n is large enough.

Confidence intervals for p
Assume n is large enough so that

is approximately normal where

Let α and z* be related by the distribution of a standard normal random variable
through

P(−z*≤Z≤z*)=1−α.

Then the interval contains p with approximate probability
1−α. The interval is referred to as a (1−α) 100% confidence interval and is often
abbreviated The probability is called the level of confidence and the value

the margin of error.

The prop.test() function can be used to compute confidence intervals of proportions.

Finding z* from a. From Figure 7.3 we see that z* (also called zα/2 in other books) is
related to α/2. In particular, either

Using R for introductory statistics 182

In R this becomes one of

> zstar = −qnorm(alpha/2) # left tail
> zstar = qnorm(1−alpha/2) # right tail

The inverse relationship would be found by

> alpha = 2*pnorm(−zstar)

Figure 7.3 The relationship between
z* or za/2, and α

■ Example 7.2: Presidential job performance A Zogby America poll involved 1,013
likely voters selected randomly from throughout the 48 contiguous United States using
listed residential telephone numbers.The surveyers found that 466 voters rated the
president’s job performance as “good” or “excellent.” Find a 95% confidence interval for
the true proportion.

This type of polling is about as close to a random sample as can be gotten with limited
resources, though there are several sources of possible bias to consider. For example, not
everyone in the United States has a listed residential telephone number, so the sample is
only from households that do. Additionally, nonresponse can be very high in such
surveys, introducing another potential bias. For simplicity, we’ll assume the sample is a
random sample from the population of likely voters and that n=1013 is large enough so
that the normal approximation applies.

As a 95% confidence interval for p would be To find this
we have

> n = 1013
> phat = 466/n
> SE = sqrt(phat*(1−phat) /n)
> alpha = .05
> zstar = −qnorm(alpha/2)
> zstar # nearly 2 if doing by
hand

Confidence intervals 183

[1] 1.96
> c(phat − zstar * SE, phat + zstar*SE)
[1] 0.4293 0.4907

The confidence interval does not include p=.5.
The last line matches the formulas, but it takes less typing to use

> phat + c(−1,1)*zstar*SE
[1] 0.4293 0.4907

■ Example 7.3: The missing confidence level In United States newspapers the results of
a survey are often printed with the sample proportion, the sample size, and a margin of
error. The confidence level is almost always missing but can be inferred from the three
pieces of information. If a survey has n=1,000, and a margin of error of 3
percentage points, what is α?

Assuming the survey is done with a random sample, we are given that

Solve for z* and then 1−α as follows:

> zstar = 0.03 / sqrt(.57*(1−.57)/1000)
> zstar
[1] 1.916
> alpha = 2* pnorm(−zstar)
> alpha
[1] 0.05533
> 1− alpha
[1] 0.9447

There is an implied 95% confidence level.

7.2.1 Using prop.test() to find confidence intervals

The above examples were done the hard way. R provides a built-in function, prop. test(),
to compute confidence intervals of proportions. A template for usage is

prop.test (x, n, conf.level=0.95, conf.int=TRUE)

The frequency, given by x; the sample size, given by n; and a confidence level, set with
conf. level=, need to be specified. The default confidence level is 0.95, and by default a
confidence interval will be returned.

For instance, in the example of the Zogby poll, n=1013, and 1−α=0.95.
The confidence interval is found with

> prop.test(466,1013,conf.level=0.95)
 1−sample proportions test with continuity
correction
data: 466 out of 1013, null probability 0.5
X-squared = 6.318, df = 1, p−value = 0.01195

Using R for introductory statistics 184

alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:
0.4290 0.4913
sample estimates:
 P
0.46

The output contains more than we needed. We see, though, that just after the line 95
percent confidence interval: are two values, 0.4290 and 0.4913, which are the endpoints
of our interval. These are slightly different from our previously found endpoints, as the
formula used by prop. test() is found by solving Equation 7.1 exactly rather than by using
the standard error to approximate the answer.

The extra argument conf. level=0.95 sets the confidence level. The default is 0.95, so
in this case it could have been left off.

binom.test()
The function binom. test() will also find confidence intervals. In this case, it uses the
binomial distribution in place of the normal approximation.

7.2.2 Problems

7.1 Find an example in the media in which the results of a poll are presented. Identify the
population, the size of the sample, the confidence interval, the margin of error, and the
confidence level.

7.2 In Example 7.2 a random sample from the United States population is taken by
using listed residential phone numbers. Which segments of the population would be
missed by this sampling method?

7.3 The web site http://www.cnn.com/ conducts daily polls. Explain why the site’s
disclaimer reads:

This Quick Vote is not scientific and reflects the opinions of only those
Internet users who have chosen to participate. The results cannot be
assumed to represent the opinions of Internet users in general, nor the
public as a whole.

7.4 Suppose a Zogby poll with 1,013 randomly selected participants and the
http://www.cnn.com/ poll (see the previous problem) with 80,000 respondents ask the
same question. If there is a discrepancy in the sample proportion, which would you
believe is closer to the unknown population parameter?

7.5 Find 80% and 90% confidence intervals for a survey with n=100 and
7.6 A student wishes to find the proportion of left-handed people. She surveys 100

fellow students and finds that only 5 are left-handed. Does a 95% confidence interval
contain the value of p=1/10?

7.7 Of the last ten times you’ve dropped your toast, it has landed sticky-side down
nine times. If these are a random sample from the Bernoulli(p) distribution, find an 80%
confidence interval for p, the probability of the sticky side landing down.

Confidence intervals 185

7.8 A New York Times article from October 9, 2003, contains this explanation about an
exit survey for a California recall election:

In theory, in 19 cases out of 20, the results from such polls should differ
by no more than plus or minus two percentage points from what would
have been obtained by seeking to interview everyone who cast a ballot in
the recall election.

Assume a simple random sample and How big was n?

7.9 An erstwhile commercial claimed that “Four out of five dentists surveyed would
recommend Trident for their patients who chew gum.”

Assume the results were based on a random sample from the population of all dentists.
Find a 90% confidence interval for the true proportion if the sample size was n=5. Repeat
with n=100 and n=1,000.

7.10 A survey is taken of 250 students, and a of 0.45 is found. The same survey is
repeated with 1,000 students, and the same value is found. Compare the two 95%
confidence intervals. What is the relationship? Is the margin of error for the second one
four times smaller? How much smaller is it?

7.11 How big a survey is needed to be certain that a 95% confidence interval has a
margin of error no bigger than 0.01 ? How does this change if you are asked for an 80%
confidence interval?

7.12 The phrasing, “The true value, p, is in the confidence interval with 95%
probability” requires some care. Either p is or isn’t in a given interval. What it means is
that if we repeated the sampling, there is a 95% chance the true value is in the random
interval. We can investigate this with a simulation. The commands below will find
several confidence intervals at once.

> m = 50; n=20; p = .5; # toss 20 coins 50
times,
> alpha = 0.10;zstar = qnorm(1 − alpha/2)
> phat = rbinom(m,n,p)/n # divide by n for
proportions
> SE = sqrt(phat*(1−phat)/n) # compute SE

We can find the proportion that contains p using

> sum(phat—zstar*SE < p & p < phat + zstar * SE)/m

and draw a nice graphic with

> matplot(rbind(phat − zstar*SE, phat + zstar*SE),
+ rbind(1:m,1:m),type="1",lty=1)
> abline(v=p) # indicate parameter
value

Do the simulation above. What percentage of the 50 confidence intervals contain p=0.5?

Using R for introductory statistics 186

7.3 Confidence intervals for the population mean, µ

The success of finding a confidence interval for p in terms of depended on knowing the
sampling distribution of once we standardized it. We can use the same approach to find
a confidence interval for µ, the population mean, from the sample mean

Figure 7.4 Simulation of sampling
distribution of T with n=5. Densities
of normal distribution and t-
distribution are drawn on the
histogram to illustrate that the
sampling distribution of T has longer
tails than the normal distribution.

For a random sample X1, X2, …, Xn, the central limit theorem and the formu-las for the
mean and standard deviation of tell us that for large n

will have an approximately normal distribution. This implies, for example, that roughly
95% of the time Z is no larger than 2 in absolute value. In terms of intervals, this can be
used to say that µ is in the random interval with probability 0.95.

However, σ is usually not known. The standard errror, replaces the
unknown a by the known sample standard deviation, s. Consider

Again, as the central limit theorem still applies, T has a sampling distribution that is
approximately normal when n is large enough. This fact can be used to construct
confidence intervals such as a 95% confidence interval of

Confidence intervals 187

When n is not large, T will also be of value when the population for the random
sample is normally distributed. In this case, the sampling distribution of T is the t-
distribution with n−1 degrees of freedom. The t-distribution is a symmetric, bell-shaped
distribution that asymptotically approaches the standard normal distribution but for small
n has fatter tails. The degrees of freedom, n−1, is a parameter for this distribution the way
the mean and standard deviation are for the normal distribution. Figure 7.4 shows the
results of a simulation of T for n=5. The figures show that T, with 5 degrees of freedom,
is long tailed compared to the normal distribution.

Confidence intervals for the mean
Let X1,X2, …, Xn be a random sample from a population with mean µ and variance σ2. Let

be the sample mean, and
If n is small and the population is Normal(µ,σ), then a (1−α) 100% confidence interval

for µ is given by

where t* is related to α through the t-distribution with n−1 degrees of freedom by
P(−t*≤Tn−1≤t*)=1−α.

For unsummarized data, the function t. test () will compute the confidence intervals. A
template for its usage is

t.test(x, conf.level=0.95)

The data is stored in a data vector (named x above) and the confidence level is
specified with conf. level=.

If n is large enough for the central limit theorem to apply to the sampling distribution
of T, then a (1−α) 100% confidence interval for µ is given by

where z* is related to α by
P(−z≤Z≤z*)1−α.

Finding t* with R Computing the value of t* (also called tα/2,k) for a given α and vice
versa is done in a manner similar to finding z*, except that a different density is used. As
R is a consistent language, changing to a new density requires nothing more than using
the proper family name—t, for the t-distribution, and norm for the normal—and
specifying the parameter values. In particular, if n is the sample size, then the two are
related as follows:

> tstar = qt(1 − alpha/2,df=n−1)
> alpha = 2*pt(−tstar, df=n−1)

By way of contrast, for z* the corresponding commands are

Using R for introductory statistics 188

> zstar = qnorm(1 − alpha/2)
> alpha = 2*pnorm(−zstar)

■ Example 7.4: Average height Students in a class of 30 have an average height of 66
inches, with a standard deviation of 4 inches. Assume that these heights are normally
distributed, and that the class can be considered a random sample from the entire college
population. What is an 80% confidence interval for the mean height of all the college
students?

Our assumptions allow us to apply the confidence interval for the mean, so the answer
is Computing gives

> xbar = 66; s = 4; n = 30
> alpha = 0.2
> tstar = qt(1 − alpha/2, df = n−1)
> tstar
[1] 1.311
> SE = s/sqrt(n)
> c(xbar − tstar*SE, xbar + tstar*SE)
[1] 65.04 66.96

■ Example 7.5: Making coffee A barista at “t-test espresso” has been trained to set the
bean grinder so that a 25-second espresso shot results in 2 ounces of espresso. Knowing
that variations are the norm, he pours eight shots and measures the amounts to be 1.95,
1.80, 2.10, 1.82, 1.75, 2.01, 1.83, and 1.90 ounces. Find a 90% confidence interval for the
mean shot size. Does it include 2.0?

As we have the data, we can use t.test() directly. We enter in the data, verify normality
(with a quantile-quantile plot), and then use t.test():

> ozs = c(1.95, 1.80, 2.10, 1.82, 1.75, 2.01, 1.83,
1.90)
> qqnorm(ozs) # approximately linear
> t.test(ozs,conf.level=0.80)
 One Sample t-test
data: ozs
t = 45.25, df = 7, p-value = 6.724e−10
alternative hypothesis: true mean is not equal to a
80 percent confidence interval:
1.836 1.954
sample estimates:
mean of x
 1.895

Finding the confidence interval to be (1.836, 1.954), the barista sees that 2.0 is not in the
interval. The barista adjusts the grind to be less fine and switches to decaf. ■

The T-statistic is robust The confidence interval for the mean relies on the fact that
the sampling distribution of is the t-distribution with n−1 degrees
of freedom. This is true when the Xi are i.i.d. normal. What if the Xi are not normal?

Confidence intervals 189

If n is small, we can do simulations to see that the distribution of T is still
approximately the t-distribution if the parent distribution of the Xi is not too far from
normal. That is, the tails can’t be too long, or the skew can’t be too great. When n is
large, the central limit theorem applies. A statistic whose sampling distribution doesn’t
change dramatically for moderate changes in the population distribution is called a
robust statistic.

7.3.1 One-sided confidence intervals

When finding a confidence interval for the mean for a given a, we found t* so that
P(−t*≤Tn−1 ≤ t*)=1−α. This method returns symmetric confidence intervals. The basic
idea is that the area under the density of the sampling distribution that lies outside the
confidence interval is evenly split on each side. This leaves α/2 area in each tail. This is
similar to Figure 7.3, in which the normal density is shown with equal allocation of the
area to the tails. This approach is not the only one. This extra area can be allocated in any
proportion to the left or right of the confidence interval. One-sided confidence intervals
put the area all on one side or the other. For confidence intervals for the mean, based on
the T statistic, these would be found for a given a by finding t* such that P(t*≤Tn−1)=1−α
or P(Tn−1≤t*)=1−α.

In R, the prop.test(), binom.test(), and t.test() functions can return one-sided
confidence intervals. When the argument alt="less" is used, an interval of the type (−∞,
b] is printed. Similarly, when alt="greater" is used, an interval of the type [b, ∞) is printed.

■ Example 7.6: Serving coffee The barista at "t-test espresso" is told that the optimal
serving temperature for coffee is 180°F. Five temperatures are taken of the served coffee:
175, 185, 170, 184, and 175 degrees. Find a 90% confidence interval of the form (−∞, b]
for the mean temperature.

Using t.test() with alt="less" will give this type of one-sided confidence interval:

> x = c(175, 185, 170, 184, 175)
> t.test(x.conf.level = 0.90, alt="less")
 One Sample t-test
data: x
t = 61.57, df = 4, p-value = 1
alternative hypothesis: true mean is less than a
90 percent confidence interval:
 −Inf 182.2
sample estimates:
mean of x
 177.8

The confidence interval contains the value of 180 degrees.

7.3.2 Problems

7.13 A hard-drive manufacturer would like to ensure that the mean time between failures
(MTBF) for its new hard drive is 1 million hours. A stress test is designed that can
simulate the workload at a much faster pace. The testers assume that a test lasting 10 days

Using R for introductory statistics 190

correlates with the failure time exceeding the 1-million-hour mark. In stress tests of 15
hard drives they found an average of 9.5 days, with a standard deviation of 1 day. Does a
90% confidence level include 10 days?

7.14 The stud. recs (UsingR) data set contains math SAT scores in the variable sat. m.
Find a 90% confidence interval for the mean math SAT score for this data.

7.15 For the homedata (UsingR) data set find 90% confidence intervals for both
variables y1970 and y2000. Use t.test(), but first discuss whether it is appropriate.

7.16 The variable weight in the kid.weights (UsingR) data set contains the weights of
a random sample of children. Find a 90% confidence interval for the weight of 5-year-
olds. You’ll need to isolate just the 5-year-olds’ data first. Here’s one way:

> attach(kid.weights)
> ind = age < (5+1)*12 & age >= 5*12
> weight[ind] # just five-year olds
> detach(kid.weights)

7.17 The brightness (UsingR) data set contains information on the brightness of stars in a
sector of the sky. Find a 90% confidence interval for the mean.

7.18 The data set normtemp (UsingR) contains measurements of 130 healthy,
randomly selected individuals. The variable temperature contains normal body
temperature. Does the data appear to come from a normal distribution? Is so, find a 90%
confidence interval for the mean normal body temperature. Does it include 98.6 °F?

7.19 The t-distribution is also called the Student t-distribution. (A Guinness Brewery
employee, William Gosset, derived the distribution of T to handle small samples. As
Guinness did not allow publication of research results at the time, Gosset chose to publish
under the pseudonym Student.)

Gosset applied his research to a data set containing height and left-middlefinger
measurements of 3,000 criminals. These values were written on cards and randomly
sorted into 750 samples, each containing four criminals. (This is how simulations were
done previously.)

Suppose the first sample of four had an average height of 67.5 inches, with a standard
deviation of 2.54. From this sample, find a 95% confidence interval for the mean height
of the 3,000 data points.

7.20 We can investigate how robust the T statistic is to changes in the underlying
parent population from normality. In particular, we can verify that if the parent
population is not too skewed or is symmetric without too heavy a tail then the T statistic
will still have the t-distribution for its sampling distribution.

A simulation of the T statistic when Xi are Normal(0, 1) may be done as follows:

> n = 10; m = 250; df = n−1
> res = c()
> ford in 1:m) {
+ x = rnorm(n) # change this line only
+ res[i] = (mean(x) − 0)/(sd(x)/sqrt(n))
+}
> qqplotCres, rt(m,df=df))

Confidence intervals 191

The quantile-quantile plot compares the distribution of the sample with a sample from the
t-distribution. If you type this in you will see that the points are close to linear, as the
sampling distribution is the t-distribution.

To test different parent populations you can change the line x=rnorm(n) to some other
distributions with mean a. For example, try a short-tailed distribution with
x=runif(n)−1/2; a symmetric, long-tailed distribution with x =rt(n, 3); a not so long-tailed,
symmetric distribution with x=rt (n, 30); and a skewed distribution with x=rexp(n)−1.

7.21 We can compare the relationship of the t-distribution with n−1 degrees of
freedom with the normal distribution in several ways. As n gets large, the t-distribution
converges to the standard normal. But what happens when n is “small,” and what do we
mean by “large”?

A few comparative graphs can give us an idea. For n=10 we can use boxplots of
simulated data to examine the tails, or we can compare plots of theoretical quantiles or
densities. These plots are created as follows:

> n = 10
> boxplot(rt(1000,df=n−1),rnorm(1000))
> x = seq(0,1,length=150)
> plot(qt(x,df=n−1), qnorm(x));abline(0,1)
> curve(dnorm(x),−3.5,3.5)
> curve(dt(x,df=n−l), lty=2, add=TRUE)

Repeat the above for n=3, 25, 50, and 100. What value of n seems “large” enough to say
that the two distributions are essentially the same?

7.22 When the parent population is Normal(µ, σ) with known σ, then confidence
intervals of the type

are both applicable. We have that far enough in the tail, z*<t*, but sometimes s<σ, so
there is no clear winner as to which confidence interval is smaller.

Run a simulation 200 times in which the margin of error is calculated both ways for a
sample of size 10 with σ=2 and µ=0. Use a 90% confidence level. What percent of the
time was the confidence interval using smaller?

7.4 Other confidence intervals

To form confidence intervals, we have used the key fact that certain statistics,

have known sampling distributions that do not involve any population parameters. From
this, we could then solve for confidence intervals for the parameter in terms of known
quantities.

Using R for introductory statistics 192

In general, such a statistic is called a pivotal quantity and can be used to generate a
number of confidence intervals in various situations.

7.4.1 Confidence interval for σ2

For example, if the Xi are i.i.d. normals, then the distribution of

is known to be the χ2 -distribution (chi-squared) with n−1 degrees of freedom. This
allows us to solve for confidence intervals for σ2 in terms of the sample variance s2.

In particular, a (1−α) 100% confidence interval can be found as follows. For a given α,
let l* and r* solve

If we choose l* and r* to yield equal areas in the tails, we can find them with

> lstar = qchisq(alpha/2, df=n−1)
> rstar = qchisq(1−alpha/2, df=n−1)

Then

can be rewritten as

In other words, the interval ((n−1)s2/r*, (n−1)s2/l*) gives a (1−α)100% confidence
interval for σ2.

■ Example 7.7: How long is your commute? A commuter believes her commuting
times are independent and vary according to a normal distribution, with unknown mean
and variance. She would like to estimate the variance to get an idea of the spread of
times.

To compute the variance, she records her commute time on a daily basis. Over 10
commutes she reports a mean commute time of 25 minutes, with a variance of 12
minutes. What is a 95% confidence interval for the variance?

We are given s2=12 and n=10, and we assume each Xi is normal and i.i.d. From this
we find

> s2 = 12; n = 10
> alpha = .05
> lstar = qchisqCalpha/2, df = n−1)
> rstar = qchisq(1−alpha/2, df = n−1)

Confidence intervals 193

> (n−1)*s2 * c(1/rstar,1/1star) # CI for sigma
squared
[1] 5.677 39.994
> sqrt((n−1)*s2 * c(1/rstar,1/1star)) # CI for sigma
[1] 2.383 6.324

After taking the square roots, we get a 95% confidence interval for σ, which is (2.324,
6.324).

7.4.2 Problems

7.23 Let X1, X2, …, Xn and Y1, Y2, …, Ym be two i.i.d. samples with sample variances sx
and sy respectively. A confidence interval for the equivalence of sample variances can be
given from the following statistic:

If the underlying Xi and Yi are normally distributed, then the distribution of F is known to
be the F-distribution with n−1 and m−1 degrees of freedom. That is, F is a pivotal

quantity, so probability statements such as can be answered
with the known quantiles of the F distribution. For example,

> n = 11; m = 16
> alpha = 0.10
> qf(c(alpha/2, 1 − alpha/2),dfl=n−1,df2=m−1)
[1] 0.3515 2.5437

says that when n=11 and m= 16. That is,

with 90% confidence.
Suppose n=10, m=20, sx=2.3, and sy=2.8. Find an 80% confidence interval for the ratio

of σx/σy.
7.24 Assume our data, X1, X2, …, Xn is uniform on the interval [0,θ] (θ is an unknown

parameter). Set max(X) to the be maximum value in the data set. Then the quantity
max(X)/θ is pivotal with distribution

Thus P(max(X)/x<θ)=xn. As θ is always bigger than max(X), we can solve for xn=α and
get that θ is in the interval [max(X),max(X)/x] with probability 1−α.

Use this fact to find a 90% confidence interval for the number of entries in the 2002
New York City Marathon. The place variable from the data set nyc. 2002 (UsingR)

Using R for introductory statistics 194

contains the place of the runner in the sample and is randomly sampled from all the
possible places.

7.5 Confidence intervals for differences

When we have two samples, we might ask whether the two came from the same
population. For example, Figure 7.5 shows results for several polls on presidential
approval rating from early 2001 to early 2004.* The rating varies over time, but for any
given time period the polls are all pretty much in agreement. This is to be expected, as the
polls are tracking the same population proportion for a given time period. However, how
can we tell if the differences between polls for different time periods are due to a change
in the underlying population proportion or merely an artifact of sampling variation?

7.5.1 Difference of proportions

We compare two proportions when assessing the results of surveys, as with the approval
ratings, but we could do the same to compare other proportions, such as market shares.

To see if a difference in the proportions is explainable by sampling error, we look at
and find a confidence interval for p1−p2. This can be done, as

*A similar figure appeared in a February 9, 2004, edition of Salon (http://www.salon.com/). The
data is in the data set BushApproval (UsingR), and the graphic can be produced by running
example(BushApproval).

Figure 7.5 Presidential approval
rating in United States from spring
2001 to spring 2004

the statistic

Confidence intervals 195

is a pivotal quantity with standard normal distribution when n1 and n2 are large enough.
The standard error is

Z has an asymptotic normal distribution, as it may be viewed as a sample average minus
its expectation divided by its standard error. The central limit theorem then applies.

The function prop.test() can do the calculations for us. We use it as
prop.test(x,n, conf.level=0.95

The data is specified in terms of counts, x, and sample sizes, n, using data vectors
containing two entries. The results will differ slightly from the above description, as prop.
test () uses a continuity correction.

■ Example 7.8: Comparing poll results In a span of two weeks the same poll is
taken. The first time, 1,000 people are interviewed, and 560 agree; the second time, 1,200
are interviewed, and 570 agree. Find a 95% confidence interval for the difference of
proportions.

Rather than do the work by hand, we let prop.test() find a confidence interval.

> prop.test(x=c(560,570), n=c(1000,1200),
conf.level=0.95)
 2-sample test for equality of proportions with
 continuity correction
data: c(560, 570) out of c(1000, 1200)
X−squ ared=15.44, df=1, p-value=8.53e−05
alternati v e hypothe s is: two.si d ed
95 percent confidence interval:
0.04231 0.12769
sample estimates:
prop 1 prop 2
0.560 0.475

We see that a 95% confidence interval is (0.04231, 0.12769), which just misses including
a. We conclude that there appears to be a real difference in the population parameters.

7.5.2 Difference of means

Many problems involve comparing independent samples to see whether they come from
identical parent populations. A teacher could compare two sections of the same class to
look for differences; a pharmaceutical company could compare the effects of two drugs;
or a manufacturer could compare two samples taken at different times to monitor quality
control.

Let and be the two samples with sample means

and sample variances and Assume the populations for each sample are normally

Using R for introductory statistics 196

distributed. The sampling distribution of is asymptotically normal, as each is
asymptotically normal. Consequently, the standardized statistic

 (7.2)

will have an approximately normal distribution, with mean a and variance 1 for large nx
and ny. For small nx and ny, T will have the t-distribution.

The standard error of is computed differently depending on the assumptions.
For independent random variables, the variance of a sum is the sum of a variance. This is

used to show that the variance of
When the two population variances are equal, the data can be pooled to give an

estimate of the common variance σ2. Let be the pooled estimate. It is defined by

(7.3)

When the population variances are not equal, the sample standard deviations are used to
estimate the respective population standard deviations.

The standard error is then

(7.4)

The statistic T will have a sampling distribution given by the t-distribution. When the
variances are equal, the sampling variation of sp is smaller, as all the data is used to
estimate σ. This is reflected in a larger value of the degrees of freedom. The values used
are

(7.5)

(The latter value is the Welch approximation.)
Given this, the T statistic is pivotal, allowing for the following confidence intervals.

Confidence intervals for difference of means for two independent samples
Let be two independent samples with distribution
Normal(µi, σi), i=x or y. A (1−α)· 100% confidence interval of the form

can be found where t* is given by the t-distribution. This is based on the sampling
distribution of T given in Equation 7.2.

Confidence intervals 197

This distribution is the t-distribution. The standard error and degrees of freedom differ
depending on whether or not the variances are equal. The standard error is given by
Equation 7.4 and the degrees of freedom by Equation 7.5.

If the unsummarized data is available, the t.test() function can be used to compute the
confidence interval for the difference of means. It is used as

t.test (x, y, var.equal=FALSE, conf.level=0.95)

The data is contained in two data vectors, x and y. The assumption on the equality of
variances is specified by the argument var. equal= with default of FALSE.

■ Example 7.9: Comparing independent samples In a clinical trial, a weightloss drug
is tested against a placebo to see whether the drug is effective. The amount of weight lost
for each group is given by the stem-and-leaf plot in Table 3.6. Find a 90% confidence
interval for the difference in mean weight loss.

From inspection of the boxplots of the data in Figure 7.6, the assumption of equal
variances is reasonable, prompting the use of t.test() with the argument var.equal=TRUE.

Figure 7.6 Boxplots used to
investigate assumption of equal
variances

> x = c(0,0,0,2,4,5,13,14,14,14,15,17,17)
> y = c(0,6,7,8,11,13,16,16,16,17,18)
> boxplot(list(drug=x,placebo=y), col="gray") # compare
spreads
> t.test(x,y, var.equal=TRUE)
 Two Sample t-test
data: x and y
t = −1.054, df = 22, p-value = 0.3032
alternative hypothesis: true difference in means is not
equal to a
95 percent confidence interval:
−8.279 2.699
sample estimates:

Using R for introductory statistics 198

mean of x mean of y
8.846 11.636

By comparison, if we do not assume equal variances,

> t.test(x,y)
t=−1.072, df=21.99, p-value=0.2953

When we assume var. equal=TRUE, we have 13+11−2=22 degrees of freedom. In this
example, the approximate degrees of freedom in the unequal variance case is found to be
21.99: essentially identical. The default 95% confidence interval is (−8.279, 2.699), so
the difference of 0 is still in the confidence interval, even though the sample means differ
quite a bit at first glance (8.846 versus 11.636).

7.5.3 Matched samples

Sometimes we have two samples that are not independent. They may be paired or
matched up in some way. A classic example in statistics involves the measurement of
shoe wear. If we wish to measure shoe wear, we might give five kids one type of sneaker
and five others another type and let them play for a while. Afterward, we could measure
shoe wear and compare. The only problem is that variation in the way the kids play could
mask small variations in the wear due to shoe differences. One way around this is to put
mismatched pairs of shoes on all ten kids and let them play. Then, for each kid, the
amount of wear on each shoe is related, but the difference should be solely attributable to
the differences in the shoes.

If the two samples are X1, X2, …, Xn and Y1, Y2, …, Yn, then the statistic

is pivotal with a t-distribution. What is the standard error? As the samples are not
independent, the standard error for the two-sample T statistic is not applicable. Rather, it
is just the standard error for the single sample Xi−Yi.

Comparison of means for paired samples
Let X1, X2, …, Xn and Y1, Y2, …,Yn be two samples. If the sequence of differences, Xi−Yi, is
an i.i.d. sample from a Normal(µ, σ) distribution,

then a(1−α)·100% confidence interval for the difference of means, µx−µy, is given by

where s is the sample standard deviation of the Xi−Yi and t* is found from the t-
distribution with n−1 degrees of freedom.

The t.test() function can compute the confidence interval. If x and y store the data, the
function may be called as either

t.test(x,y, paired=TRUE) or t.test(x−y)

Confidence intervals 199

We use the argument conf . level=… to specify the confidence level.

■ Example 7.10: Comparing shoes The shoes (MASS) data set contains shoe wear for
ten children each wearing two different shoes. By comparing the differences, we can tell
whether the two types of shoes have different mean wear amounts.

> library(MASS) # load data set
> names(shoes)
[1] "A" "B"
> with(shoes, t.test(A-B,conf.level = 0.9))
 One Sample t-test
data: A − B
t = −3.349, df = 9, p-value = 0.008539
alternative hypothesis: true mean is not equal to a
90 percent confidence interval:
−0.6344 −0.1856
sample estimates:
mean of x
 −0.41
Alternately:
> with(shoes, t.test(A,B,conf.level = 0.9,paired=TRUE))
...

Both approaches produce the same 90% confidence interval. In this case, it does not
include a, indicating that there may be a difference in the means.

7.5.4 Problems

7.25 Two different AIDS-treatment “cocktails” are compared. For each, the time it takes
(in years) to fail is measured for seven randomly assigned patients. The data is in Table
7.1. Find an 80% confidence interval for the difference of means. What assumptions are
you making on the data?

Table 7.1 Time to fail for AIDS cocktails, in
years

Type 1 2 3 4 5 6 7 s
Cocktail 1: 3.1 3.3 1.7 1.2 0.7 2.3 2.9 2.24 0.99
Cocktail 2: 1.8 2.3 2.2 3.5 1.7 1.6 1.4 2.13 0.69

7.26 In determining the recommended dosage of AZT for AIDS patients, tests were done
comparing efficacy for various dosages. If a low dosage is effective, then that would be
recommended, as it would be less expensive and would have fewer potential side effects.

A test to decide whether a dosage of 1,200 mg is similar to one of 400 mg is
performed on two random samples of AIDS patients. A numeric measurement of a
patient’s health is made, and the before-and-after differences are recorded after treatment

Using R for introductory statistics 200

in Table 7.2. Find a 90% confidence interval for the differences of the means. What do
you assume about the data?

Table 7.2 Health measurements after AZT
treatment

400 mg group 7 0 8 1 10 12 2 9 5 2
1200 mg group 2 1 5 1 5 7−1 8 7 3

7.27 The data in Table 7.3 is from IQ tests for pairs of twins that were separated at birth.
One twin was raised by the biological parents, the other by adoptive parents. Find a 90%
confidence interval for the differences of mean. What do you assume about the data? In
particular, are the two samples independent?

Table 7.3 IQ scores for identical twins
Foster 80 88 75 113 95 82 97 94 132 108
Biological 90 91 79 97 97 82 87 94 131 115

7.28 For the babies (UsingR) data set, the variable age contains the mother’s age and the
variable dage contains the father’s age for several babies. Find a 95% confidence interval
for the difference in mean age. Does it contain a? What do you assume about the data?

7.6 Confidence intervals for the median

The confidence intervals for the mean are based on the fact that the distribution of the
statistic

is known. This is true when the sample is an i.i.d. sample from a normal population or
one close to normal. However, many data sets, especially long-tailed skewed ones, are
not like this. For these situations, nonparametric methods are preferred. That is, no
parametric assumptions on the population distribution for the sample are made, although
assumptions on its shape may apply.

7.6.1 Confidence intervals based on the binomial

The binomial distribution can be used to find a confidence interval for the median for any
continuous parent population. The key is to look at whether a data point is more or less
than the median. As the median splits the area in half, the probability that a data point is
more than the median is exactly 1/2. (We need a continuous distribution with positive
density over its range to say “exactly” here.) Let T count the number of data points more
than the median in a sample of size n. T is a Binomial (n, 1/2) random variable.

Let X(1), X(2), …, X(n) be the sample after sorting from smallest to largest. A (1−α) M
100% confidence interval is constructed by finding the largest j≥1 so that

Confidence intervals 201

P(X(j)≤M≤X(n+1−j))≥1−α. In terms of T, this becomes the largest j so that P(j≤T≤n−j)>1−α,
which in turn becomes a search for the largest j with P(T<j)<α/2. We can find this in the
data after sorting.

A concrete example can clarify.
■ Example 7.11: CEO compensation in 2000 The following data is compensation in

$ 10,000s of a random sampling from the top 200 CEOs in America for the year 2000:†

110 12 2.5 98 1017 540 54 4.3 150 432

Find a 90% confidence interval for the median based on the sign test.

† See http://www.aflcio.org/corporateamerica/paywatch/ceou/database.cfm for such data.

We enter in the data and then look at the binomial probabilities for this size sample:

> x = c(110, 12, 2.5, 98, 1017, 540, 54, 4.3, 150, 432)
> n = length(x)
> pbinom(0:n,n,1/2) # P(T <= k) not P(T <
k)
 [1] 0.0009766 0.0107422 0.0546875 0.1718750 0.3769531
0.6230469
 [7] 0.8281250 0.9453125 0.9892578 0.9990234 1.0000000

For a 90% confidence interval, α/2=0.05. Thus, j is 2, as P(T<2)= 0.0107422, but
P(T<3)=0.0546875. Sorting the data we get

> sort(x)
[1] 2.5 4.3 12.0 54.0 98.0 110.0 150.0
 432.0
[9] 540.0 1017.0

Our 90% confidence interval is then [4.3, 540.0].
The α/2-quantile for the binomial returns the smallest k with P(X≤k)> α/2. This is just

our j in a different context. So we could automate the above with

> j = qbinom(0.05, n, 1/2)
> sort(x)[c(j,n+1−j)]
[1] 4.3 540.0

7.6.2 Confidence intervals based on signed-rank statistic

The Wilcoxon signed-rank statistic allows for an improvement on the confidence interval
given by counting the number of data points above the median. Its usage is valid when
the Xi are assumed to be symmetric about their median. If this is so, then a data point is
equally likely to be on the left or right of the median, and the distance from the median is
independent of what side of the median the data point is on. If we know the median then
we can rank the data by distance to the median. Add up the ranks for the values where the

Using R for introductory statistics 202

data is more than the median. The distribution of this statistic, under the assumption, can
be computed and used to give confidence intervals. It is available in R under the family
name signrank. In particular, qsignrank() will return the quantiles.

This procedure is implemented in the wilcox.test() function. Unlike with prop.test()
and t.test(), to return a confidence interval when using wilcox.test () we need to specify
that a confidence interval is desired with the argument conf . int=TRUE.

■ Example 7.12: CEO confidence interval The data on CEOs is too skewed to apply
this test, but after taking a log transform we will see a symmetric data set (Figure 7.7).

>
boxplot(scale(x),scale(log(x)),names=c("CEO","log.CEO")
)
> title("Boxplot of CEO data and its logarithm”)

Using scale() makes a data set have mean a and variance 1, so the shape is all that is seen
and comparisons of shapes are possible.

Figure 7.7 Comparison of CEO data
and its logarithm on the same scale

Thus we can apply the Wilocoxon method to the log-transformed data, and then
transform back.

> wilcox.test(log(x), conf.int=TRUE, conf.level=0.9)
 Wilcoxon signed rank test
data: log(x)
V = 55, p-value = 0.001953
alternative hypothesis: true mu is not equal to a
90 percent confidence interval:
2.963 5.540
sample estimates:
(pseudo)median
 4.345
> exp(c(2.863,5.540)) # inverse of log.
[1] 17.51 254.68

Confidence intervals 203

Compare the interval (17.51, 254.68) to that found previously: (4.3, 540.0).

7.6.3 Confidence intervals based on the rank-sum statistic

The t-test to compare samples is robust to nonnormality in the parent distribution but is
still not appropriate when the underlying distributions are decidedly nonnormal.
However, if the two distributions are the same up to a possible shift of center, then a
confidence interval based on a nonparametric statistic can be given.

Let f(x) be a density for a mean-zero distribution, and suppose we have two
independent random samples: the first, from a population with density
f(x−µx), and the second, from a population with density f(x−µy). The basic
statistic, called the rank-sum statistic, looks at all possible pairs of the data and counts
the number of times the X value is greater than or equal to the Y value. If the population
mean for the X values is larger than the population mean for the Y values, this statistic
will likely be large. If the mean is smaller, then the statistic will likely be small. The
distribution of this statistic is given by R with the wilcox family and is used to give a
confidence interval for the difference of the means.

The command wilcox. test (x, y, conf . int=TRUE). function will find a confidence
interval for the difference in medians of the two data sets.

■ Example 7.13: CEO pay in 2002 In Example 7.12, the compensation for a
sampling of the top 200 CEOs in the year 2000 was given. For the year 2002, a similar
sampling was performed and gave this data:

312 316 175 200 92 201 428 51 289 1126 822

From these two samples, can we tell if there is a difference in the center of the
distribution of CEO pay?

Figure 7.8 shows two data sets that are quite skewed, so confidence intervals based on
the T statistic would be inappropriate. Rather, as the two data sets have a similar shape,
we find the confidence interval returned by wilcox.test (). As before, we need to specify
that a confidence interval is desired. To answer our question, we’ll look at a 90%
confidence interval and see if it contains a.

> pay.02 = c(312, 316, 175, 200, 92, 201, 428, 51, 289,
1126, 822)
> pay.00 = c(110, 12, 2.5, 98, 1017, 540, 54, 4.3, 150,
432)
> plot(density(pay.02),main="densities of y2000,
y2002")
> lines(density(pay.00),lty=2)
> wilcox.test(pay.02, pay.00, conf.int=TRUE,
conf,level=0.9)
 Wilcoxon rank sum test
data: pay.02 and pay.00
W = 75,p-value = 0.1734
alternative hypothesis: true mu is not equal to a
90 percent confidence interval:

Using R for introductory statistics 204

−18 282
sample estimates:
difference in location

146.5

The 90% confidence interval, [−18,282], contains a value of ().
This example would be improved if we had matched or paired data—that is, the

salaries for the same set of CEOs in the year 2000 and 2002—as then

Figure 7.8 Densities of 2000 and
2002 CEO compensations indicating
similarly shaped distributions with
possible shift

differences in the sampling would be minimized. If that case is appropriate, then adding
the argument paired=TRUE to wilcox. test() computes a confidence interval based on the
signed-rank statistic.

7.6.4 Problems

7.29 The commuter revisited: the commuter records 20 commute times to gauge her
median travel time. The data has a sample median of 24 and is summarized in this stem-
and-leaf diagram:

> stem(commutes)
2 | 1112233444444
2 | 5569
3 | 113

Confidence intervals 205

If the data is appropriate for t.test(), use that to give a 90% confidence interval for the
mean. Otherwise use wilcox.test() (perhaps after a transform) to give a confidence
interval for the median.

7.30 The data set cabinet (UsingR) contains information on the amount of money each
member of President Bush’s cabinet saved due to the passing of a 2003 tax bill. This is
stored in the variable named est .tax. savings. Find a confidence interval for the median
amount.

7.31 The data set u2 (UsingR) contains song lengths for several albums by the band
U2. How might you interpret the lengths as a sample from a larger population? Use
wilcox.test() to construct a 95% confidence interval for the difference of population
means between the album October and the album The Joshua Tree.

7.32 The data set cfb (UsingR) contains a sampling of the data contained in the Survey
of Consumer Finances. For the variables AGE and INCOME find 95% confidence
intervals for the median.

7.33 We can simulate the signed-rank distribution and see that it applies for any
symmetric distribution regardless of tail length. The following will simulate the
distribution for n=20 using normal data.

> n = 20;m=250 # 250 samples
> res = c() # the results
> for(i in 1:m) {
+ x = rnorm(n)
+ res[i]=sum(rank(abs(x))[x>0]) # only add positive
values
+ }

This can be plotted with

> hist(res,prob=TRUE)
> x = 40:140
> lines(x,dsignrank(x,n)) # density-like, but
discrete.

If you change the line x=rnorm (x) to x=rt (n, df=2), the underlying distribution will be
long tailed, and short tailed if you change it to x=runif (n, −1,1) Do both, and then
compare all three samples. Are they different or the same? What happens if you use
skewed data, such as x=rexp (n)−1?

Using R for introductory statistics 206

Chapter 8
Significance tests

Finding a confidence interval for a parameter is one form of statistical inference. A
significance test, or test of hypothesis, is another. Rather than specify a range of values
for a population parameter, a significance test assumes a value for the population
parameter and then computes a probability based on a sample given that assumption.

■ Example 8.1: A criminal trial The ideas behind a significance test can be
illustrated by analogy to a criminal trial in the United States—as seen on TV. Imagine the
following simplified scenario: a defendant is charged with a crime and must stand trial.
During the trial, a prosecutor and defense lawyer respectively try to convince the jury that
the defendant is either guilty or innocent. The jury is supposed to be unbiased. When
deciding the defendant’s fate, the jurors are instructed to assume that the defendant is
innocent unless proven guilty beyond a shadow of a doubt. At the end of the trial the
jurors decide the guilt or innocence of the defendant based on the strength of their belief
in the assumption of his innocence given the evidence. If the jurors believe it very
unlikely that an innocent person could have evidence to the contrary, they will find the
defendant “guilty.” If it is not so unlikely, they will rule “not guilty.”

The system is not foolproof. A guilty man can go free if he is found not guilty, and an
innocent man can be erroneously convicted. The frequency with which these errors occur
depends on the threshold used to find guilt. In a criminal trial, to decrease the chance of a
erroneous guilty verdict, the stringent shadow of a doubt criterion is used. In a civil trial,
this phrasing is relaxed to a preponderance of the evidence. The latter makes it easier to
err with a truly innocent person but harder to err with a truly guilty one. null

Let’s rephrase the above example in terms of significance tests. The assumption of
innocence is replaced with the null hypothesis, H0. This stands in contrast

Table 8.1 Level of significance for range of p-
values

p-value range significance stars common description
[0, .001] *** extremely significant

(.001, .01] ** highly significant
(.01, .05] * statistically significant
(.05, .!] · could be significant
(.1, 1] not significant

to the alternative hypothesis, HA. This would be an assumption of guilt in the trial
analogy. In a trial, this alternative is not used as an assumption; it only gives a direction
to the interpretation of the evidence. The determination of guilt by a jury is not proof of
the alternative, only a failure of the assumption of innocence to explain the evidence well

enough. A guilty verdict is more accurately called a verdict of “not innocent.” The
performer of a significance test seeks to determine whether the null hypothesis is
reasonable given the available data. The evidence is replaced by an experiment that
produces a test statistic. The probability that the test statistic is the observed value or is
more extreme as implied by the alternative hypothesis is calculated using the assumptions
of the null hypothesis. This is called the p-value. This is like the weighing of the
evidence—the jury calculating the likelihood that the evidence agrees with the
assumption of innocence.

The calculation of the p-value is called a significance test. The p-value is based on
both the sampling distribution of the test statistic under H0 and the single observed value
of it during the trial. In words, we have

p-value=P(test statistic is the observed value or is more extreme|H0).

The p-value helps us decide whether differences in the test statistic from the null
hypothesis are attributable to chance or sampling variation, or to a failure of the null
hypothesis. If a p-value is small, the test is called statistically significant, as it indicates
that the null hypothesis is unlikely to produce more extreme values than the observed
one. Small p-values cast doubt on the null hypothesis; large ones do not.

What is “large” or “small” depends on the area of application, but there are some
standard levels that are used. Some R functions will mark p-values with significance
stars, as described in Table 8.1. Although these are useful for quickly identifying
significance, the cutoffs are arbitrary, settled on more for ease of calculation than actual
relevance.

In some instances, as with a criminal trial, a decision is made based on the pvalue. A
juror is instructed that a defendant, to be found guilty, must be thought guilty beyond a
shadow of a doubt. A significance test is less vague, as a significance level is specified
that the p-value is measured against. A typical signifi-cance level is 0.05. If the p-value is
less than the significance level, then the null hypothesis is said to be rejected, or viewed
as false. If the p-value is larger than the significance level, then the null hypothesis is
accepted.

The words “reject” and “accept” are perhaps more absolute than they should be. When
rejecting the null, we don’t actually prove the null to be false or the alternative to be true.
All that is shown is that the null hypothesis is unlikely to produce values more extreme
than the observed value. When accepting the null we don’t prove it is true, we just find
that the evidence is not too unlikely if the null hypothesis is true.

By specifying a significance level, we indirectly find values of the test statistic that
will lead to rejection. This allows us to specify a rejection region consisting of all values
for the observed test statistic that produce p-values smaller than the significance level.
The boundaries between the acceptance and rejection regions are called critical values.
The use of a rejection region avoids the computation of a p-value: reject if the observed
value is in the rejection region and accept otherwise. We prefer, though, to find and
report the p-value rather than issue a simple verdict of “accept” or “reject.”

This decision framework has been used historically in scientific endeavors.
Researchers may be investigating whether a specific treatment has an effect. They might
construct a significance test with a null hypothesis of the treatment having no effect,

Using R for introductory statistics 208

against the alternative hypothesis of some effect. (In this case, the alternative hypothesis
is known as the research hypothesis.) The significance test then determines the
reasonableness of the assumption of no effect. If this is rejected, there has been no proof
of the research hypothesis, only that the null hypothesis is not supported by the data.

As with a juried trial, the system is not foolproof. When a decision is made based on
the p-value, mistakes can happen. If the null hypothesis is falsely rejected, it is a type-I
error (innocent man is found guilty). If the null hypothesis is false, it may be falsely
accepted (guilty man found not guilty). This is a typeII error.

A simple example can illustrate the process.

■ Example 8.2: Which mean? Imagine we have a widget-producing machine that
sometimes goes out of calibration. The calibration is measured in terms of a mean for the
widgets. How can we tell if the machine is out of calibration by looking at the output of a
single widget?

Assume, for simplicity, that the widgets produced are random numbers that usually
come from a normal distribution with mean a and variance 1. When the machine slips out
of calibration, the random numbers come from normal distribution with mean 1 and
variance 1. Based on the value of a single one of these random numbers, how can we
decide whether the machine is in calibration or not?

This question can be approached as a significance test. We might assume that the
machine is in calibration (has mean 0), unless we see otherwise based on the value of the
observed number.

Let X be the random number. The hypotheses become
H0:X is Normal(0,1), HA:X is Normal(1, 1).

We usually write this as
H0:µ=0, HA:µ=1,

where the assumption on the normal distribution and a variance of 1 are implicit.
Suppose we observe a value 0.7 from the machine. Is this evidence that the machine is

out of calibration?
The p-value in this case is the probability that a Normal(0, 1) random variable

produces a 0.7 or more. This is 1−pnorm(0.7, 0,1), or 0.2420. Why this probability? The
calculation is done under the null hypothesis, so a normal distribution with mean a and
variance 1 is used. The observed value of the test statistic is 0.7. Larger values than this
are more extreme, given the alternative hypothesis. This p-value is not very small, and
there is no evidence that the null hypothesis is false. It may be, if the alternative were
true, that a value of 0.7 or less is pnorm(.7, 1, 1), or 0.3821, so it, too, is not unlikely.
(See Figure 8.1.)

Significance tests 209

Figure 8.1 The p-value of 0.2420 is
the probability of 0.7 or more for the
Normal(0, 1) distribution

Even though 0.7 is closer to the mean of 1 than the mean of a, it is really not conclusive
evidence that the null hypothesis (the assumption of calibration) is incorrect. The
problem is that the two distributions are so “close” together. It would be much easier to
decide between the two if the means were 10 units apart instead of just 1 (with the same
variance). Alternatively, if the standard deviations were smaller, the same would be true.
This can be achieved by taking averages, as we know that the standard deviation of an
average is or smaller than the population standard deviation by the divisor

With this in mind, suppose our test statistic is now the sample mean of a random
sample of ten widgets. How does our thinking change if the sample mean is now 0.7?

The p-value looks similar, but when we compute, we use the sampling
distribution of under H0, which is The p-value is 0.0134, as found
by 1−pnorm(0.7,0, 1/sqrt(10)). This is illustrated in Figure 8.2. Now the evidence is more
convincing that the machine is out of calibration.

Figure 8.2 p-value calculated for
n=10 when observed value of is 0.7

The above example illustrates the steps involved in finding the p-value:

Using R for introductory statistics 210

1. Identify H0 and HA, the null and alternative hypotheses.
2. Specify a test statistic that discriminates between the two hypotheses, collect data, then

find the observed value of the test statistic.
3. Using HA, specify values of the test statistic that are “extreme” under H0 in the

direction of HA. The p-value will be the probability of the event that the test statistic is
the observed value or more extreme.

4. Calculate the p-value under the null hypothesis. The smaller the p-value, the stronger
the evidence is against the null hypothesis.

8.1 Significance test for a population proportion

A researcher may wish to know whether a politician’s approval ratings are falling, or
whether unemployment rate is rising, or whether the poverty rate is changing. In many
cases, a known proportion exists. What is asked for is a comparison against this known
proportion. A test of proportion can be used to help answer these questions.

Assume p0 reflects the historically true proportion of some variable of interest. A
researcher may wish to test whether the current unknown proportion, p, is different from
p0. A test of proportion would check the null hypothesis,

H0:P=P0,

versus an alternative hypothesis on p. Possible alternatives are
HA :p>P0, HA:p<p0, or HA:p≠p0.

If the survey is a random sample from the target population, the number of successes, x,
is binomially distributed, and will be approximately normal for large enough
values of n. We might use directly as a test statistic, but it is more common to
standardize yielding the following test statistic:

We use the notation to remind ourselves that we use the null hypothesis when
calculating this expected value. In this case, under H0, p0 is the expected value of and is
assumed to be known. Thus, we can use in our test
statistic, in contrast to use of when we found confidence intervals for p.

Significance tests 211

Figure 8.3 Illustration of the three
alternative hypotheses. In R, less is
HA:P<P0, greater is HA:p>p0,
two.sided is HA:p≠p0.

The p-value varies based on the alternative hypothesis. This is because what is meant by
“more extreme” for the value of the test statistic depends on HA. In this instance there are
three cases:

(8.1)

The first two cases are “one-sided” or “one-tailed,” the last “two-sided” or “twotailed.”
The absolute values in the third case can be confusing but are there to say that large
differences in either direction of p0 are “more extreme.” Figure 8.3 illustrates the areas.

Significance test for a population proportion
A significance test for an unknown proportion between

H0:p=p0, HA:p<p0, p>p0, or p≠p0

can be performed with test statistic

If is based on a simple random sample and n is large enough, Z has a standard
normal distribution under the null hypothesis. The p-values can be computed from (8.1).

In R the function prop.test() will perform this significance test.

■ Example 8.3: Poverty-rate increase In the United States, the poverty rate rose from
11.3 percent in 2000 to 11.7 percent in 2001 to 12.1 percent in 2002, as reported by the
United States Census Bureau. A national census takes place every decade. The year-2000
number comes from a census. For the Census Bureau to decide the 2001 and 2002
figures, a random sampling scheme is employed. Assume that the numbers come from a

Using R for introductory statistics 212

simple random sample (they don’t), so that we can use the binomial model for the
problem, and that the sample sizes are 50,000 for 2001 and 60,000 for 2002.

We investigate whether the 11.7% figure for the year 2001 shows an increase from the
year-2000 figure. The null hypothesis is that it is the same as the 11.3% amount of 2000;
the alternative is that the new figure is greater than the old:

H0:p=0.113, HA:p>0.113.

A test statistic is based on the proportion living in poverty of a random sample of size
50,000. In the sample, 5,850, or a proportion of. 117, were found to be in poverty. Is this
difference significant?

The direction of the alternative would be that the rate is .117 or higher, as larger
values support this one-sided alternative. The p-value is which is found
in R with

> p0 = .113; n = 50000; SD = sqrt(p0*(1-p0)/n)
> pnorm(.117,mean=p0, sd=SD, lower.tail=FALSE)
[1] 0.002363

Thus the p-value is 0.002363 and is “very significant.” This data casts much doubt on the
null hypothesis of no change. We would think sampling variation alone does not explain
the difference.

8.1.1 Using prop.test () to compute p-values

The calculation above is done by hand. The pre-loaded stats package in R has many built-
in functions to do significance tests more directly. The R function for the above test of
proportion is prop.test(). This was also used to find confidence intervals under the same
assumptions.

The prop.test () function needs a few arguments. A template for usage to perform a
significance test is

prop.test(x, n, p=…, alternative=“two.sided”)

The value for x is the sample frequency; in our case, 5,850=0.117·50,000. The value of n
is the sample size 50,000. These are the same as when we used this function to find
confidence intervals.

To perform a significance test, the null and alternative hypotheses must be specified.
The null is done with the p= argument; for our example p=.113. The alternative
hypothesis is specified with the argument alternative=, which we abbreviate to alt=. This
argument has one of these values: “less”, “greater”, or “two.sided”. The default is
two.sided. As HA:p>0.11, we will use “greater”. This argument is common to many of the
functions in R that perform significance tests.

To illustrate, the above calculation is done with

> prop.test(x=5850, n=50000, p=.113, alt="greater")
 1-sample proportions test with continuity
correction

Significance tests 213

data: 5850 out of 50000, null probability 0.113
X-squared = 7.942, df = 1, p-value = 0.002415
alternative hypothesis: true p is greater than 0.113
95 percent confidence interval:
0.1146 1.0000
sample estimates:
 P
0.117

The p-value, 0.002415, and the null and alternative hypotheses are repeated in the output.
In addition, a confidence interval is given, as is a sample estimate that we term The p-
value is slightly different from above, as a continuity correction is used by R.

It isn’t any more difficult to test the alternative hypothesis, that the rate has changed,
or HA:p≠p0. This is done by specifying the alternative as two. sided (just the differences
showm):

> prop.test(x=5850, n=50000, p=.113, alt="two.sided")
...
X-squared=7.942, df=1, p-value=0.004831
...

The p-value is different—it is twice as big—as we would guess by looking at the
symmetry in Figure 8.3.

8.1.2 Problems

8.1 United States federal law on dietary supplements requires that the Food and Drug
Administration (FDA) prove a supplement harmful in order to ban its sale. In contrast, for
a new prescription drug, a pharmaceutical company must prove the product is safe.

Write null and alternative hypotheses for a hypothetical significance test by the FDA
when testing a dietary supplement. Do you think the same standard should be used for
both dietary supplement and new prescription drugs?

8.2 The samhda (UsingR) data set contains information on marijuana usage among
children as collected at the the Substance Abuse and Mental Health Data Archive. The
variable marijuana indicates whether the individual has ever tried marijuana. A 1 means
yes, a 2 no. If it used to be that 50% of the target population had tried marijuana, does
this data indicate an increase in marijuana usage? Do a significance test of proportions to
decide.

8.3 A new drug therapy is tested. Of 50 patients in the study, 40 had no recurrence in
their illness after 18 months. With no drug therapy, the expected percentage of no
recurrence would have been 75%. Does the data support the hypothesis that this
percentage has increased? What is the p-value?

8.4 In the United States in 1998, the proportion of adults age 21–24 who had no
medical insurance was 34.4 percent, according to the Employee Benefit Research
Institute. A survey of 75 recent college graduates in this age range finds that 40 are
without insurance. Does this support a difference from the nationwide proportion?
Perform a test of significance and report the p-value. Is it significant?

Using R for introductory statistics 214

8.5 On a number of highways a toll is collected for permission to travel on the
roadway. To lessen the burden on drivers, electronic toll-collection systems are often
used. An engineer wishes to check the validity of one such system. She arranges to
survey a collection unit for single day, finding that of 5,760 transactions, the system
accurately read 5,731. Perform a one-sided significance test to see if this is consistent
with a 99.9% accuracy rating at the 0.05 significance level. (Do you have any doubts that
the normal approximation to the binomial distribution should apply here?)

8.6 In Example 8.3 a count of 5,850 in the survey produced a p-value of 0.002363.
What range of counts would have produced a p-value less than 0.05? (Start by asking
what observed proportions in the survey would have such a p-value.)

8.7 Historically, a car from a given company has a 10% chance of having a significant
mechanical problem during its warranty period. A new model of the car is being sold. Of
the first 25,000 sold, 2,700 have had an issue. Perform a test of significance to see
whether the proportion of these new cars that will have a problem is more than 10%.
What is the p-value?

8.8 A poll taken in 2003 of 200 Europeans found that only 16% favored the policies of
the United States. Do a test of significance to see whether this is significantly different
from the 50% proportion of Americans in favor of these policies.

8.2 Significance test for the mean (t-tests)

Significance tests can also be constructed for the unknown mean of a parent population.
The hypotheses take the form

H0:µ=µ0, HA:µ<µ0, µ>µ0, or µ≠µ0.

For many populations, a useful test statistic is

T takes the form of “observed” minus “expected,” divided by the standard error, where
the expected value and the standard error are found under the null hypothesis.

In the case of normally distributed initial data, the sampling distribution of T under the
null hypothesis is known to be the t-distribution with n−1 degrees of freedom. If n is
large enough, the sampling distribution of T is a standard normal by the central limit
theorem. As both the t distribution and normal distribution are similar for large n, the
following applies to both assumptions.

Test of significance for the population mean
If the data X1, X2, …, Xn is an i.i.d. sequence from a Normal (µ, σ) distribution, or n is
large enough for the central limit theorem to apply, a test of significance for

H0:µ=µ0, HA:µ<µ0, µ>µ0, or µ≠µ0

can be performed with test statistic

Significance tests 215

For a normally distributed population, T has the t-distribution with n−1 degrees of
freedom under H0. For large n, T has the standard normal distribution. Let

be the observed value of the test statistic. The p-value is computed
by

In R, the function t.test () can be used to compute the p-value with unsummarized
data, as in

t.test (x, mu=…, alt=“two.sided”)

The null hypothesis is specified by a value for the argument mu=. The alternative is
specified as appropriate by alt=“less”, alt=“greater”, or alt=“two. sided” (the default).

■ Example 8.4: SUV gas mileage A consumer group wishes to see whether the actual
mileage of a new SUV matches the advertised 17 miles per gallon. The group suspects it
is lower. To test the claim, the group fills the SUV’s tank

Table 8.2 SUV gas mileage
stem leaf

11 4
12
13 1
14 77
15 0569
16 08

and records the mileage. This is repeated ten times. The results are presented in a stem-
and-leaf diagram in Table 8.2.

Does this data support the null hypothesis that the mileage is 17 or the alternative, that
it is less?

The data is assumed to be normal, and the stem-and-leaf plot shows no reason to doubt
this. The null and alternative hypotheses are

H0:µ=17, HA:µ<17.

This is a one-sided test. The p-value will be computed from those values of the test
statistic less than the observed value, as these are more extreme given the alternative
hypothesis.

Using R for introductory statistics 216

> mpg =
c(11.4,13.1,14.7,14.7,15.0,15.5,15.6,15.9,16.0,16.8)
> xbar = mean(mpg)
> s = sd(mpg)
> n = length(mpg)
> c(xbar, s, n)
[1] 14.870 1.572 10.000
> SE = s/sqrt(n)
> (xbar − 17)/SE
[1] −4.285
> pt(−4.285, df = 9, lower.tail = T)
[1] 0.001017

The p-value is very small and discredits the claim of 17 miles per gallon, as the
difference of from 17 is not well explained by sampling variation.

The above calculations could be done using t.test () as follows:

> t.test(mpg, mu = 17, alt="less")
One Sample t-test
data: mpg
t = −4.285, df = 9, p-value = 0.001018
alternative hypothesis: true mean is less than 17
95 percent confidence interval:
−Inf 15.78
sample estimates:
mean of x
 14.87

The output contains the same p-value (up to rounding), plus a bit more information,
including the observed value of the test statistic, a one-sided confidence interval, and
(the estimate for µ). ■

It is easy to overlook the entire null hypothesis. We assume not only that µ=µ0, but
also that the random sample comes from a normally distributed population with
unspecified variance. With these assumptions, the test statistic has a known sampling
distribution. The t-statistic is robust to small differences in the assumed normality of the
population, but a really skewed population distribution would still be a poor candidate for
this significance test unless n is large. It is recommended that you plot the data prior to
doing any analysis, to ensure that it is appropriate.

■ Example 8.5: Rising textbook costs? A college bookstore claims that, on average,
a college student will pay $101.75 per class for textbooks. A student group investigates
this claim by randomly selecting ten courses from the course catalog and finding the
textbook costs for each. The data collected is

140 125 150 124 143 170 125 94 127 53

Do a test of significance of H0:µ=101.75 against the alternative hypothesis HA:µ>101.75.
We assume independence and normality of the data. Once the data is entered, we can

use t.test(), with “greater” for the alternative. This gives

Significance tests 217

> x = c(140, 125, 150, 124, 143, 170, 125, 94, 127, 53)
> qqnorm(x) # check normality, OK
> t.test(x, mu = 101.75, alt="greater")
 One Sample t-test
data: x
t = 2.291, df = 9, p-value = 0.02385
alternative hypothesis: true mean is greater than 101.8
95 percent confidence interval:
 106.4 Inf
sample estimates:
mean of x
 125.1

The p-value is small, indicating that the true amount per class may be more than that
indicated under the null hypothesis.

8.2.1 Problems

8.9 A study of the average salaries of New York City residents was conducted for 770
different jobs. It was found that massage therapists average $58,260 in yearly income.
Suppose the study surveyed 25 massage therapists and had a standard deviation of
$3,250. Perform a significance test of the null hypothesis that the average massage
therapist makes $55,000 per year against the one-sided alternative that it is more. Assume
the data is normally distributed.

8.10 The United States Department of Energy conducts weekly phone surveys on the
price of gasoline sold in the United Stat es. Suppose one week the sample average was
$2.03, the sample standard deviation was $0.22, and the sample size was 800. Perform a
one-sided significance test of H0:µ=2.00 against the alternative HA:µ>2.00.

8.11 The variable sat .m in the data set stud. recs (UsingR) contains math SAT scores
for a group of students. Test the null hypothesis that the mean score is 500 against a two-
sided alternative. Would you accept or reject at a 0.05 significance level?

8.12 In the babies (UsingR) data set, the variable dht contains the father’s height. Do a
significance test of the null hypothesis that the mean height is 68 inches against an
alternative that it is taller. Remove the values of 99 from the data, as these indicate
missing data.

8.13 A consumer-reports group is testing whether a gasoline additive changes a car’s
gas mileage. A test of seven cars finds an average improvement of 0.5 miles per gallon
with a standard deviation of 3.77. Is this difference significantly greater than a? Assume
the values are normally distributed.

8.14 The data set OBP (UsingR) contains on-base percentages for the 2002 major
league baseball season. Do a significance test to see whether the mean onbase percentage
is 0.330 against a two-sided alternative.

8.15 The data set normtemp (UsingR) contains measurements of 130 healthy,
randomly selected individuals. The variable temperature contains normal body
temperature. Does the data appear to come from a normal distribution? If so, perform a /-
test to see if the commonly assumed value of 98.6 °F is correct. (A recent study suggests
that 98.2 degrees is actually correct.)

Using R for introductory statistics 218

8.16 We can perform simulations to see how robust the t-test is to changes in the
parent distribution. For a normal population we can run a simulation with the commands:

> m = 250; n = 10 # m simulations with sample size n
> res = c(); # store values here
> for(i in 1:m) res [i] = t.test(rnorm(n), mu = a, df =
n−1)$p.value
> sum(res < 0.05)/length(res) # proportion of
"rejections"
[1] 0.052

(The $p. value after t .test extracts just the p-value from the output.) This example shows
that 5.2% of the time we rejected at the α=0.05 significance level, as expected. Repeat
with exponential data (rexp(n), and mu=1), uniform data (runif (n) and mu=1/2), and t-
distributed data (rt (n, df=4) and mu=0).

8.3 Significance tests and confidence intervals

You may have noticed that the R functions for performing a significance test for a
population proportion or mean are the same functions used to compute confidence
intervals. This is no coincidence, as performing a significance test and constructing a
confidence interval both make use of the same test statistic, although in different ways.

Suppose we have a random sample from a normally distributed population with mean
µ and variance σ2. We can use the sample to find a confidence interval for µ, or we could
use the sample to do a significance test of

H0:µ=µ0, HA:µ≠µ0.

In either case, the T statistic

is used to make the statistical inference. The two approaches are related by the following:
a significance test with significance level α will be rejected if and only if the (1−α)·100%
confidence interval around does not contain µ0.

To see why, suppose α is given. The confidence interval uses t* found from
P(−t*≤T≤t*)=1−α.

From this, the confidence interval will not contain µ0 if the value of T is more than t* or
less than −t*. This same relationship is used to find the critical values defining the
boundaries of the rejection region. If the observed value of T is more than t* or less than
−t*, then the observed value is in the rejection region, and the null hypothesis is rejected.
This is illustrated in Figure 8.4.

Many people prefer the confidence interval to the p-value of the significance test for
good reasons. If the null hypothesis is that the mean is 16, but the true mean is just a bit
different, then the probability that a significance test will fail can be made arbitrarily

Significance tests 219

close to 1 just by making n large enough. The confidence interval, on the other hand,
would show much better that the value of the mean is likely close to 16. The language of
significance tests, however, is more flexible

Figure 8.4 If is in the two-sided
rejection region, then a confidence
interval around does not contain µ

and allows us to consider more types of problems. Both approaches are useful to have.
R is agnostic: it can return both the confidence interval and the p-value when asked,

although the defaults for the functions usually return just the confidence interval.

8.4 Significance tests for the median

The significance test for the mean relies on a large sample, or on an assumption that the
parent distribution is normally (or nearly normally) distributed. In the situation where this
isn’t the case, we can use test statistics similar to the ones used to find confidence
intervals for the median. Significance tests based on these test statistics are nonparametric
tests, as they do not make assumptions about the population parameters to calculate the
test statistic (though there may be assumptions about the shape of the distribution).

8.4.1 The sign test

The sign test is a simple test for the median of a distribution that has no assump¬ tions on
the parent distribution except that it is continuous with positive density. Let H0 suppose
that the median is m. If we count the number of data points higher than the median, we
get a number that will have a Binomial(n, 1/2) distribution, as under H0, a data point is
equally likely to be more or less than the median.

This leads to the following test.

Using R for introductory statistics 220

Sign test for the median
Assume X1, X2, …, Xn are from a continuous distribution with positive density. A
significance test of the hypotheses

H0:median=m, HA:median<m, median>m, or median≠m,
can be performed with test statistic
T=the number of Xi with Xi>m.

If the data has values equal to m, then delete those values from the data set. Under H0,
T has a Binomial(n, 1/2) distribution. Large values of T support the alternative that the
median is greater than M; small values of T support the alternative that the median is
smaller than M. For two-sided alternatives, large or small values of T support HA. The p-
value is calculated by

In R, the test statistic can be computed using sum(). The p-values are found using
pbinom(k). However, as P(T≥k)=1−P(T≤k−1), the p-value is is found with
1−pbinom(k−1, n, 1/2).

■ Example 8.6: Length of cell-phone calls Suppose a cell-phone bill contains this data
for the number of minutes per call:

2 1 3 3 3 3 1 3 16 2 2 12 20 31

Is this consistent with an assumption that the median call length is 5 minutes, or does it
indicate that the median length is less than 5?

The hypothesis test is
H0:the median =5, HA:the median < 5.

The data is clearly nonnormal, so a t-test is inappropriate. A sign test can be used. Here,
small values of T support the alternative.

> calls = c(2, 1, 3, 3, 3, 3, 1, 3, 16, 2, 2, 12, 20,
3, 1)
> obs = sum(calls > 5) # find observed value of
T
> n = length(calls)
> n − obs
[1] 12
> 1 − pbinom(11,n,1/2) # we want P(T >= 12)
[1] 0.01758

We get a p-value of 0.0176, which leads us to believe that the median is less than 5.

Significance tests 221

For illustration, the p-value for the two-sided alternative can be computed as follows:

> k = max(obs, n − obs)
> k
[1] 12
> 2*(1 − pbinom(k−1 , n, 1/2))
[1] 0.03516

8.4.2 The signed-rank test

The signed-rank test is an improvement to the sign test when the population is symmetric,
but not close enough to normal to use a t-test. Assume H0: median =m. If Xi are from a
continuous distribution with density f() that is symmetric about m, then not only is Xi
equally likely to be on either side of m, but the distance from m is independent of the
side. Thus, if we rank all the data by its distance to m, the sum corresponding to the
values larger than m may be viewed as a random sample of a certain size from the
numbers 1 through n. The distribution of this sum can be characterized, so the sum of the
ranks can be an effective test statistic.

The Wilcoxon signed-rank test for the median
If the data, X1, X2, …, Xn, is an i.i.d. sample from a continuous, symmetric distribution,
then a significance test of the hypotheses

H0: the median=m, HA: median<m, median>m, or median≠m
can be performed with test statistic

Under H0, the distribution of T can be calculated. Large values of T support the
alternative hypothsis HA: median>m.

In R, the function wilcox.test() performs the test as

wilcox.text(x, mu=..., alt="two.sided”)

The data is contained in x, the null hypothesis is specified by the argument mu=, and
the alternative is specified with the argument alt=. This argument takes a value of “less”,
“greater”, or “two. sided” (the default value). If desired, the distribution of T is given by
the function psignrank().

A typical application of the signed-rank test is to use it after transforming the data to
make it look like the parent distribution is symmetric.

■ Example 8.7: Number of recruits In salmon populations, there is a relationship
between the number of spawners and the subsequent number of “recruits” that they
produce. A common model involves two parameters, which describe how many recruits
there are when there are few spawners and how many there are when there are many
spawners. The data set salmon. rate (UsingR) contains simulated data on one of the

Using R for introductory statistics 222

parameters. A plot of the data shows that a normal population assumption is not correct;
rather, the population appears to be lognormal.

Perform a significance test of
H0: median=.005, HA: median>.005.

After taking logs, we can see that the data is symmetric, so the signed-rank test can apply
to the log-transformed data. The significance test of this data is

H0: median=log(.005), HA: median>log(.005).

>
wilcox.test(log(salmon.rate),mu=log(.005),alt="greater”
)
 Wilcoxon signed rank test with continuity
correction
data: log(salmon.rate)
V = 2077, p-value = 0.065
alternative hypothesis: true mu is greater than −5.298

A small p-value is found.
To contrast, the p-value for the sign test is found with these commands:

> T = sum(salmon.rate > .005); n = length(salmon.rate)
> 1 − pbinom(T − 1, n, 1/2)
[1] 0.1361

8.4.3 Problems

8.17 The exec. pay (UsingR) data set contains data on the salaries of CEOs at 199 top
companies in the United States. The amounts are in $ 10,000s. The data is not symmetric.
Do a sign test to determine whether the median pay is more than $220,000.

8.18 Repeat the previous exercise, using the signed-rank test on the log-transformed
data. Do you reach the same conclusion?

8.19 The babies (UsingR) data set contains data covering many births. Information
included is the gestation period, and a factor indicating whether the mother was a smoker.
Extracting the gestation times for mothers who smoked during pregnancy can be done
with these commands:

> attach(babies)
> smokers=gestation[smoke == 1 & gestation != 999]
> detach(babies)

Perform a significance test of the null hypothesis that the average gestation period is 40
weeks against a two-sided alternative. Explain what test you used, and why you chose
that one.

8.20 If the sign test has fewer assumptions on the population, why wouldn’t we always
use that instead of a t-test? The answer lies in the power of the sign test to detect when
the null hypothesis is false. The sign test will not reject a false null as often as the t-test.

Significance tests 223

The following commands will perform a simulation comparing the two tests on data that
has a Normal(1,2) distribution. The significance tests performed are both

H0:µ=0, HA:µ>0

Run the simulation. Is there a big difference between the two tests?

> m = 200; n = 10
> res.t = rep(0,m);res.sign = rep(0,m)
> ford in 1:m) {
+ x=rnorm(n, mean=1, sd=2)
+ if(t.test(x,mu=0,alt = “greater")$p.value < 0.05)
+ res.t[i]=1
+ T = sum(x>0)
+ if (1−pbinom(T−1,n,1/2) < .05)
+ res.sign[i]=1
+}
> sum(res.t)/m # proportion
rejected by t-test
> sum(res.sign)/m # proportion
rejected by sign-test

(The notation $p. value appended to the output of t.test() retrieves just the p-value from
the test results.)

8.5 Two-sample tests of proportion

In the previous sections our tests of significance compared a sample to some assumed
value of the population and determined whether the sample supported the null hypothesis.
This assumes some specific knowledge about the population parameters. In many
situations, we’d like to compare two parameters.

In this section we consider how to compare two population proportions. This can be
useful in many different contexts: comparing polling results taken over different periods
of time, surveying results after an intervention such as an advertising campaign, or
comparing attitudes among different ethnic groups.

In Example 8.3, we compared the 2001 poverty rate, which was found by a sample,
with the 2000 poverty rate which was known from a census. To compare the 2002 rate to
the 2001 rate, we would compare two samples. How do we handle this with a
significance test?

Let be the estimated 2001 poverty rate and be the estimated 2002 poverty rate.
We wish to perform a significance test of

H0: p1=P2, HA :p1<p2

using the values of and in the test statistic. If we think of the test as one of
differences, we can rephrase it as

H0:p1−p2=0, HA :p1−p2<0.

Using R for introductory statistics 224

A natural test statistic would be

We assume that the surveys were a simple random sample from the population, so that
the number responding favorably, xi, has a binomial distribution with n=ni and p=pi for
i=1, 2. (So Thus, the expectation in Z is simply p1−p2=0 under the null
hypothesis. The standard error is found from the standard deviation under the null
hypothesis

where p=p1=p2 under the null hypothesis. The value of p is not assumed in H0, so we
estimate it and use the standard error instead. To estimate p it makes sense to use the
entire sample:

This leaves

(8.2)

Two-sample test of proportions
If we have sample proportions for two random samples, a significance test of

H0:p1=p2, HA:p1<p2, p1>p2, or p1≠p2

can be carried out with test statistic Z given by (8.2). Under H0, Z has a standard
normal distribution if n1 and n2 are sufficiently large. Large values of Z support the
alternative p1>p2; small values support p1<p2.

In R, the function prop. test () will perform a two-sample test of proportions:
prop.test(x, n, alt=“two.sided”)

The data is specified by a vector of values with x storing the counts and n the sample
size. There is no need to specify a null hypothesis, as it is always the same. The
alternative hypothesis is specified by one of alt=“less”, alt=“greater”, or alt=“two. sided”
(the default).

■ Example 8.8: Poverty rate, continued Assume the 2001 poverty rate of 11.7% was
derived from a random sample of 50,000 people, and the 2002 poverty rate of 12.1% was
derived from a simple random sample of 60,000. Is the difference between the
proportions statistically significant?

Significance tests 225

Let and be the given sample proportions. Our null and
alternative hypotheses are

H0:p1=p2, HA:p1<P2.

We can use prop.test() using to give the frequencies of those in the sample

> phat = c(.121, .117) # the sample proportions
> n = c(50000, 60000) # the sample sizes
> n*phat # the counts
[1] 5850 7260
> prop.test(n*phat,n,alt="less")
 2-sample test for equality of proportions with
 continuity correction
data: n * phat out of n
X-squared = 4.119, df = 1, p-value = 0.02121
alternative hypothesis: less
95 percent confidence interval:
−1.0000000 −0.0007589
sample estimates:
prop 1 prop 2
0.117 0.121

The small p-value of 0.02107 indicates an increase in the rate.
If we were to do this by hand, rather than by using prop.test(), we would find:

> p=sum(n*phat)/sum(n) #
(n_1p_1+n_2p_2)/(n_1+n_2)
> obs=(phat[1]−phat[2])/sqrt(p*(1−p)*sum(1/n))
> obs
[1] −2.039
> pnorm(obs)
[1] 0.02073

This also gives a small p-value. The difference is due to a continuity correction used by
prop.test().

8.5.1 Problems

8.21 A cell-phone store has sold 150 phones of Brand A and had 14 returned as defective.
Additionally, it has sold 125 phones of Brand B and had 15 phones returned as defective.
Is there statistical evidence that Brand A has a smaller chance of being returned than
Brand B?

8.22 In the year 2001, a poll of 600 people found that 250 supported gay marriage. A
2003 poll of 500 found 250 in support. Do a test of significance to see whether the
difference in proportions is statistically significant.

8.23 There were two advance screenings of a new movie. The first audience was
composed of a classical-music radio station’s listeners, the second a rock-androll music
station’s listeners. Suppose the audience size was 350 for each screening. If 82% of the

Using R for introductory statistics 226

audience at the first screening rated the movie favorably, but only 70% of second
audience did, is this difference statistically significant? Can you assume that each
audience is a random sample from the population of the respective radio station listeners?

8.24 The HIP mammography study was one of the first and largest studies of the value
of mammograms. The study began in New York in the 1960s and involved 60,000
women randomly assigned to two groups—one that received mammograms, and one that
did not. The women were then observed for the next 18 years. Of the 30,000 who had
mammograms, 153 died of breast cancer; of the 30,000 who did not, 196 died of breast
cancer. Compare the two sample proportions to see whether there is a statistically
significant difference between the death rates of the two groups. (There is debate about
the validity of the experimental protocol.)

8.25 Ginkgo biloba extract is widely touted as a miracle cure for several ailments,
including acute mountain sickness (AMS), which is common in mountaineering. A
randomized study took 44 healthy subjects to the Himalayas; half received the extract (80
mg twice/day) and half received placebos. Each group was measured for AMS. The
results of the study are given in Table 8.3. Compute a p-value for a significance test for
the null hypothesis of equivalence of proportions against a two-sided alternative.

Table 8.3 Data on acute mountain sickness
Group n Number who suffered AMS
placebo 22 18
ginkgo biloba 22 3
source: Aviation, space, and Environmental Medicine 67, 445–452, 1996

8.26 Immediately after a ban on using of hand-held cell phones while driving was
implemented, compliance with the law was measured. A random sample of 1,250 found
that 98.9% were in compliance. A year after the implementation, compliance was again
measured. A sample of 1,100 drivers found 96.9% in compliance. Is the difference in
proportions statistically significant?

8.27 The start of a May 5, 2004 New York Times article reads

In the wake of huge tobacco tax increases and a ban on smoking in bars,
the number of adult smokers in New York City fell 11 percent from 2002
to 2003, one of the steepest short-term declines ever measured, according
to surveys commissioned by the city.

The article continues, saying that the surveys were conducted using method the questions
and a random dialing approach—identical to those done annually by the federal Centers
for Disease Control and Prevention. Each survey used a large sample of 10,000 people,
giving a stated margin of error of 1 percentage point.

The estimated portion of the population that smoked in 2002 was 21.6% the estimated
proportion in 2003 was 19.3%. Are these differences significant at the 0.01 level?

Significance tests 227

8.6 Two-sample tests of center

A physician may be interested in knowing whether the time to recover for one surgery is
shorter than that for another surgery. A taxicab driver might wish to know whether the
time to travel one route is faster than the time to travel another. A consumer group might
wish to know whether gasoline prices are similar in two different cities. Or a government
agency might want to know whether consumer spending is similar in two different states.
All of these questions could be approached by taking random samples from the respective
populations and comparing. We consider the situation when the question of issue can be
boiled down to a comparison of the centers of the two populations. We can use a
significance test to compare centers in the same manner as we compare two population
proportions. However, as there are more possibilities for types of populations considered,
there are more test statistics to consider.

Suppose Xi,i=1,…,nx and Yj, j=1,…,ny are random samples from the two populations
of interest. A significance test to compare the centers of their parent distributions would
use the hypotheses

H0:µx=µy, HA:µx<µy, µx>µy, or µx≠µy.
(8.3)

A reasonable test statistic depends on the assumptions placed on the parent populations.
If the populations are normally distributed or nearly so, and the samples are independent
of each other, then a t-test can be used. If the populations are not normally distributed,
then a nonparametric Wilcoxon test may be appropriate. If the samples are not
independent but paired off in some way, then a paired test might be called for.

8.6.1 Two sample tests of center with normal populations

Suppose the two samples are independent with normally distributed populations. As
and estimate µx and µy respectively, the value of should be a good estimate for
µx−µy. We can use this to form a test statistic. Both sample means have normally
distributed sampling distributions. A natural test statistic is then

Under H0, the expected value of the difference is a. The standard error is found from the
formula for the standard deviation, which is based on the independence of the samples:

As with confidence intervals, the estimate used for the population variances depends on
an assumption of equal variances.

Using R for introductory statistics 228

If the two variances are assumed equal, the all the data is pooled to estimate σ=σx=σy
using

(8.4)

The standard error used is

(8.5)

With this, T has a t-distribution with n−2 degrees of freedom.
If the population variances are not assumed to be equal, then we estimate σx with sx

and σy with sy to get

(8.6)

Additionally, we use the Welch approximation for the degrees of freedom as described in
Chapter 7. This again yields a test statistic that is described by the t-distribution under the
null hypothesis.

t-tests for comparison of means of independent samples

Assume are independent random samples from
Normal(µi, σi) distributions, where i=x or y. A significance test of

H0:µx=µy, HA:µx<µy, µx>µy, or µx≠µy

can be done with test statistic T. T will have the t-distribution with a specified number
of degrees of freedom under H0. Larger values of T

support HA:µx>µy.

If we assume that then T has nx+ny−2 degrees of freedom, and the standard
error is given by (8.5).

If we assume that then T has degrees of freedom given by the Welch
approximation in Equation 7.5 and standard error given by (8.6).

In each case, the function t.test() will perform the significance test. It is used with the
arguments

t.test(x, y, alt=“two.sided”, var.equal=FALSE)

The data is specified in two data vectors, x and y. There is no need to specify the null
hypothesis, as it is always the same. The alternative is specified by “less”, “greater”, or
“two.sided” (the default). The argument var. equal=TRUE is given to specify the equal-
variance case. The default is to assume unequal variances.

Significance tests 229

■ Example 8.9: Differing dosages of AZT
AZT was the first FDA-approved antiretroviral drug used in the care of HIVinfected
individuals. The common dosage is 300 mg twice daily. Higher dosages cause more side
effects. But are they more effective? A study done in 1990 compared dosages of 300 mg,
600 mg, and 1,500 mg (source http://www.aids.org/). The study found higher toxicity
with greater dosages, and, more importantly, that the lower dosage may be equally
effective.

The p24 antigen can stimulate immune responses. The measurement of p24 levels for
the 300 mg and 600 mg groups is given by the simulated data in Table 8.4. Perform a t-
test to determine whether there is a difference in means.

Table 8.4 Levels of p24 in mg for two treatment
groups

Amount p24 level
300 mg 284 279 289 292 287 295 285 279 306 298
600 mg 298 307 297 279 291 335 299 300 306 291

Let µx be the mean of the 300 mg group, and µy the mean of the 600 mg group. We can
test the hypotheses

H0:µx=µy, HA:µx≠µy

with a t-test. First, we check to see whether the assumption of a common variance and
normality seems appropriate by looking at two densityplots:

> x = c(284, 279, 289, 292, 287, 295, 285, 279, 306,
298)
> y = c(298, 307, 297, 279, 291, 335, 299, 300, 306,
291)
> plot(density(x))
> lines(density(y), lty=2)

The graph (Figure 8.5) shows two density estimates that indicate normally distributed
populations with similar spreads. As such, the t-test looks appropriate.

Using R for introductory statistics 230

Figure 8.5 Densityplots to compare
variances and shapes of the 300 mg
dosage (solid) and the 600 mg dosage
(dashed)

> t.test(x,y,var.equal=TRUE)
 Two Sample t-test
data: x and y
t = −2.034, df = 18, p-value = 0.05696
alternative hypothesis: true difference in means is not
equal to 0
...

The p-value is 0.05696 for the two-sided test. This suggests a difference in the mean
values, but it is not statistically significant at the 0.05 significance level. A look at the
reported confidence interval for the difference of the means shows a wide range of
possible value for µx−µy. We conclude that this data is consistent with the assumption of
no mean difference.

How would this change if we did not assume equal variances?

> t.test(x,y)
 Welch Two Sample t-test
data: x and y
t = −2.034, df = 14.51, p-value = 0.06065
alternative hypothesis: true difference in means is not
equal to 0
95 percent confidence interval:
−22.3557 0.5557
sample estimates:
mean of x mean of y
 289.4 300.3

In this example, the same observed value of the test statistic (marked t) is found as in the
equal-variance case, as (8.5) and (8.6) yield identical standard errors when the two

Significance tests 231

sample sizes are the same. We get a larger p-value, though, as the degrees of freedom
decrease.

8.6.2 Matched samples

There are times when two samples depend on each other in some way, for example,
samples from twin studies, where identical or fraternal twins are used as pairs, so that
genetic or environmental factors can be controlled. For this, the usual two-sample t-test is
not applicable. We mention two examples.

■ Example 8.10: Twin studies An industry-sponsored clinical trial
(http://www.hairtoday.com/html/propeciatwins.cfm) demonstrates that Finasteride
inhibits male-pattern hair loss. How did the researchers show this? They used two
treatment groups: one received a Finasteride treatment, the other a placebo. A
randomized, double-blind study was performed. Hair loss was measured by photographs,
hair counts, and questionnaires.

What was different about this study was the use of identical twins for the treatment
groups. For each pair of twins, one was randomly assigned to the treatment group and the
other to the control group. This allowed the researchers to “control” for genetic
differences—differences that might be so great that the true effect of the Finasteride
treatment could be hidden. The researchers stated

As identical twins share the same genetic makeup, comparison between
the responses of each subject in a twin pair, when one receives drug and
the other receives placebo, allows for rigorous examination of the effects
due to drug treatment in a limited number of subjects.

■ Example 8.11: Pre- and post-tests Outcomes assessment is an attempt to measure
whether a certain action actually does what it is intended to do. For example, does a
statistics book actually work for teaching R? Or, does a statistics class make you
understand the difference between mere sampling variation and a true effect? One way to
assess the effectiveness of something is with a pre-test and a post-test. If the scores are
markedly better on the post-test, then we may be able to attribute the change to the
teaching.

Imagine a class takes a pre-test and a post-test. Each student has two test scores, Xi for
the first test and the matching Yi for the second. How can we test whether there is a
difference in the means? We might be tempted to use the t-test, but we should be careful,
as the two samples are not independent. This assumption of independence was used
implicitly when computing the standard error in the test statistic. Besides, what is really
important is the change in the scores Xi−Yi.

For paired data, even if there are large variations within the samples, we can still test a
difference in the means by using a one-sample test applied to the data, Xi−Yi.

Significance tests for paired samples
If the two sample X1, X2, …, Xn and Y1, Y2, …, Yn are matched so that the differences
Xi−Yi are an i.i.d. sample, then the significance test of hypotheses

Using R for introductory statistics 232

H0:µx=µy, HA:µx<µy, µx≠µy, or µx>µy

becomes a significance test of
H0:µ=0, HA:µ<0, µ>0, or µ≠0.

If the differences have a normally distributed population, a t-test can be used. If the
differences are from a symmetric distribution, the Wilcoxon signed-rank test can be used.
Otherwise, the sign test can be used, where µ is interpreted as the difference of medians.

In R, both the t.test() and wilcox.test() functions have an argument paired=TRUE that
will perform the paired tests.

■ Example 8.12: Twin studies continued For the Finasteride study, photographs are
taken of each head. They are assessed using a standard methodology. This results in a
score between 1 and 7:1 indicating greatly decreased hair growth and 7 greatly increased.
Simulated data, presented as pairs, is in Table 8.5.

We can assess the differences with a paired t-test as follows:

> Finasteride = c(5,3,5,6,4,4,7,4,3)
> placebo = c(2,3,2,4,2,2,3,4,2)

Table 8.5 Assessment for hair loss on 1–7 scale
for twin study

Group score
Finasteride treatment 5 3 5 7 4 4 7 4 3
placebo 2 3 2 4 2 2 3 4 2

> t.test(Finasteride, placebo, paired=TRUE,
alt="two.sided")
 Paired t-test
data: Finasteride and placebo
t=4.154, df=8, p-value=0.003192
alternative hypothesis: true difference in means is not
equal to a
95 percent confidence interval:
0.8403 2.9375
sample estimates:
mean of the differences
 1.889

We see a very small p-value, indicating that the result is significant. The null hypothesis
of no effect is in doubt.

■ Example 8.13: Pre- and post-tests, continued To test whether a college course is
working, a pre- and post-test is arranged for the students. The results are given in Table
8.6. Compare the scores with a t-test. First, assume that the scores are randomly selected
from the two tests. Next, assume that they are pairs of scores for ten students.

Significance tests 233

Table 8.6 Pre- and post-test scores
Test score
Pre-test 77 56 64 60 57 53 72 62 65 66
Post-test 88 74 83 68 58 50 67 64 74 60

For each, we test the hypotheses that
H0:µ1=µ2, HA:µ1<µ2,

and we assume that the data is normally distributed.
If we assume that the scores are random samples from the two test populations, then

the usual t-test is used. We first make a boxplot, to decide whether the variances are equal
(not shown), and then we apply the test.

> pre = c(77, 56, 64, 60, 57, 53, 72, 62, 65, 66)
> post = c(88, 74, 83, 68, 58, 50, 67, 64, 74, 60)
> boxplot(pre,post)
> t.test(pre, post,var.equal=TRUE, alt="less")
...
t = −1.248, df = 18, p-value = 0.1139

The p-value is small but not significant.
If we assume these scores are paired off, then we focus on the differences. This gives a

much smaller p-value

> t.test(pre,post, paired=TRUE, alt="less")
...
t = −1.890, df = 9, p-value = 0.04564
...

This time, the difference is significant at the 0.05 level.
If small samples are to be used, it can often be advantageous to use paired samples,

rather than independent samples.

8.6.3 The Wilcoxon rank-sum test for equality of center

The two-sample t-test tests whether two independent samples have the same center when
both samples are drawn from a normal distribution. However, there are many situations
in which the parent populations may be heavily skewed or have heavy tails. Then the t-
test is not appropriate. However, if it is assumed that our two samples come from two
distributions that are identical up a shift of center, then the Wilcoxon rank-sum test can
be used to perform a significance test to test whether the centers are identical.

Using R for introductory statistics 234

Figure 8.6 Two random samples
from similar distributions indicated
by points with different shades. The
lower ranked ones come primarily
from the distribution shifted to the
left.

To be precise, suppose f(x) is a density of a continuous distribution with mean a. Further,
assume that the Xi are a random sample from a population with density f(x−µ1) (so it has
mean µ1), and that the Yj are a random sample from a population with density f(x−µ2).
Figure 8.6 shows two samples where the µ’s are different. The darker distribution is
shifted to the left, and its sample, indicated with darker dots, has most of its values to the
left of the other sample. This would not be expected if the two populations were identical.
The rank-sum statistic quantifies this, allowing for a significance test.

Wilcoxon rank-sum test for two independent samples
Assume that the random sample, comes from a distribution with density
f(·−µx), and that from a distribution with density f(·−µy) (same shaped
density, but perhaps different centers). A test of significance of the hypotheses

H0:µ1=µ2, HA:µ1<µ2, µ1>µ2, or µ1≠µ2
can be performed with the rank-sum statistic.
To perform the significance test in R, the wilcox.test() function is used as

wilcox.test(x, y, alt=“two.sided”)
The variables x and y store the two data sets, and the alternative is specified as usual

with one of “less”, “greater”, or “two.sided” (the default). The wilcox.test() function will
also work in the case when there are ties in the data.

■ Example 8.14: Comparing grocery checkers A grocery store’s management wishes
to compare checkout personnel to see if there is a difference in their checkout times. A
small sample of data comparing two checkers’ times (in minutes) is given in Table 8.7.
Compare the mean checkout times.

We use the wilcox.test() function after verifying that the assumptions are met.

Significance tests 235

> A = c(5.8, 1.0, 1.1, 2.1, 2.5, 1.1, 1.0, 1.2, 3.2,
2.7)
> B = c(1.5, 2.7, 6.6, 4.6, 1.1, 1.2, 5.7, 3.2, 1.2,
1.3)
> plot(density(A))
> lines(density(B))

The graph (not shown) suggests that the populations are skewed with long tails. As such,
the t-test assumptions are not met. However, we also see that the sam-

Table 8.7 Ten checkout times for two grocery
checkers

Checker Times
checker A 5.8 1.0 1.1 2.1 2.5 1.1 1.0 1.2 3.2 2.7
checker B 1.5 2.7 6.6 4.6 1.1 1.2 5.7 3.2 1.2 1.3

ples appear to have densities with the same shape, so the rank-sum test is available. A
two-sided test can be done with

> wilcox.test(A,B)
 Wilcoxon rank sum test with continuity
correction
data: A and B
W = 34, p-value = 0.2394
alternative hypothesis: true mu is not equal to a

The p-value is not significant. babies

8.6.4 Problems

8.28 A 2003 study at the Cleveland Clinic compared the effects of two cholesterol drugs,
atorvastatin and pravastatin, on middle-aged heart-disease patients. It was found that the
atorvastatin treatment group had an average LDL level of 79 after treatment, whereas the
pravastatin group had an average LDL level of 110. Suppose the two groups contained
250 patients each, and the sample standard deviations were 25 for the atorvastatin group
and 20 for the pravastatin. If the populations are assumed to be normally distributed,
perform a two-sample test to compare whether the mean LDL levels for atorvastatin are
lower than those for pravastatin, or whether the differences are explainable by chance
variation.

8.29 A test to determine whether echinacea is beneficial in treating the common cold
was set up as follows. If a child reported cold symptoms, then he was randomly assigned
to be given either echinacea or a placebo. Recovery time was measured and is
summarized in Table 8.8. Is this statistical evidence that children in the echinacea group
had a quicker recovery?

Table 8.8 Recovery time for different treatment
groups

Using R for introductory statistics 236

group n s
echinacea 200 5.3 2.5
placebo 207 5.4 2.5

8.30 For the babies (UsingR) data set, the variable age contains the mom’s age and
dage contains the dad’s age for several babies. Do a significance test of the null
hypothesis of equal ages against a one-sided alternative that the dads are older.

8.31 The data set normtemp (UsingR) contains body measurements for 130 healthy,
randomly selected individuals. The variable temperature contains normal body
temperature data and the variable gender contains gender information, with male coded
as 1 and female as 2. First split the data by gender, and then perform a two-sample test to
see whether the population means are equivalent. Is the difference statistically
significant?

8.32 Students wishing to graduate must achieve a specific score on a standardized test.
Those failing must take a course and then attempt the test again. Suppose 12 students are
enrolled in the extra course and their two test scores are given in Table 8.9. Do a t-test to
see if there was any improvement in the students’ mean scores following the class. If you
assume equal variances or a paired test, explain why.

Table 8.9 Student scores on pre- and post-test
Student scores
Pre-test 17 12 20 12 20 21 23 10 15 17 18 18
Post-test 19 25 18 18 26 19 27 14 20 22 16 18

The p-value indicates that the null hypothesis of “no improvement” is not consistent with
the data.

8.33 Water-quality researchers wish to measure biomass/chlorophyll ratio for
phytoplankton (in milligrams per liter of water). There are two possible tests, one less
expensive than the other. To see whether the two tests give the same results, ten water
samples were taken and each was measured both ways, providing the data in Table 8.10.
Do a t-test to see if there is a difference in the means of the measured amounts. If you
assume equal variances or a paired test, explain why.

8.34 The shoes data set in the MASS package contains a famous data set on shoe
wear. Ten boys wore two different shoes each, then measurements were taken on shoe
wear. The wear amounts are stored in variables A and B. First make a scatterplot of the
data, then compare the mean wear for the two types of shoes using the appropriate t-test.

Table 8.10 Measurements of
biomass/chlorophyll in mg/L
Method measurement
method 1 45.9 57.6 54.9 38.7 35.7 39.2 45.9 43.2 45.4 54.8
method 2 48.2 64.2 56.8 47.2 43.7 45.7 53.0 52.0 45.1 57.5

8.35 The galton on (UsingR) data set contains data collected by Francis Gallon in 1885.
Each data point contains a child’s height and an average of his or her parents’ heights. Do

Significance tests 237

a t-test to see if there is a difference in the mean height. Assume the paired t-test is
appropriate. What problems are there with this assumption?

8.36 The question of equal variances comes up when we perform a two sample ttest.
We’ve answered this based on a graphical exploration. The F-test for equal variances of
two normal populations can be used to test formally for equality. The test statistic is the
ratio of the sample variances, which under the null hypothesis of equal variances has an
F-distribution. This test is carried out by the function var. test(). A two-sided test

is done with the command var.test(x, y).
Do a two-sided test for equality of variance on the data in Example 8.9.

Using R for introductory statistics 238

Chapter 9
Goodness of fit

In this chapter we return to problems involving categorical data. We previously
summarized such data using tables. Here we discuss a significance test for the
distribution of the values in a table. The test statistic will be based on how well the actual
counts for each category fit the expected counts.

Such tests are called goodness-of-fit tests, as they measure how well the distribution of
the data fits a probability model. In this chapter we will also discuss goodness-of-fit tests
for continuous data. For example, we will learn a significance test for investigating
whether a data set is normally distributed.

9.1 The chi-squared goodness-of-fit test

In a public-opinion poll, there are often more than two possible opinions. For example,
suppose a survey of registered voters is taken to see which candidate is likely to be
elected in an upcoming election. For simplicity, we assume there are two candidates, a
Republican and a Democrat. A prospective voter may choose one of these or may be
undecided. If 100 people are surveyed, and the results are 35 for the Republican, 40 for
the Democrat, and 25 undecided, is the difference between the Republican and
Democratic candidate significant?

9.1.1 The multinomial distribution

Before answering a question about significance, we need a probability model, so that
calculations can be made. The above example is a bit different from the familiar polling
model. When there are just two categories to choose from we use the binomial model as
our probability model; in this case, with more categories, we generalize and use the
multinomial model.

Assume we have k categories to choose from, labeled 1 through k. We pick one of the
categories at random, with probabilities specified by p1, p2, …, Pk; Pi gives the probability
of selecting category i. We must have p1+p2+Pk=1. If all the pi equal 1/k, then each
category is equally likely (like rolling a die). Picking a category with these probabilities
produces a single random value; repeat this selection n times, with each pick being
independent, to get n values. A table of values will report the frequencies. Call these table
entries Y1, Y2, …, Yk. These k numbers sum to n. The joint distribution of these random
variables is called the multinomial distribution.

We can create multinomial data in R with the sample() function. For example, an
M&Ms bag is filled using colors drawn from a fixed ratio. A bag of 30 can be filled as
follows:

> cols =
c("blue","brown","green","orange","red","yellow","purpl
e")
> prob = c(1,1,1,1,2,2,2) # ratio of colors
> bagfull.mms=sample(cols,30,replace=TRUE, prob=prob)
> table(bagfull.mms)
bagfull.mms
blue brown green orange purple red yellow
 2 3 1 3 6 10 5

A formula for the multinomial distribution is similar to that for the binomial distribution
except that more factors are involved, as there are more categories to choose from. The
distribution can be specified as follows:

As an example, consider the voter survey. Suppose we expected the percentages to be
35% Republican, 35% Democrat, and 30% undecided. What is the probability in a survey
of 100 that we see 35, 40, and 25 respectively? It is

This is found with

> choose(100,30)*choose(70,40) * .35^35 * .35^40 *
.30^25
[1] 0.008794

(We skip the last coefficient, as for any j.) This small value is the probability of
the observed value, but it is not a p-value. A p-value also includes the probability of
seeing more extreme values than the observed one. We still need to specify what that
means.

9.1.2 Pearson’s χ2 statistic

Trying to use the multinomial distribution directly to answer a problem about the p-value
is difficult, as the variables Yi are correlated. If one is large the others are more likely to
be small, so the meaning of “extreme” in calculating a pvalue is not immediately clear.
As an alternative, the problem of testing whether a given set of probabilities could have
produced the data is done as before: by comparing the observed value with the expected
value and then normalizing to get something with a known distribution.

Each Yi is a random variable telling us how many of the n choices were in category i.
If we focus on a single i, then Yi is seen to be Binomial(n, pi). Again, the Yi are not
independent but correlated, as one large one implies that the others are more likely
smaller. However, we know that the expected number of Yi is npi. Based on this, a good
statistic might be

Using R for introductory statistics 240

This gives the total discrepancy between the observed and the expected. We use the
square as ∑Yi−npi=0. This sum gets larger when a category is larger or smaller than
expected. So a larger-than-expected value contributes, and any correlated smaller-than-
expected values do, too. As usual, we scale this by the right amount to yield a test statistic
with a known distribution. In this case, each term is divided by the expected amount,
producing Pearson’s chi-squared statistic (written using the Greek letter chi):

(9.1)

Figure 9.1 Simulation of χ2 statistic
with n=20 and probabilities 3/12,
4/12, and 5/12. The chi-squared
density with 2 degrees of freedom is
added.

If the multinomial model is correct, then the asymptotic distribution of Yi is known to be
the chi-squared distribution with k−1 degrees of freedom. The number of degrees of
freedom coincides with the number of free ways we can specify the values for pi in the
null hypothesis. We are free to choose k−1 of the values but not k, as the values must sum
to 1.

The chi-squared distribution is a good fit if the expected cell counts are all five or
more. Figure 9.1 shows a simulation and a histogram of the corresponding χ2 statistic,
along with a theoretical density.

Using this statistic as a test statistic allows us to construct a significance test. Larger
values are now considered more extreme, as they imply more discrepancy from the
predicted amount.

Goodness of fit 241

The chi-squared significance test for goodness of fit
Let Y1, Y2, …, Yk be the observed cell counts in a table that arise from random sampling.
Suppose their joint distribution is described by the multinomial model with probabilities
p1, p2, …, pk. A significance test of

H0:p1=π1, …, pk=πk, HA:pi≠πi for at least i

can be performed with the χ2 statistic. The πi are specified probabilities. Under H0 the
sampling distribution is asymptotically the chi-squared distribution with k−1 degrees of
freedom. This is a good approximation, provided that the expected cell counts are all five
or more. Large values of the statistic support the alternative.

This test is implemented by the chisq.test() function. The function is called with
chisq.test(x, p=…)

The data is given in tabulated form in x; the null hypothesis is specified with the
argument p= as a vector of probabilities. The default is a uniform probability assumption.
This should be given as a named argument, as it is not the second position in the list of
arguments. The alternative hypothesis is not specified, as it does not change. A warning
message will be returned if any category has fewer than five expected counts.

For example, suppose we wanted to know whether the voter data was generated
according to the probabilities p1=.35, p2=.35, and p3=.30. To investigate, we can perform
a significance test. This can be done directly with the chisq.test() function or “by hand.”
We illustrate both approaches, as we’ll see soon that knowing how to do it the long way
allows us to do more problems.

To do this by hand, we specify the counts in y and the probabilities in p, then form the
test statistic:

> y = c(35,40,25)
> p = c(35,35,30) # ratios
> p = p/sum(p) # proportions
> n = sum(y)
> chi2 = sum((y−n*p)^2 / (n*p))
> chi2
[1] 1.548
> pchisq(chi2, df=3–1, lower.tail=F)
[1] 0.4613

In contrast, the above could have been done with

> chisq.test(y, p=p)
Chi-squared test for given probabilities
data: y
X-squared = 1.548, df = 2, p-value = 0.4613

Using R for introductory statistics 242

The function returns the value of the test statistic (after X-squared), the degrees of
freedom, and the p-value.

■ Example 9.1: Teen smoking The samhda (UsingR) data set contains information
about health behavior for school-age children. For example, the variable amt. smoke
measures how often a child smoked in the previous month.

There are seven levels: a 1 means he smoked every day and a 7 means not at all.
Values 98 and 99 indicate missing data. See ?samhda for a description. We investigate
whether the sample proportions agree with the probabilities:

p1=.15, p2=.05, p3=.05, p4=.05, p5=.10, p6=.20, p7=.40

A test of significance can be constructed as follows:

> library(UsingR)
> attach(samhda)
> y = table(amt.smoke[amt.smoke < 98])
> y
 1 2 3 4 5 6 7
32 7 13 10 14 43 105
> p=c(.15,.05,.05,.05,.10,.20,.40)
> chisq.test(y,p=p)
 Chi-squared test for given probabilities
data: y
X-squared=7.938, df=6, p-value=0.2427
> detach(samhda) # clean up

The p-value of 0.2427 is not significant.

Partially specified null hypotheses
In the example with voting data, we might be interested in knowing whether the
Republican candidate is significantly trailing the Democrat or whether the differences are
due to sampling variation. That is, we would want to test the hypotheses

H0:p1=p2 HA:p1≠p2.

These, too, can be tested with the χ2 statistic, but we need to specify what we mean by
“expected,” as under H0 this is not fully specified.

To do so, we use any values completely specified by the null hypothesis; for those
values that aren’t, we estimate using the null hypothesis to pool our data as appropriate.
For this problem, none of the pi values are fully specified. To estimate we use
both of the cell counts through (Y1+Y2)/(2n). This leaves Then
the χ2 statistic in this case becomes

Again, if all the expected counts are large enough, this will have an approximately chi-
squared distribution. There is only one degree of freedom in this problem, as only one

Goodness of fit 243

thing is left to estimate, namely the value p=p1=P2. Once we specify a value of p, then,
by the assumptions in the null hypothesis, all the pi are decided.

We get the p-value in our example as follows:

> y = c(35,40,25)
> phat = c(75/200,75/200,25/100)
> n = sum(y)
> sum((y−n*phat)^2/(n*phat))
[1] 0.3333
> pchisq(.3333, df =1 , lower.tail=FALSE)
[1] 0.5637

The difference is not statistically significant.
In general, the χ2 statistic can be used in significance tests where the null specifies

some relationship among the multinomial probabilities. The asymptotic distribution of
the test statistic under the null hypothesis will be chi-squared. The degrees of freedom
will depend on the number of values that we are free to specify.

9.1.3 Problems

9.1 A die is rolled 100 times and yields the frequencies in Table 9.1. Is this a fair die?
Answer using a significance test with H0:pi=1/6 for each i and

Table 9.1 100 rolls of a die
 value
 1 2 3 4 5 6
count 13 17 9 17 18 26

HA:Pi≠1/6 for at least one i.
9.2 Table 9.2 contains the results of a poll of 787 registered voters and the actual race

results (in percentages of total votes) in the 2003 gubernatorial recall election in
California.

Table 9.2 California gubernatorial recall election
Candidate party poll amount actual
Schwarzenegger Republican 315 48.6
Bustamante Democrat 197 31.5
McClintock Republican 141 12.5
Camejo Green 39 2.8
Huffington Independent 16 0.6
other – 79 4.0
a Source http://www.cnn.com/

Is the sample data consistent with the actual results? Answer this using a test of
significance.

Using R for introductory statistics 244

9.3 A package of M&M candies is filled from batches that contain a specified
percentage of each of six colors. These percentages are given in the mandms (UsingR)
data set. Assume a package of candies contains the following color distribution: 15 blue,
34 brown, 7 green, 19 orange, 29 red, and 24 yellow. Perform a chi-squared test with the
null hypothesis that the candies are from a milk chocolate package. Repeat assuming the
candies are from a Peanut package. Based on the p-values, which would you suspect is
the true source of the candies?

9.4 The pi2000 (UsingR) data set contains the first 2,000 digits of π. Perform a chi-
squared significance test to see if the digits appear with equal probability.

9.5 A simple trick for determining what language a document is written in is to
compare the letter distributions (e.g., the number of z’s) to the known proportions for a
language. For these proportions, we use the familiar letter frequencies given in the
frequencies variable of the scrabble (UsingR) data set. These are an okay approximation
to those in the English language.

For simplicity (see ?scrabble for more details), we focus on the vowel distribution of a
paragraph from R’s webpage appearing below. The counts and Scrabble frequencies are
given in Table 9.3.

R is a language and environment for statistical computing and graphics. It
is a GNU project which is similar to the S language and environment
which was developed at Bell Laboratories (formerly AT&T, now Lucent
Technologies) by John Chambers and colleagues. R can be considered as
a different implementation of S. There are some important differences, but
much code written for S runs unaltered under R.

Table 9.3 Vowel distribution and Scrabble
frequency

 a e i o u
count 28 39 23 22 11
Scrabble frequency 9 12 9 8 4

Perform a chi-squared goodness-of-fit test to see whether the distribution of vowels
appears to be from English.

9.6 The names of common stars are typically Greek or Arab in derivation. The bright.
stars (UsingR) data set contains 96 names of common stars. Perform a significance test
on the letter distribution to see whether they could be mistaken for English words.

The letter distribution can be found with:

> all.names = paste(bright.stars$name, sep="",
collapse="")
> x = unlist(strsplit(tolower(all.names), ""))
> letter.dist = sapply(letters, function(i) sum(x ==
i))

The English-letter frequency is found using the scrabble (UsingR) data set with:

Goodness of fit 245

> p=scrabble$frequency[1:26];p=p/sum(p) # skip the
blank

9.7 The number of murders by day of week in New Jersey during 2003 is shown in Table
9.4.

1. Perform a significance test to test the null hypothesis that a murder is equally likely to
occur on any given day.

Table 9.4 Number of murders by day of week in
New Jersey during 2003

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
53 42 51 45 36 37 65
aSource: New Jersey State Police Uniform Crime Report http://www.njsp.org/

2. Perform a significance test of the null hypothesis that murders happen on each
weekday with equal probability; similarly on the weekends, but not necessarily with
the same probability. For each test, write down explicitly the null and alternative
hypotheses.

9.8 A large bag of M&Ms is opened and some of the colors are counted: 41 brown, 48
orange, 105 yellow, and 58 green. Test the partially specified null hypothesis that the
probability of brown is equal to the probability of orange. What do you conclude?

9.9 The data for Figure 9.1 was simulated using the following commands:

> n = 20; m = 250; k = 3
> f = factor(letters[1:k])
> p = c(3,4,5); p = p/sum(p)
> res = c()
> ford in 1:m) {
+ x = sample(f,n,replace=TRUE,prob=p)
+ y = table(x)
+ res[i] = sum((y − n*p)^2/(n*p))
+ >
> hist(res,prob=T,col=gray(.8), ylim=c(0,.5)) # extend
y limit
> curve(dchisq(x,df=k-l), add=TRUE)

The sampling distribution of χ2 is well approximated by the chi-squared distribution, with
k−1 degrees if the expected cell counts are all five or more. Do a simulation like the
above, only with n=5. Does the fit seem right? Repeat with n=20 using the different
probabilities p=c (1,19,20) /40.

9.10 When k=2 you can algebraically simplify the χ2 statistic. Show that it simplifies
to

Using R for introductory statistics 246

This is the square of the statistic used in the one-sample test of proportion and is
asymptotically a single-squared normal or a chi-squared random variable with 1 degree of
freedom. Thus, in this case, the chi-squared test is equivalent to the test of proportions.

9.2 The chi-squared test of independence

In a two-way contingency table we are interested in the relationship between the
variables. In particular, we ask whether the levels of one variable affect the distribution of
the other variable. That is, are they independent random variables in the same sense that
we defined an independent sequence of random variables?

For example, in the seat-belt-usage data from Table 3.1 (reprinted in Table 9.5), does
the fact that a parent has her seat belt buckled affect the chance that the child’s seat belt
will be buckled?

Table 9.5 Seat-belt usage in California
 Child
Parent buckled unbuckled
buckled 56 8
unbuckled 2 16

The differences appear so dramatic that the answer seems to be obvious. We can set up a
significance test to help decide, with a method that can be used when the data does not
tell such a clear story.

To approach this question with a significance test, we need to state the null and
alternative hypotheses, a test statistic, and a probability model.

First, our model for the sampling is that each observed car follows some specified
probability that is recorded in any given cell. These probabilities don’t change from
observation to observation, and the outcome of one does not effect the distribution of
another. That is, we have an i.i.d. sequence. Then a multinomial model applies. Fix some
notation. Let nr be the number of rows in the table (the number of levels of the row
variable), nc be the number of columns, and Yij be a random variable recording the
frequency of the (i, j) cell. Let pij be the cell probability for the ith row and jth column.
The marginal probabilities are denoted and where, for example,

Our null hypothesis is that the column variable should be independent of the row

variable. When stated in terms of the cell probabilities, pij, this says that This
is consistent with the notion that independence means multiply.

Thus our hypotheses can be stated verbally as
H0: the variables are independent, HA: the variables are not independent.

In terms of our notation, we can rewrite the null hypothesis as
The χ2 statistic,

Goodness of fit 247

can still be used as a test statistic after we have estimated each pij in order to compute the
“expected” counts. Again we use the data and the assumptions to estimate the pij.
Basically, the data is used to estimate the marginal probabilities, and the assumption of
independence allows us to estimate the pij from there.

Table 9.6 Seat-belt usage in California with
marginal distributions

 Child
Parent buckled unbuckled marginal
buckled 56 8 64
unbuckled 2 16 18
marginal 58 24 82

The marginal probabilities are estimated by the marginal distributions of the data. For our
example these are given in Table 9.6. The estimate for is

and for it is Similarly, for we have and
As usual, we’ve used a “hat” for estimated values. With these estimates, we

can use the relationship to find the estimate For our seat-belt data
we have the estimates in Table 9.7. In order to show where the values comes from, the
values have not been simplified.

Table 9.7 Seat-belt usage in California with
estimates for the corresponding pij

 Child
Parent buckled unbuckled marginal
buckled

unbuckled

marginal

1

With this table we can compute the expected amounts in the ijth cell with This is
often written RiCj/n, where Ri is the row sum and Ci the column sum, as this simplifies
computations by hand.

With the expected amounts now known, we form the χ2 statistic as:

(92)

Under the hypothesis of multinomial data and the independence of the variables, the
sampling distribution of χ2 will be the chi-squared distribution with (nr−1)·(nc−1) degrees
of freedom. Why this many? For the row variable we have nr−1 unspecified values that
the marginal probabilities can take (not nr, as they sum to 1) and similarly for the column
variable. Thus there are (nr−1)·(nc−1) unspecified values.

Using R for introductory statistics 248

We now have all the pieces to formulate the problem in the language of a significance
test.

The chi-squared test for independence of two categorical variables
Let Yij,i=1, …, nr, j=1, …, nc be the cell frequencies in a two-way contingency table for
which the multinomial model applies. A significance test of

H0: the two variables are independent
HA: the two variables are not independent
can be performed using the chi-squared test statistic (9.2). Under the null hypothesis,

this statistic has sampling distribution that is approximated by the chi-squared
distribution with (nr−1)(nc−1) degrees of freedom. The p-value is computed using
P(χ2≥observed value|H0).

In R this test is performed by the chisq.test() function. If the data is summarized in a
table or a matrix in the variable x the usage is

chisq.test(x)

If the data is unsummarized and is stored in two variables x and y where the ith entries
match up, then the function can be used as

chisq.test(x,y).

Alternatively, the data could be summarized first using table(), as in
chisq.test(table(x,y)).

For each usage, the null and alternative hypotheses are not specified, as they are the same
each time the test is used.

The argument simulate.p.value=TRUE will return a p-value estimated using a Monte
Carlo simulation. This is used if the expected counts in some cells are too small to use the
chi-squared distribution to approximate the sampling distribution of χ2.

To illustrate, the following will do the chi-squared test on the seat-belt data. This data is
summarized, so we first need to make a table. We use rbind() to combine rows.

> seatbelt = rbind(c(56,8),c(2,16))
> seatbelt
 [,1] [,2]
[1,] 56 8
[2,] 2 16
> chisq.test(seatbelt)
 Pearson’s Chi-squared test with Yates’
continuity
 correction
data: seatbelt
X-squared = 36.00, df = 1, p-value = 1.978e-09

The small p-value is consistent with our observation that the two variables are not
independent.

Goodness of fit 249

Example 9.2: Teen smoking and gender The samhda (UsingR) data set contains
survey data on 590 children. The variables gender and amt. smoke contain information
about the gender of the participant and how often the participant smoked in the last
month. Are the two variables independent? Is smoking dependent on gender?

We compute a p-value for the hypotheses
H0: the two variables are independent
HA : the two variables are not independent using the χ2 statistic.
In this example we use xtabs() to make a table, then apply chisq.test(). The xtabs()

function allows us to use the convenient subset= argument to eliminate the data for which
the values are not applicable.

> tbl = xtabs(~ gender + amt.smoke, # no left
side in formula
+ subset = amt.smoke < 98 & gender !=7,
+ data=samhda)
> tbl
 amt.smoke
gender 1 2 3 4 5 6 7
 1 16 3 5 6 7 24 64
 2 16 4 8 4 7 19 40
> chisq.test(tbl)
 Pearson’s Chi-squared test
data: tbl
X-squared=4.147, df=6, p-value=0.6568
Warning message:
Chi-squared approximation may be incorrect in:
chisq.test(tbl)

The significance test shows no reason to doubt the hypothesis that the two variables are
independent.

The warning message is due to some expected counts being small. Could this
significantly change the p-value reported? A p-value based on a simulation may be
computed.

> chisq.test(tbl,simulate.p.value=TRUE)
 Pearson’s Chi-squared test with simulated p-
value (based
 on 2000 replicates)
data: tbl
X-squared = 4.147, df = NA, p-value = 0.6612

The p-value is not changed significantly.

9.2.1 The chi-squared test of homogeneity

How can we assess the effectiveness of a drug treatment? Typically, there is a clinical
trial, with each participant randomly allocated to either a treatment group or a placebo
group. If the results are measured numerically, a t-test may be appropriate to investigate

Using R for introductory statistics 250

whether any differences in means are significant. When the results are categorical, we see
next how to use the χ2 statistic to test whether the distributions of the results are the same.

Stanford University Medical Center conducted a study to determine whether the
antidepressant Celexa can help stop compulsive shopping. Twenty-four compulsive
shoppers participated in the study: twelve were given a placebo and twelve a dosage of
Celexa daily for seven weeks. After this time the individuals were surveyed to determine
whether their desires to shop had been curtailed. Data simulated from a preliminary
report is given in Table 9.8.

Does this indicate that the two samples have different distributions?

Table 9.8 Does Celexa treatment cut down on
compulsive shopping?

 much worse worse same much improved very much improved
Celexa 0 2 3 5 2
placebo 0 2 8 2 0

We formulate this as a significance test using hypotheses:
H0: the two distributions are the same
HA: the two distributions are different.
We use the χ2 statistic. Again we need to determine the expected amounts, as they are

not fully specified by H0.
Let the random variable be the column variable, and the category that breaks up the

data be the row variable in our table of data. For row i of the table, let pij be the
probability that the random variable (the survey result) will be in the jth level of the
random variable. We can rephrase the hypotheses as

H0:pij=pj for all rows i, HA: pij≠pj for some i, j.

If we let ni be the number of counts in each row (Ri before), then the expected amount in
the (i, j) cell under H0 should be nipj. We don’t specify the value of pj in the null
hypothesis, so it is estimated. Under H0 all the data in the jth column of our table is
binomial with n and pj, so an estimator for pj would be the column sum divided by n:
Cj/n. Based on this, the expected number in the (i, j)-cell would be

This is the same formula as the chi-squared test of independence.
As the test statistic and its sampling distribution under H0 are the same as with the test

of independence, the chi-squared significance tests of homogeneity and independence are
identical in implementation despite the differences in the hypotheses.

Before proceeding, let’s combine the data so that there are three outcomes: “worse,”
“same,” and “better.”

> celexa = c(2,3,7); placebo=c(2,8,2)
> x = rbind(celexa,placebo)
> colnames(x) = c("worse","same","better”)
> x

Goodness of fit 251

 worse same better
celexa 2 3 7
placebo 2 8 2
> chisq.test(x)
 Pearson’s Chi-squared test
data: x
X-squared = 5.05, df = 2, p-value = 0.08004
Warning message:
Chi-squared approximation may be incorrect in:
chisq.test(x)

The warning notes that one or more of the expected cell counts is less than five,
indicating a possible discrepancy with the asymptotic distribution used to find the p-
value. We can use a simulation to find the p-value, instead of using the chi-squared
distribution approximation, as follows:

> chisq.test(x, simulate.p.value=TRUE)
 Pearson’s Chi-squared test with simulated p-value
(based
 on 2000 replicates)
data: x
X-squared = 5.05, df = NA, p-value = 0.1025

In both cases, the p-value is small but not tiny.

9.2.2 Problems

9.11 A number of drivers were surveyed to see whether they had been in an accident
during the previous year, and, if so, whether it was a minor or major accident. The results
are tabulated by age group in Table 9.9. Do a chi-squared hypothesis test of independence
for the two variables.

Table 9.9 Type of accident by age
Accident type

Age none minor major
under 18 67 10 5
18–25 42 6 5
26–40 75 8 4
40–65 56 4 6
over 65 57 15 1

9.12 Table 9.10 contains data on the severity of injuries sustained during car crashes. The
data is tabulated by whether or not the passenger wore a seat belt. Are the two variables
independent?

Using R for introductory statistics 252

Table 9.10 Accidents by injury level and seat-
belt usage

Injury level
 none minimal minor major
Seat belt yes 12,813 647 359 42
 no 65,963 4,000 2,642 303

9.13 The air quality data set contains measurements of air quality in New York City. We
wish to see if ozone levels are independent of temperature. First we gather the data, using
complete. cases () to remove missing data from our data set.

> aq = airquality[complete.cases(airquality),]
> attach(aq)
> te = cut(Temp, quantile(Temp))
> oz = cut(Ozone,quantile(Ozone))

Perform a chi-squared test of independence on the two variables te and oz. Does the data
support an assumption of independence?

9.14 In an effort to increase student retention, many colleges have tried block
programs. Assume that 100 students are broken into two groups of 50 at random. Fifty
are in a block program; the others are not. The number of years each student attends the
college is then measured. We wish to test whether the block program makes a difference
in retention. The data is recorded in Table 9.11. Perform a chi-squared test of significance
to investigate whether the distributions are homogeneous.

Table 9.11 Retention data by year and program
Program 1 year 2 year 3 year 4year 5+ years
nonblock 18 15 5 8 4
block 10 5 7 18 10

9.15 The data set oral.lesion (UsingR) contains data on location of an oral lesion for three
geographic locations. This data set appears in an article by Mehta and Patel about
differences in p-values in tests for independence when the exact or asymptotic
distributions are used. Compare the p-values found by chisq.test() when the asymptotic
distribution of the sampling distribution is used to find the p-value and when a simulated
value is used. Are the p-values similar? If not, which do you think is more accurate?
Why?

9.3 Goodness-of-fit tests for continuous distributions

When finding confidence intervals for a sample we were concerned about whether or not
the data was sampled from a normal distribution. To investigate, we made a quantile plot
or histogram and eyeballed the result. In this section, we see how to compare a
continuous distribution with a theoretical one using a significance test.

Goodness of fit 253

The chi-squared test is used for categorical data. We can try to make it work for
continuous data by “binning.” That is, as in a construction of a histogram, we can choose
some bins and count the number of data points in each. Now the data can be thought of as
categorical and the test can be used for goodness of fit.

This is fine in theory but works poorly in practice. The Kolmogorov-Smirnov test will
be a better alternative in the continuous distribution case.

9.3.1 Kolmogorov-Smirnov test

Suppose we have a random sample X1, X2, …, Xn from some continuous distribution.
(There should be no ties in the data.) Let f(x) be the density and X some other random
variable with this density. The cumulative distribution function for X is F(x)=P(X≤x), or
the area to the left of x under the density of X.

The c.d.f. can be defined the same way when X is discrete. In that case it is computed
from the p.d.f. by summing: P(X≤x)=∑y≤xf(y).

For a sample, X1, X2,…Xn, the empirical distribution is the distribution generated by
sampling from the data points. The probability that a number randomly picked from a
sample is less than or equal to x is the number of data points in the sample less than or
equal to x divided by n. We use the notation Fn(x) for this:

Fn(x) is referred to as the empirical cumulative distribution function, or e.c.d.f.
The function Fn (x) can easily be plotted in R using the ecdf() function in the stats

package.* This function is used in a manner similar to the density() function: the return
value is plotted in a new figure using plot() or may be

*The ecdf() function from the useful Hmisc package can also be used to create these graphs. The
Hmisc package needs to be installed separately. Use the menu bar or install. packages (“Hmisc”).

Figure 9.2 For a sample of size 20
from a normally distributed
population, both sample and

Using R for introductory statistics 254

theoretical densities and cumulative
distribution functions are drawn

added to the existing plot using lines(). The following commands produced Figure 9.2:

> y = rnorm(20)
> plot(density(y), main="Densities”) # densities
> curve(dnorm(x), add=TRUE, lty=2)
> plot(ecdf(y), main="C.d.f.s”) # c.d.f.s
> curve(pnorm(x), add=TRUE, lty=2)

If the data is from the population with c.d.f. F, then we would expect that Fn is close to F
is some way. But what does “close” mean? In this context, we have two different
functions of x. Define the distance between them as the largest difference they have:

D=maximum in x of |Fn(x)-F(x)|.

The surprising thing is that with only the assumption that F is continuous, D has a known
sampling distribution called the Kolmogorov-Smirnov distribution. This is illustrated in
Figure 9.3, where the sampling distribution of the statistic for n=25 is simulated for
several families of random data. In each case, we see the same distribution. This fact
allows us to construct a significance test using the test statistic D. In addition, a similar
test can be done to compare two independent samples.

The Kolmogorov-Smirnov goodness-of-fit test
Assume X1, X2, …, Xn is an i.i.d. sample from a continuous distribution with c.d.f. F(x).
Let Fn(x) be the empirical c.d.f. A significance test of

H0: F(x)=F0(x), HA:F(x)≠F0(x)

Figure 9.3 Density estimates for sampling
distribution of the Kolmogorov-Smirnov statistic

Goodness of fit 255

with n=25 for normal, uniform, t, and
exponential data

can be constructed with test statistic D. Large values of D support the alternative
hypothesis.

In R, this test is implemented in the function ks.test(). Its usage follows this pattern:
ks.test(x, y=“name”, …)Z

The variable x stores the data. The argument y= is used to set the family name of the
distribution in H0. It has a character value of “name” containing the “p” function that
returns the c.d.f. for the family (e.g., “pnorm” or “pt”). The…argument allows the
specification of the assumed parameter values. These depend on the family name and are
specified as named arguments, as in mean= 1, sd= 1. The parameter values should not be
estimated from the data, as this affects the sampling distribution of D.

If we have two i.i.d. independent samples X1, …, Xn and Y1, …, Ym, from two
continuous distributions FX and FY, then a significance test of

H0:FX=FY, HA:FX≠FY

can be constructed with a similar test statistic:

In this case, the ks.test() can be used as

ks.test(x,y)

where x and y store the data.
We illustrate with some simulated data.

> x = rnorm(100,mean=5, sd=2)
> ks.test(x,"pnorm",mean=0,sd=2) # "wrong" parameters
One-sample Kolmogorov-Smirnov test
data: x
D = 0.7578, p-value = < 2.2e-16
alternative hypothesis: two.sided
> ks.test(x,"pnorm",mean=5,sd=2) # correct population
parameters
...
D = 0.1102, p-value = 0.1759
...
> x = runif(100, min=0, max=5)
> ks.test(x,"punif",min=0,max=6) # "wrong" parameters
...
D = 0.1669, p-value = 0.007588
...
> ks.test(x,"punif",min=0,max=5) # correct population
parameters
...

Using R for introductory statistics 256

D = 0.0745, p-value = 0.6363
...

The p-values are significant only when the parameters do not match the known
population ones.

■ Example 9.3: Difference in SAT scores The data set stud. recs (UsingR) contains
math and verbal SAT scores for some students (sat.m and sat.v). Assume naively that the
two samples are independent, are the samples from the same population of scores?

First, we make a q-q plot, a side-by-side boxplot, and a plot of the e.c.d.f.’s for the
data, to see whether there is any merit to the question.

> data(stud.recs,package="UsingR") # or library(UsingR)
> attach(stud.recs)
> boxplot(list(math=sat.m,verbal=sat.v), main="SAT
scores")
> qqplot(sat.m,sat.v, main="Math and verbal SAT
scores")
> plot(ecdf(sat.m), main="Math and verbal SAT scores")
> lines(ecdf(sat.v), lty=2)

The graphics are in Figure 9.4. The q-q plot shows similarly shaped distributions, but
boxplots show that the centers appear to be different. Consequently, the cumulative
distribution functions do not look that similar. The KolmogorovSmirnov test detects this
and returns a small p-value.

Figure 9.4 Three plots comparing
the distribution of math and verbal
SAT scores in the stud.recs (UsingR)
data set.

> ks.test(sat.m,sat.v)
 Two-sample Kolmogorov-Smirnov test
data: sat.m and sat.v

Goodness of fit 257

D = 0.2125, p-value = 0.001456
alternative hypothesis: two.sided

9.3.2 The Shapiro-Wilk test for normality

The Kolmogorov-Smirnov test for a univariate data set works when the distribution in the
null hypothesis is fully specified prior to our looking at the data. In particular, any
assumptions on the values for the parameters should not depend on the data, as this can
change the sampling distribution. Figure 9.5 shows the sampling distribution of the
Kolmogorov-Smirnov statistic for Normal(0, 1) data and the sampling distribution of the
Kolmogorov-Smirnov statistic for the same data when the sample values of and s are
used for the parameters of the normal distribution (instead of 0 and 1). The figure was
generated with this simulation:

> res.1 res.2 = c()
> for(i in 1:500) {
+ x = rnorm(25)
+ res.1[i] = ks.test(x,pnorm)$statistic
+ res.2[i] = ks.test(x,pnorm,mean(x),sd(x))$statistic
+}
> plot(density(res.1),main="K-S sampling distribution”)
> lines(density(res.2),lty=2)

(To retrieve just the value of the test statistic from the output of ks.test() we take
advantage of the fact that its return value is a list with one component named statistic
containing the desired value. This is why the syntax ks. test (…) $statistic is used.)

Figure 9.5 The sampling distribution
for the Kolmogorov-Smirnov
statistic when the parameters are
estimated (dashed line) and when
not

Using R for introductory statistics 258

A consequence is that we can’t use the Kolmogorov-Smirnov test to test for normality of
a data set unless we know the parameters of the underlying distribution.† The Shapiro-
Wilk test allows us to do this. This test statistic is based on the ideas behind the quantile-
quantile plot, which we’ve used to gauge normality. Its definition is a bit involved, but its
usage in R is straightforward.

The Shapiro-Wilk test for normality
If X1, X2, …, Xn is an i.i.d. sample from a continuous distribution, a significance test of

H0: parent distribution is normal,
HA: the parent distribution is not normal

†The Lilliefors test, implemented by lillie.test() in the contributed package nortest, will make the
necessary adjustments to use this test statistic. As well, the nortest package implements other tests
of normality. In many installations of R, nortest may be installed from a menubar or with the
command install, packages (“nortest”). See Chapter 1 for further information about package
installation.

can be carried out with the Shapiro-Wilk test statistic.
In R, the function shapiro. test() will perform the test. The usage is simply
shapiro.test(x)

where the data vector x contains the sample data.

■ Example 9.4: Normality of SAT scores For the SAT data in the stud. recs (UsingR)
data set, we saw in Example 9.3 that the two distributions are different. Are they
normally distributed? We can answer with the Shapiro-Wilk test:

> attach(stud.recs)
> shapiro.test(sat.m)
 Shapiro-Wilk normality test
data: sat.m
W = 0.9898, p-value = 0.3056
> shapiro.test(sat.v)
...
W=0.994, p-value=0.752
> detach(stud.recs)

In each case, the p-value is not statistically significant. There is no evidence that the data
is not normally distributed. ■

■ Example 9.5: Is on-base percentage normally distributed? In Example 2.8 the
distribution of the on-base percentage from the 2002 major league baseball season was
shown. It appears bell shaped except for one outlier. Does the data come from a normally
distributed population?

Using the Shapiro-Wilk test gives us
> shapiro.test(OBP)
 Shapiro-Wilk normality test

Goodness of fit 259

data: OBP
W = 0.9709, p-value = 1.206e-07

So it is unlikely. Perhaps this is due to the one outlier. We eliminate this and try again

> shapiro.test(OBP[OBP<.5])
 Shapiro-Wilk normality test
data: OBP[OBP < 0.5]
W = 0.9905, p-value = 0.006404

The conclusion is the same: the data is not normally distributed. Also, note the dramatic
difference in the p-value that just one outlier makes. The statistic is not very resistant.
(UsingR)

In defining the t-test, it was assumed that the data is sampled from a normal
population. This is because the sampling distribution of the t-statistic is known under this
assumption. However, this would not preclude us from using the t-test to perform
statistical inference on data that has failed a formal test for normality. For small samples
the t-test may apply, as the distribution of the t-statistic is robust to small changes in the
assumptions on the parent distribution. If the parent distribution is not normal but also not
too skewed, then a t-test can be appropriate. For large samples, the central limit theorem
may apply, making a t-test valid.

9.3.3 Finding parameter values using fitdistr()

If we know a data set comes from a known distribution and would like to estimate the
parameter values, we can use the convenient fitdistr() function from the MASS library.
This function estimates the parameters for a wide family of distributions. The function is
called with these arguments:

fitdistr(x, densfun=family.name, start=list(…))

We specify the data as a data vector, x; the family is specified by its full name, unlike that
used in ks.test); and, for many of the distributions, reasonable starting values are
specified using a named list. The fitdistr() function fits the parameters by a method called
maximum-likelihood. Often this coincides with using the sample mean or standard
deviation to estimate the parameters, but in general it allows for a uniform approach to
this estimation problem and associated inferential problems.

■ Example 9.6: Exploring fitdistr() The data set baby boom (UsingR) contains data
on the births of 44 children in a one-day period at a hospital in Brisbane, Australia. The
variable wt records the weights of each newborn. A histogram suggests that the data
comes from a normally distributed population. We can use fitdistr() to find estimates for
the parameters µ and σ, which for the normal distribution are the population mean and
standard deviation.

> data(babyboom, package="UsingR") # or library(UsingR)
> fitdistr(babyboom$wt,"normal")
 mean sd
3275.95 522.00

Using R for introductory statistics 260

(78.69) (55.65)

These estimates include standard errors in parentheses, using a normal approximation.
These can be used to give confidence intervals for the estimates.

This estimate for the mean and standard deviation could also be done directly, as it
coincides with the sample mean and sample standard deviation. However,

Figure 9.6 Both figures illustrate the
inter-arrival times of the babyboom
data set. Figure on left shows
empirical density and the fit of the
gamma distribution given by
fitdistr(). Figure on right shows same
relationship using cumulative
distribution functions.

the standard errors are new. To give a different usage, we look at the variable running,
time, which records the time of day of each birth. The time differences between
successive births are called the inter-arrival times. To make a densityplot (Figure 9.6), we
first find the inter-arrival times using diff():

> inter = diff(babyboom$running.time)
> plot(density(inter), ylim=c(0,0.025), # adjust
ylim for next plot
+ main="Compare estimated densities", xlab="inter")

We fit the gamma distribution to the data. The gamma distribution generalizes the
exponential distribution. It has two parameters, a shape and a rate. A value of 1 for the
shape coincides with the exponential distribution. The fitdistr () function does not need
starting values for the gamma distribution.

> fitdistr(inter,"gamma")
 shape rate
1.208593 0.036350

Goodness of fit 261

(0.233040) (0.008625)
Warning messages:
1: NaNs produced in: dgamma(x, shape, scale, log)
2: NaNs produced in: dgamma(x, shape, scale, log)
> curve(dgamma(x,shape=1.208593, rate=0.036350), add=T,
lty=2)
>
legend(100,.020,legend=c("density()","fitdistr()"),lty=
1:2)

The warning message informs us that the fitting encounted some difficulties.
Finally, we compare the cumulative distribution functions with the following

commands (the graphic on the right in Figure 9.6):

> plot(ecdf(inter),
+ main="Compare ecdf with estimated cdf", xlab="inter")
> curve(pgamma(x,shape=1.208593, rate=0.036350), add=T)
> legend(70,.8,legend=c("ecdf","estimated
cdf"),lty=1:2)

9.3.4 Problems

9.16 In two examples in Chapter 7, data on CEOs is compared. The data is repeated in
Table 9.12. Are the parent distributions the same? Answer this using a test of
significance.

Table 9.12 CEO pay data for 2000 and 2002
Year Compensation in $10,000s
2001 110 12 2.5 98 1017 540 54 4.3 150 432
2002 312 316 175 200 92 201 428 51 289 1126 822

9.17 Carry out a Shapiro-Wilk test for the mother’s height, ht, and weight, wt, in the
babies (UsingR) data set. Remember to exclude the cases when ht==99 and wt==999.
Are the data sets normally distributed?

9.18 The brightness (UsingR) data set contains brightness measurements for 966 stars
from the Hipparcos catalog. Is the data normal? Compare the result with a significance
test to the graphical investigation done by

> hist(brightness, prob=TRUE)
> lines(density(brightness))
> curve(dnorm(x, mean(brightness), sd(brightness)),
add=TRUE)

9.19 The variable temperature in the data set normtemp (UsingR) contains normal body
temperature measurements for 130 healthy, randomly selected in¬ dividuals. Is normal
body temperature normally distributed?

Using R for introductory statistics 262

9.20 The rivers data set contains the length of 141 major rivers in North America. Fit
this distribution using the gamma distribution and f itdistr(). How well does the gamma
distribution fit the data?

9.21 Find parameter estimates for µ and σ for the variables sat. m and sat. v in the
stud.recs (UsingR) data set. Assume the respective populations are normally distributed.

9.22 How good is the Kolmogorov-Smirnov test at rejecting the null when it is false?
The following command will do 100 simulations of the test when the data is not normal,
but long-tailed and symmetric.

> res = sapply(1:100,
+ function(x) ks.test(rt(25,df=3),"pnorm")$p.value)

(The syntax above is using the fact that ks.test() returns a list of values with one
component named p.value.) What percentage of the trials have a p-value less than 0.05?

Try this with the exponential distribution (that is, replace rt (25, df=3) with rexp
(25)−1). Is it better when the data is skewed?

9.23 A key to understanding why the Kolmogorov-Smirnov statistic has a sampling
distribution that does not depend on the underlying parent population (as long as it is
continuous) is the fact that if F(x) is the c.d.f. for a random variable X, then F(X) is
uniformly distributed on [0, 1].

This can be proved algebraically using inverse functions, but instead we see how to
simulate the problem to gain insight. The following line will illustrate this for the normal
distribution:

> qqplot(pnorm(rnorm(100)),runif(100))

The qqplot() should be nearly straight if the distribution is uniform. Change the
distribution to some others and see that you get a nearly straight line in each case. For
example, the t-distribution with 5 degrees of freedom would be done with

> qqplot(pt(rt(100,df=5),df=5),runif(100))

Try the uniform distribution, the exponential distribution, and the lognormal distribution
(lnorm).

9.24 Is the Shapiro-Wilk test resistant to outliers? Run the following commands and
decide whether the presence of a single large outlier changes the ability of the test to
detect normality.

> Shapiro.test(c(rnorm(100),5))
> Shapiro.test(c(rnorm(1000),5))
> shapiro.test(c(rnorm(4000),5))

Goodness of fit 263

Chapter 10
Linear regression

In Chapter 3 we looked at the simple linear regression model,
yi=β0β1xi+εi,

as a way to summarize a linear relationship between pairs of data (xi, yi). In this chapter
we return to this model. We begin with a review and then further the discussion using the
tools of statistical inference. Additionally, we will see that the methods developed for this
model extend readily to the multiple linear regression model where there is more than one
predictor.

10.1 The simple linear regression model

Many times we assume that an increase in the predictor variable will correspond to an
increase (or decrease) in the response variable. A basic model for this is a simple linear
regression model:

Yi=β0+β1xi+εi.

The Y variable is called the response variable and the x variable the predictor variable,
covariate, or regressor.

As a statistical model, this says that the value of Yi depends on three things: that of xi,
the function β0+ β1x, and the value of the random variable εi. The model says that for a
given value o f x, the corresponding value of Y is found by first using the function on x
and then adding the random error term εi.

To be able to make statistical inference, we assume that the error terms, εi, are i.i.d.
and have a Normal (0, σ) distribution. This assumption can be rephrased as an assumption
on the randomness of the response variable. If the x values are fixed, then the distribution
of Yi is normal with mean µy|x=β0+β1Xi and variance σ2. This can be expressed as Yi has a
Normal(β0+β1xi, σ) distribution. If the x values are random, the model assumes that,
conditionally on knowing these random values, the same is true about the distribution of
the Yi.

10.1.1 Model formulas for linear models

Before using R to find estimates, we need to learn how R represents statistical models.
Linear models are fit using R’s model formulas, of which we have already seen a few
examples.

The basic format for a formula is

response ~ predictor

The ~ (tilde) is read “is modeled by” and is used to separate the response from the
predictor(s). The response variable can have regular mathematical expressions applied to
it, but for the predictor variables the regular notations +, −, *, /, and ^ have different
meanings. A+means to add another term to the model, − means to drop a term, more or
less coinciding with the symbols’ common usage. But *, /, and ^ are used differently. If
we want to use regular mathematical notation for the predictor we must insulate the
symbols’ usage with the I () function, as in I (x^2).

10.1.2 Examples of the linear model

At first, the simple linear regression model appears to be solely about a straightline
relationship between pairs of data. We’ll see that this isn’t so, by looking at how the
model accommodates many of the ideas previously mentioned.

Simple linear regression If (xi, yi) are related by the linear model
yi=β0+β1xi+εi

as above, then the model is represented in R by the formula y ~ x. The intercept term, β0,
is implicitly defined.

If for some reason the intercept term is not desired, it can be dropped from the model
by including the term −1, as in y ~ x−1.

The mean of an i.i.d. sample In finding confidence intervals or performing a
significance test for the mean of an i.i.d. sample, Y1, Y2,…,Yn, we often assumed
normality of the population. In terms of a statistical model this could be viewed as

Yi=µ+εi,

where the εi are Normal(0, σ).
The model for this in R is y ~ 1. As there is no predictor variable, the intercept term is

explicitly presen t.
The paired t-test In Chapter 8, we considered the paired t-test. This test applies when

two samples are somehow related and the differences between the two samples is
random. That is, Yi−Xi, is the quantity of interest. This corresponds to the statistical
model

yi=xi+εi.

If we assume εi has mean 0, then we can model the mean difference between Y and X by
µ, and our model becomes

Yi=µ+Xi+εi.

Our significance test with H0: µ1=µ2 turns into a test of µ=0.
The model formula to fit this in R uses an offset, which we won’t discuss again, but

for reference it would look like y ~ offset(x).
In Chapter 11 we will see that this model can be used for a two-sample t-test. Later in

this chapter we will extend the model to describe relationships that are not straight lines
and relationships involving multiple predictors.

Linear regression 265

10.1.3 Estimating the parameters in simple linear regression

One goal when modeling is to “fit” the model by estimating the parameters based on the
sample. For the regression model the method of least squares is used. With an eye toward
a more general usage, suppose we have several predictors, x1,x2,…,xk; several parameters,
β0, β1,…,βp; and some function, f, which gives the mean for the variables Yi. That is, the
statistical model

Yi=f(x1i,x2i,…,xki|β1,β2,…,βp)+εi.

The method of least squares finds values for the β’s that minimize the squared difference
between the actual values, yi, and those predicted by the function f. That is, the following
sum is minimized:

For the simple linear regression model, the formulas are not difficult to write (they are
given below). For the more general model, even if explicit formulas are known, we don’t
present them.

The simple linear regression model for Yi has three parameters, β0, β1, and σ2. The
least-squares estimators for these are

 (10.1)

 (10.2)

 (10.3)

We call the prediction line; a value the predicted value for
xi; and the difference between the actual and predicted values, the residual.
The residual sum of squares is denoted RSS and is equal to See Figure 3.10 for a
picture.

Quickly put, the regression line is chosen to minimize the RSS; it has slope

intercept and goes through the point Furthermore, the estimate for σ2 is

Figure 10.1 shows a data set simulated from the equation Yi=1+2xi+εi, where β0=1,

β1=2, and σ2=3. Both the line y=1+2x and the regression line
predicted by the data, are drawn. They are different, of course, as one of them depends on
the random sample. Keep in mind that the data is related by the true model, but if all we
have is the data, the estimated model is given by the regression line. Our task of inference
is to decide how much the regression line can tell us about the underlying true model.

Using R for introductory statistics 266

10.1.4 Using lm() to find the estimates

In Chapter 3 we learned how to fit the simple linear regression model using 1m (). The
basic usage is of the form

lm(formula, data=…, subset=…)

As is usual with functions using model formulas, the data= argument allows the variable
names to reference those in the specified data frame, and the subset= argument can be
used to restrict the indices of the variables used by the modeling function.

By default, the lm () function will print out the estimates for the coefficients. Much
more is returned, but needs to be explicitly asked for. Usually, we store the results of the
model in a variable, so that it can subsequently be queried for more

Figure 10.1 Simulation of model
Yi=1+2xi+εi. The regression line
based on the data is drawn with
dashes. The big square marks the
value

information.
■ Example 10.1: Maximum heart rate Many people use heart-rate monitors when

exercising in order to achieve target heart rates for optimal training. The maximum safe
heart rate is generally thought to be 220 minus one’s age in years. A 25-year-old would
have a maximum heart rate of 195 beats per minute.

This formula is said to have been devised in the 1970s by Sam Fox and William
Haskell while en route to a conference. Fox and Haskell had plotted a graph of some data,
and had drawn by hand a line through the data, guessing the slope and intercept.* Their
formula is easy to compute and comprehend and has found widespread acceptance.

It may be wrong, though. In 2001, Tanaka, Monahan, and Seals found that 209–0.7
times one’s age is a better fit.

The following data is simulated to illustrate:

> age = rep(seq(20,60,by=5), 3)

Linear regression 267

> mhr = 209–0.7*age + rnorm(length(age),sd=4)
> plot(mhr ~ age, main=“Age versus maximum heart rate”)

The scatterplot (Figure 10.2) shows that the data lends itself to the linear model. The
regression coefficients are found using the 1m () function.

> res.mhr = lm(mhr ~ age)
> res.mhr
Call:
lm(formula = mhr ~ age)
Coefficients:

* source http: //www.drmirkin.com.

(Intercept) age
 208.36 −0.76

The lm () function, by default, displays the formula and the estimates for the

Figure 10.2 Age versus maximum
heart rate

These estimates can be used with the abline () function to add the regression line, as in
Figure 10.2.

> abline(res.mhr) # add regression line

A predicted value can be made directly using the estimates. For example, the predicted
maximum heart rate for a 39-year-old would be

> 208.36 − 0.76 * 39
[1] 178.7

Using R for introductory statistics 268

Extractor functions for lm()
The lm () function is reticent, but we can coax out more information as needed. This is
done using extractor functions. Useful ones are summarized in Table 10.1.

These functions are called with the result of a modeling function, such as lm(). There
are other types of modeling functions in R; these so-called “generic functions” may be
used with them to return similar information.

To illustrate, the estimate for σ2 can be found using the resid() function to retrieve the
residuals from the model fitting:

> sum(resid(res.mhr)^2) / (length(age) − 2) #
RSS/(n−2)
[1] 14.15

Or, the RSS part can be found directly with deviance ():

Table 10.1 Extractor functions for the result of
1m ()

summary () returns summary information about the regression
plot () makes diagnostic plots
coef() returns the coefficients
residuals () returns the residuals (can be abbreviated resid())
fitted () returns the residuals
deviance() returns RSS
predict () performs predictions
anova () finds various sums of squares
AIC () is used for model selection

> deviance(res.mhr)/ (length(age) −2)
[1] 14.15

10.1.5 Problems

10.1 For the Cars93 (MASS) data set, answer the following:

1. For MPG. highway modeled by Horsepower, find the simple regression
coefficients. What is the predicted mileage for a car with 225 horsepower?

2. Fit the linear model with MPG. highway modeled by Weight. Find the predicted
highway mileage of a 6,400 pound HUMMER H2 and a 2,524 pound MINI Cooper.

3. Fit the linear model Max .Price modeled by Min .Price. Why might you expect the
slope to be around 1 ?

Can you think of any other linear relationships among the variables?

Linear regression 269

10.2 For the data set MLBattend (UsingR) concerning major league baseball
attendance, fit a linear model of attendance modeled by wins. What is the predicted
increase in attendance if a team that won 80 games last year wins 90 this year?

10.3 People often predict children’s future height by using their 2-year-old height. A
common rule is to double the height. Table 10.2 contains data for eight people’s heights
as 2-year-olds and as adults. Using the data, what is the predicted adult height for a 2-
year-old who is 33 inches tall?

Table 10.2 Height as two-year old and as an
adult

Age 2 (in.) 39 30 32 34 35 36 36 30
Adult (in.) 71 63 63 67 68 68 70 64

10.4 The galton on (UsingR) data set contains data collected by Francis Galton in
1885 concerning the influence a parent’s height has on a child’s height. Fit a linear model
for a child’s height modeled by his parent’s height. Make a scatterplot with a regression

line. (Is this dataset a good candidate for using jitter () ?) What is the value of and
why is this of interest?

10.5 Formulas (10.1), (10.2), and the prediction line equation can be rewritten in terms
of the correlation coefficient, r, as

Thus the five summary numbers: the two means, the standard deviations, and the
correlation coefficient are fundamental for regression analysis.

This is interpreted as follows. Scaled differences of from the mean are less than
the scaled differences of xi from as |r|≤1. That is, “regression” toward the mean, as
unusually large differences from the mean are lessened in their prediction for y.

For the data set galton on (UsingR) use scale () on the variables parent and child, and
then model the height of the child by the height of the parent. What are the estimates for r
and β1?

10.2 Statistical inference for simple linear regression

If we are convinced that the simple regression model is appropriate for our data, then
statistical inferences can be made about the unknown parameters. To assess whether the
simple regression model is appropriate for the data we use a graphical approach.

10.2.1 Testing the model assumptions

The simple linear regression model places assumptions on the data set that we should
verify before proceeding with any statistical inference. In particular, the linear model

Using R for introductory statistics 270

should be appropriate for the mean value of the yi, and the error distribution should be
normally distributed and independent.

Just as we looked at graphical evidence when investigating assumptions about
normally distributed populations when performing a t-test, we will consider graphical
evidence to assess the appropriateness of a regression model for the data. Four of the
graphs we consider are produced by using the plot () function as an extractor function for
lm () function. Others we can produce as desired.

The biggest key to the aptness of the model is found in the residuals. The residuals are
not an i.i.d. sample, as they sum to a and they do not have the same variance. The
standardized residuals rescale the residuals to have unit variance. These appear in some
of the diagnostic plots provided by plot ().

Figure 10.3 Four graphs showing
problematic linear models.
Scatterplot in upper left shows
linear model is incorrect. Fitted
versus residual plot in upper right
shows a nonlinear trend. Fitted
versus residual plot in lower left
shows nonconstant variance. Lag

Linear regression 271

plot in lower right shows
correlations in error terms.

Assessing the linear model for the mean
A scatterplot of the data with the regression line can show quickly whether the linear
model seems appropriate for the data. If the general trend is not linear, either a
transformation or a different model is called for. An example of a cyclical trend (which
calls for a transformation of the data) is the upper-left plot in Figure 10.3 and is made
with these commands:

x = rep(1:10,4)
y = rnorm(40, mean=5*sin(x), sd=1)
plot(y ~ x); abline(lm(y~x))

When there is more than one predictor variable, a scatterplot will not be as useful.
A residual plot can also show whether the linear model is appropriate and can be made

with more than one predictor. As well, it can detect small deviations from the model that
may not show up in a scatterplot. The upper-right plot in Figure 10.3 shows a residual
plot that finds a sinusoidal trend that will not show up in a scatterplot. It was simulated
with these commands:

> x = rep(1:10,4)
> y = rnorm(40,mean = x + .05*sin(x),sd=.01) # small
trend
> res = lm(y~x)
> plot(fitted(res),resid(res))

The residual plot is one of the four diagnostic plots produced by plot ().

Assessing normality of the residuals
The residuals are used to assess whether the error terms in the model are normally
distributed. Although a histogram can be used to investigate normality, we’ve seen that
the quantile-normal plot is better at visualizing differences from normality. Deviations
from a straight line indicate nonnormality. Quantile-normal plots are made with qqnorm
(). One of the diagnostic plots produced by plot () is a quantile-normal plot of the
standardized residuals.

In addition to normality, an assumption of the model is also that the error terms have a
common variance. A residual plot can show whether this is the case. When it is, the
residuals show scatter about a horizontal line. In many data sets, the variance increases
for larger values of the predictor. The commands below create a simulation of this. The
graph showing the effect is in the lower-left of Figure 10.3.

> x = rep(1:10,4)
> y = rnorm(40, mean = 1 + 1/2*x, sd = x/10)
> res = lm(y ~ x)
> plot(fitted(res),resid(res))

Using R for introductory statistics 272

The scale-location plot is one of the four diagnostic plots produced by plot () It also
shows the residuals, but in terms of the square root of the absolute value of the
standardized residuals. The graph should show points scattered along the y-axis, as we
scan across the x-axis, but the spread of the scattered points should not get larger or
smaller.

In some data sets, there is a lack of independence in the residuals. For example, the
errors may accumulate. A lag plot may be able to show this. For an independent
sequence, the lag plot should be scattered, whereas many dependent sequences will show
some pattern. This is illustrated in the lower-right plot in Figure 10.3, which was made as
follows:

> x = rep(1:10,4)
> epsilon = rnorm(40,mean=0,sd=l)
> y = 1 + 2*x + cumsum(epsilon) # cumsum() correlates
errors
> res = lm(y ~ x)
> tmp = resid(res)
> n = length(tmp)
> plot(tmp[-n],tmp[−1]) # lag plot

Figure 10.4 Bubble plot of CO2
emissions by per capita GDP with
area of points proportional to
Cook’s distance

Influential points
As we observed in Chapter 3, the regression line can be greatly influenced by a single
observation that is far from the trend set by the data. The difference in slopes between the
regression line with all the data and the regression line with the ith point missing will
mostly be small, except for influential points. The Cook’s distance is based on the
difference of the predicted values of yi for a given xi when the point (xi, yi) is and isn’t
included in the calculation of the regression coefficients. The predicted amounts are used

Linear regression 273

for comparison, as comparing slopes isn’t applicable for multivariate models. The Cook’s
distance is computed by the extractor function cooks. distance ().

One of the diagnostic plots produced by plot () will show the Cook’s distance for the
data points plotted using spikes. Another way to display this information graphically is to
make the size of the points in the scatterplot depend on this distance using the cex=
argument. This type of plot is referred to as a bubble plot and is illustrated using the
emissions (UsingR) data set in Figure 10.4. The graphic is made with the following
commands:

> res = lm(C02 ~ perCapita, emissions)
> plot(C02 ~ perCapita, emissions,
+ cex = 10*sqrt(cooks.distance(res)),
+ main = expression(# make subscript on C02
in title
+ paste("bubble plot of ",CO[2],
+ ” emissions by per capita GDP")
+))

The square root of the distances is used, so the area of the points is proportional to the
Cook’s distance rather than to the radius. (The argument to main= illustrates how to use
mathematical notation in the title of a graphic. See the help page ?plotmath for details.)

For the maximum-heart-rate data, the four diagnostic plots produced by R with the
command plot (res. mhr) are in Figure 10.5. The par (mf row=c (2,2)) command was used
to make the four graphs appear in one figure. This command sets the number of rows and
columns in a multi-graphic figure.

Using R for introductory statistics 274

Figure 10.5 Four diagnostic plots for
the maximum-heart-rate data
produced by the extractor function
plot ()

10.2.2 Statistical inferences

If the linear model seems appropriate for the data, statistical inference is possible. What is
needed is an understanding of the sampling distribution of the estimators.

To investigate these sampling distributions, we performed simulations of the model
Yi=xi+εi, using x=rep(1:10,10) and y=rnorm(100,x,5). Figure 10.6 shows the resulting
regression lines for the different simulations. For reference, a single result of the
simulation is plotted using a scatterplot. There is wide variation among the regression

lines. In addition, histograms of the simulated values of and are shown.

We see from the figure that the estimators are random but not arbitrary. Both and

are normally distributed, with respective means β0 and β1. Furthermore,
has a χ2-distribution with n−2 degrees of freedom.

We will use the fact that the following statistics have a t-distribution with n−2 degrees
of freedom:

Linear regression 275

(10.4)

The standard errors are found from the known formulas for the variances of the

(10.5)

(Recall that,

Marginal t-tests
We can find confidence intervals and construct significance tests from the statistics in
(10.4) and (10.5). For example, a significance test for

H0:β1=b, HA:β1≠b

is carried out with the test statistic

Under H0, T has the t-distribution with n−2 degrees of freedom.

A similar test for β0 would use the test statistic
When the null hypothesis is β1=0 or β0=0 we call these marginal t-tests, as they test

whether the parameter is necessary for the model.

The F-test
An alternate test for the null hypothesis β1=0 can be done using a different but related
approach that generalizes to the multiple-regression problem.

Figure 10.6 The plot on the left
shows regression lines for 100
simulations from the model Yi=xi+εi.
The plotted points show a single
realization of the paired data during

Using R for introductory statistics 276

the simulation. The center and right
plots are histograms of and

The total variation in the y values about the mean is

Algebraically, this can be shown to be the sum of two easily interpreted terms:

 (10.6)

The first term is the residual sum of squares, or RSS. The second is the total variation for
the fitted model about the mean and is called the regression sum of squares, SSReg.
Equation 10.6 becomes

SST=RSS+SSReg.

For each term, a number—called the degrees of freedom—is assigned that depends on the
sample size and the number of estimated values in the term. For the SST there are n data
points and one estimated value, leaving n−1 degrees of freedom. For RSS there are

again n data points but two estimated values, and so n−2 degrees of freedom. This
leaves 1 degree of freedom for the SSReg, as the degrees of freedom are additive in this
case. When a sum of squares is divided by its degrees of freedom it is referred to as a
mean sum of squares.

We rewrite the form of the prediction line:

If is close to 0, and are similar in size, so we would have SST ≈ RSS. In this case

SSReg would be small. Whereas, if is not close to 0, then SSReg is not small. So,
SSReg would be a reasonable test statistic for the hypothesis

H0: β1=0. What do small and big mean? As usual, we need to scale the value by the
appropriate factor. The F statistic is the ratio of the mean regression sum of squares
divided by the mean residual sum of squares.

 (10.7)

Under the null hypothesis H0: β1=0, the sampling distribution of F is known to be the F-
distribution with 1 and n−2 degrees of freedom.

This allows us to make the following significance test.
F-test for β1=0

A significance test for the hypotheses
H0: β1=0, HA: β1≠0

Linear regression 277

can be made with the the test statistic

Under the null hypothesis, F has F-distribution with 1 and n−2 degrees
of freedom. Larger values of F are more extreme, so the p-value is given
by P(F≥observed value |H0).

The F-statistic can be rewritten as

Under the assumption β1=0, this is the square of one of the t-distributed random variables
of Equation 10.4. For simple linear regression the two tests of H0:β1= 0, the marginal t-
test and the F-test, are equivalent. However, we will see that with more predictors, the
two tests are different.

R2—the coefficient of determination
The decomposition of the total sum of squares into the residual sum of squares and the
regression sum of squares in Equation 10.6 allows us to interpret how well the regression
line fits the data. If the regression line fits the data well, then the residual sum of squares,

will be small. If there is a lot of scatter about the regression line, then RSS
will be big. To quantify this, we can divide by the total sum of squares, leading to the
definition of the coefficient of determination:

 (10.8)

This is close to 1 when the linear regression fit is good and close to a when it is not.
When the simple linear regression model is appropriate this value is interpreted as the

proportion of the total response variation explained by the regression. That is, R2·100% of
the variation is explained by the regression line. When R2 is close to 1, most of the
variation is explained by the regression line, and when R2 is close to 0, not much is.

This interpretation is similar to that given for the Pearson correlation coefficient, r, in
Chapter 3. This is no coincidence: for the simple linear regression model r2=R2.

The adjusted R2 divides the sums of squares by their degrees of freedom. For the
simple regression model, these are n−2 for RSS and n−1 for SST. This is done to penalize
models that get better values of R2 by using more predictors. This is of interest when
multiple predictors are used.

10.2.3 Using lm() to find values for a regression model

R can be used in different ways to do the above calculations.

Using R for introductory statistics 278

Confidence intervals
We can find a 95% confidence interval for β0 with

In our example, this could be found with
> n = length(age)
> betahat0 = coef(res)[1] # first coefficient
> sigmahat = sqrt(sum(resid(res)^2) / (n −2))
> SE = sigmahat * sqrt(sum(age^2) / (n* sum((age −
mean(age))^2)))
> tstar = qt(1 − 0.05/2,df= n − 2)
> c(betahat0 − tstar*SE, betahat0 + tstar*SE)
(Intercept) (Intercept)

203.5 213.2

Standard error
The standard error above

> SE
[1] 2.357

is given as part of the summary () function applied to the output of lm(). Find it in the
Coefficients: part of the output under the column labeled Std. Error.

> summary(res)
Call:
1m(formula = mhr ~ age)
Residuals:
 Min 1Q Median 3Q Max
−9.21 −2.47 1.13 2.65 7.79
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 208.3613 2.3571 88.4 < 2e−16 ***
age −0.7595 0.0561 −13.5 5.2e−13 ***
…
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 3.76 on 25 degrees of freedom
Multiple R-Squared: 0.88, Adjusted R-squared:
0.875
F-statistic: 183 on 1 and 25 DF, p-value: 5.15e-13

By reading the standard error from this output, a 95% confidence interval for β1 may be
more easily found than the one for β0 above:

> betahatl=−0.7595 # read from summary
> SE=0.0561 # read from summary
> tstar=qt(1–0.05/2,df= n−2)

Linear regression 279

> c(betahatl—tstar*SE, betahatl+tstar*SE)
[1] −0.875 −0.644

Significance tests
The summary () function returns more than the standard errors. For each coefficient a
marginal t-test is performed. This is a two-sided hypothesis test of the null hypothesis
that βi=0 against the alternative that βi≠0. We see in this case that both are rejected with
very low p-values. These small p-values are flagged in the output of summary () with
significance stars.

Other t-tests are possible. For example, we can test the null hypothesis that the slope is
−1 with the commands

> T.obs=(betahatl—(−1))/SE
> T.obs
[1] 4.287
> 2*pt(−4.287,df=n−2) # or use
lower.tail=F with 4.287
[1] 0.0002364

This is a small p-value, indicating that the model with slope −1 is unlikely to have
produced this data or anything more extreme than it.

Finding R2
The estimate for is marked Residual standard error and is labeled with 25=21−2
degrees of freedom. The value of R2=cor (age ,mhr) ^2 is given along with an adjusted
value.

F-test for β1=0.

Finally, the F-statistic is calculated. As this is given by it can be found
directly with

> (−0.7595 / 0.0561)^2
[1] 183.3

The significance test H0: β1=0 with two-sided alternative is performed and again returns a
tiny p-value.

The sum of squares to compute F are also given as the output of the ano va () extractor
function.

> anova(res)
Analysis of Variance Table
Response: mhr
 Df Sum Sq Mean Sq F value Pr(>F)
age 1 2596 2596 183 5.2e-13 ***
Residuals 25 354 14
--

Using R for introductory statistics 280

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1

These values in the column headed Sum Sq are SSReg and RSS. The total sum of
squares, SST, would be the sum of the two. Although the ratio of the mean sums of
squares, 2596/14, is not exactly 183, 183 is the correct value, as numbers have been
rounded to integers.

Predicting the response with predict ()
The function predict () is used to make different types of predictions.

A template for our usage is
predict (res, newdata=…, interval=…, level =…)

The value of res is the output of a modeling function, such as 1m (). We call this res
below, but we can use any valid name. Any changes to the values of the predictor are
given to the argument newdata= in the form of a data frame with names that match those
used in the model formula. The arguments interval= and level= are set when prediction or
confidence intervals are desired.

The simplest usage, predict (res), returns the predicted values (the for the data.
Predictions for other values of the predictor are specified using a data frame, as this
example illustrates:

> predict(res, newdata=data.frame(age=42))
[1] 176.5

This finds the predicted maximum heart rate for a 42-year-old. The age= part of the data
frame call is important. Variable names in the data frame supplied to the newdata=
argument must exactly match the variable names used when the model object was
produced.

Prediction intervals
The value of can be used to predict two different things: the value of a single estimate
of y for a given x or the average value of many values of y for a given x. If we think of a
model with replication (repeated /s for a given x, such as in Figure 10.6), then the
difference is clear: one is a prediction for a given point, the other a prediction for the
average of the points.

Statistical inference about the predicted value of y based on the sample is done with a
prediction interval. As y is not a parameter, we don’t call this a confidence interval. The
form of the prediction interval is similar to that of a confidence interval:

For the prediction interval, the standard error is

(10.9)

Linear regression 281

The value of t* comes from the t-distribution with n−2 degrees of freedom.
The prediction interval holds for all x simultaneously. It is often plotted using two

lines on the scatterplot to show the upper and lower limits.
The predict () function will return the lower and upper endpoints for each value of the

predictor. We specify interval="prediction" (which can be shortened) and a confidence
level with level=. (The default is 0.95.)

For the heart-rate example we have:

> pred.res = predict(res, int = "pred")
> pred.res
fit lwr upr
1 193.2 185.0 201.4
2 189.4 181.3 197.5
...

A matrix is returned with columns giving the data we want. We cannot access these with
the data frame notation pred. res$lwr, as the return value is not a data frame. Rather we
can access the columns by name, like pred. res [, ’lwr’] or by column number, as in

> pred.res[,2] # the ’lwr’ column
 1 2 3 4 5 6 7 8 9
 10
185.0 181.3 177.6 173.9 170.1 166.3 162.4 158.5 154.6
185.0
...

We want to plot both the lower and upper limits. In our example, we have the predicted
values for the given values of age. As the age variable is not sorted, simply plotting will
make a real mess. To remedy this, we specify the values of the age variable for which we
make a prediction. We use the values sort (unique (age)), which gives just the x values in
increasing order.

> age.sort = sort(unique(age))
> pred.res = predict(res.mhr, newdata = data.frame(age
= age.sort),
+ int="pred")
> pred.res[,2]
 1 2 3 4 5 6 7 8 9
185.0 181.3 177.6 173.9 170.1 166.3 162.4 158.5 154.6

Now we can add the prediction intervals to the scatterplot with the lines() function
(matlines () offers a one-step alternative). The result is Figure 10.7.

> plot(mhr ~ age); abline(res)
> lines(age.sort,pred.res[,2] , lty=2) # lower curve
> lines(age.sort,pred.res[,3], lty=2) # upper curve

Using R for introductory statistics 282

Figure 10.7 Regression line with
95% prediction intervals drawn for
age versus maximum heart rate

There is a slight curve in the lines drawn, which is hinted at in equation 10.9. This
implies that estimates near the value have a smaller variance. This is expected: there
is generally more data near this value, so the variances should be smaller.

Confidence intervals for µy|x
A confidence interval for the mean value of y for a given x is given by

Again, t* is from the t-distribution with n−2 degrees of freedom. The standard error used
is now

The standard error for the prediction interval differs by an extra term of plus 1 inside the
square root. This may appear minor, but is not. If we had so much data (large n) that the
estimates for the β’s have small variance, we would not have much uncertainty in
predicting the mean amount, but we would still have uncertainty in predicting a single
deviation from the mean due to the error term in the model.

The values for this confidence interval are also returned by predict (). In this case, we
use the argument interval="confidence".

10.2.4 Problems

10.6 The cost of a home is related to the number of bedrooms it has. Suppose Table 10.3
contains data recorded for homes in a given town. Make a scatterplot, and fit the data
with a regression line. On the same graph, test the hypothesis that an extra bedroom is
worth $60,000 versus the alternative that it is worth more.

Linear regression 283

Table 10.3 Number of bedrooms and sale price
of a home in thousands

price $300 $250 $400 $550 $317 $389 $425 $289 $389
bedrooms 3 3 4 5 4 3 6 3 4

10.7 The more beer you drink, the more your blood alcohol level (BAL) rises. Table 10.4
contains a data set on beer consumption. Make a scatterplot with a regression line and
95% prediction intervals drawn. Test the hypothesis that one beer raises your BAL by
0.02% against the alternative that it raises it less.

10.8 For the same blood-alcohol data, do a significance test that the intercept is 0 with
a two-sided alternative.

Table 10.4 Beer consumption and blood alcohol
level
beers 5 2 9 8 3 7 3 5 3 ~
BAL 0.10 0.03 0.19 0.12 0.04 0.095 0.07 0.06 0.02 0.05

10.9 The lapse rate is the rate at which temperature drops as you increase elevation. Some
hardy students were interested in checking empirically whether the lapse rate of 9.8
°C/km was accurate. To investigate, they grabbed their thermometers and their Suunto
wrist altimeters and recorded the data in Table 10.5 on their hike. Draw a scatterplot with
regression line and investigate whether the lapse rate is 9.8 °C/km/km. (It helps to
convert to the rate of change °F per feet, which is 5.34 degrees per 1,000 feet.) Test the
hypothesis that the lapse rate is 5.34 degrees per 1,000 feet against a two-sided
alternative.

Table 10.5 Elevation and temperature
measurements

elevation (ft) 600 1000 1250 1600 1800 2100 2500 2900
temperature (°F) 56 54 56 50 47 49 47 45

10.10 A seal population is counted over a ten-year period. The counts are reported in
Table 10.6. Make a scatterplot and find the regression line. What is the predicted value
for 1963? Would you use this to predict the population in 2004? Why or why not?

Table 10.6 Seal population from 1952 to 1962
year pop. year pop. year pop year pop
1952 724 1955 1,392 1958 1,212 1961 1,980
1953 176 1956 1,392 1959 1,672 1962 2,116
1954 920 1957 1,448 1960 2,068

10.11 For the homedata (UsingR) data set, find the regression equation to predict the
year-2000 value of a home from its year-1970 value. Make a prediction for an $80,000

Using R for introductory statistics 284

home in 1970. Comment on the appropriateness of the regression model by investigating
the residuals.

10.12 The deflection (UsingR) data set contains deflection measurements for various
loads. Fit a linear model to Deflection as a function of load. Plot the data and the
regression line. How well does the line fit? Investigate with a residual plot.

10.13 The alaska.pipeline (UsingR) data set contains measurements of defects on the
Alaska pipeline that are taken first in the field and then in the laboratory. The
measurements are done in six batches. Fit a linear model for the lab-defect size as
modeled by the field-defect size. Find the coefficients. Discuss the appropriateness of the
model.

10.14 In athletic events in which people of various ages participate, performance is
sometimes related to age. Multiplying factors are used to compare the performance of a
person of a given age to another person of a different age. The data set best .times
(UsingR) features world records by age and distance in track and field.

We split the records by distance, allowing us to compare the factors for several
distances.

> attach(best.times)
> by.dist=split(best.times,as.factor(Dist))
> detach(best.times)

This returns a list of data frames, one for each distance. We can plot the times in the 800-
meter run:

| > plot(Time ~ age, by.dist[['800']])

It is actually better to apply scale () first, so that we can compare times.
Through age 70, a linear regression model seems to fit. It can be found with

> lm(scale(Time) ~ age, by.dist[['800']], subset=age <
70)
Call:
lm(formula=scale(Time) ~ age, data=by.dist[["800"]],
subset=age < 70)
Coefficients:
(Intercept) age
−1.2933 0.0136

Using the above technique, compare the data for the 100-meter dash, the 400meter dash,
and the 10,000-meter run. Are the slopes similar?

10.15 The galton on (UsingR) data set contains data collected by Francis Galton in
1885 concerning the influence a parent’s height has on a child’s height. Fit a linear model
modeling a child’s height by his parents’. Do a test of significance to see whether β1
equals 1 against a two-sided alternative.

10.16 Find and plot both the prediction and the confidence intervals for the heart-rate
example. Simulate your own data.

Linear regression 285

10.17 The alaska.pipeline (UsingR) data set appears appropriate for a linear model, but
the assumption of equal variances does not seem appropriate. A log-transformation of
each variable does seem to have equal variances. Fit the model

log(lab.defect)=β0+β1·log(field.defect)+ε.

Investigate the residuals and determine whether the assumption of equal variance seems
appropriate.

10.18 The following commands will simulate the regression model Yi=1+ 2xi+εi:

> res = matrix(0,nrow=200,ncol=2)
> ford in 1:200) {
+ x = rep(1:10,4); y = rnorm(40,l + 2*x,3)
+ res[i,] = coef(lm(y ~ x))
+ }
> plot (res [,1] ,res[,2])

(We first create res as a matrix to store the two values for the coefficients. Alternately,
you can create two different vectors for this.)

Run the simulation and comment on the shape of the scatterplot. What does it say

about the correlation between
10.19 In a simple linear regression, confidence intervals for β0 and β1 are given

separately in terms of the t-distribution as They can also be found jointly,
giving a confidence ellipse for the parameters as a pair. This can be found easily in R
with the ellipse package.† If res is the result of the 1m () function, then plot (ellipse (res)
,type="1") will draw the confidence ellipse.

For the deflection (UsingR) data set, find the confidence ellipse for Deflection
modeled by Load.

10.3 Multiple linear regression

Multiple linear regression allows for more than one regressor to predict the value of Y.
Lots of possibilities exist. These regressors may be separate variables, products of
separate variables, powers of the same variable, or functions of the same variable. In the
next chapter, we will consider regressors that are not numeric but categorical. They all fit
together in the same model, but there are additional details. We see, though, that much of
the background for the simple linear regression model carries over to the multiple
regression model.

† The ellipse package is not part of the standard R installation, but it is on CRAN. You can install it
with the command install, packages (“ellipse”). See Appendix A for details.

10.3.1 Types of models

Using R for introductory statistics 286

Let Y be a response variable and let x1, x2,…,xp be p variables that we will use for
predictors. For each variable we have n values recorded. The multiple regression model
we discuss here is

Yi=β0+β1x1i+…+ βpXpi+εi.

There are p+1 parameters in the model labeled β0, β1,…,βp. They appear in a linear
manner, just like a slope or intercept in the equation of a line. The xi’s are predictor
variables, or covariates. They may be random; they may be related, such as powers of
each other; or they may be correlated. As before, it is assumed that the εi values are an
i.i.d. sample from a normal distribution with mean 0 and unknown variance σ2. In terms
of the Y variable, the values Yi are an independent sample from a normal distribution with
mean β0+β1x1i+…+ βpxpi and common variance σ2. If the x variables are random, this is
true after conditioning on their values.

■ Example 10.2: What influences a baby’s birth weight? A child’s birth weight
depends on many things; among them the parents’ genetic makeup, gestation period, and
mother’s activities during pregnancy. The babies (UsingR) data set lets us investigate
some of these relationships.

This data set contains many variables to consider. We first look at the quantitative
variables as predictors. These are gestation period; mother’s age, height, and weight; and
father’s age, height, and weight.

A first linear model might incorporate all of these at once:
wt=β0+β1·gestation+β2·mother’s age+…+ β7·father’s weight+εi.

Why should this have a linear model? It seems intuitive that birth weight would vary
monotonically with the variables, so a linear model might be a fairly good approximation.
We’ll want to look at some plots to make sure our model seems appropriate.

■ Example 10.3: Polynomial regression In 1609, Galileo proved mathematically that
the horizontal distance traveled by an object with an initial horizontal velocity is a
parabola. He based his insight on an experimental setup consisting of a ball placed at a
certain height on a ramp and then released. The distance traveled was then measured.
This experiment was chosen to reduce the effects of friction. (This example appears in
Ramsey and Schafer’s The Statistical Sleuth, Duxbury 1997, where a schematic of the
experimental apparatus is drawn.) The data consists of two variables. Let’s call them y
for distance traveled and x for

initial height. Galileo may have considered any of these polynomial models:

The εi would cover error terms that are presumably independent and normally distributed.
The quadratic model (the second model) is correct under perfect conditions, as Galileo
demonstrated, but the data may suggest a different model if the conditions are not perfect.

Linear regression 287

■ Example 10.4: Predicting classroom performance College admissions offices are
faced with the problem of predicting future performance based on a collection of
measures, such as grade-point average and standardized test scores. These values may be
correlated. There may also be other variables that describe why a student does well, such
as type of high school attended or student’s work ethic.

Initial student placement is also a big issue. If a student does not place into the right
class, he may become bored and leave the school. Successful placement is key to
retention. For New York City high school graduates, available at time of placement are
SAT scores and Regents Exam scores. High school grade-point average may be
unreliable or unavailable.

The data set stud. recs (UsingR) contains test scores and initial grades in a math class
for several randomly selected students. What can we predict about the initial grade based
on the standardized scores?

An initial model might be to fit a linear model for grade with all the other terms
included. Other restricted models might be appropriate. For example, are the verbal SAT
scores useful in predicting grade performance in a future math class?

10.3.2 Fitting the multiple regression model using lm()

As seen previously, the method of least squares is used to estimate the parameters in the

multiple regression model. We don’t give formulas for computing the but note that,
since there are p+1 estimated parameters, the estimate for the variance changes to

To find these estimates in R, again the lm () function is used. The syntax for the model
formula varies depending on the type of terms in the model. For these problems, we
use+to add terms to a model,—to drop terms, and I () to insulate terms so that the usual
math notations apply.

For example, if x, y, and z are variables, then the following statistical models have the
given R counterparts:

Once the model is given, the lm () function follows the same format as before:
lm(formula, data=…, subset=…)

To illustrate with an artificial example, we simulate the relationship zi=β0+ β1xi+β2yi+εi
and then find the estimated coefficients:

> x = 1:10; y = rchisq(10,3); z = 1 + x + y + rnorm(10)
> lm(z ~ x + y)
Call:
lm(formula = z ~ x + y)

Using R for introductory statistics 288

Coefficients:
(Intercept) x y

1.684 0.881 1.076

The output of lm() stores much more than is seen initially (which is just the formula and
the estimates for the coefficients). It is recommended that the return value be stored.
Afterward, the different extractor functions can be used to view the results.

■ Example 10.5: Finding the regression estimates for baby’s birth weight
Fitting the birth-weight model is straightforward. The basic model formula is
wt ~ gestation+age+ht+wt1+dage+dht+dwt

We’ve seen with this data set that the variables have some missing values that are coded
not with NA but with very large values that are obvious when plotted, but not when we
blindly use the functions. In particular, gestation should be less than 350 days, mother’s
age and height less than 99, and weight less than 999, etc. We can avoid these cases by
using the subset= argument as illustrated. Recall that we combine logical expressions
with & for “and” and | for “or.”

> res.lm = lm(wt ~ gestation + age + ht + wt1 + dage +
dht + dwt ,
+ data = babies,
+ subset= gestation < 350 & age < 99 & ht < 99 & wt1 <
999 &
+ dage < 99 & dht < 99 & dwt < 999)
> res.lm
Call:
…
Coefficients:
(Intercept) gestation age ht wt1

−105.4576 0.4625 0.1384 1.2161 0.0289
 dage dht dwt
 0.0590 −0.0663 0.0782

A residual plot (not shown) shows nothing too unusual:

> plot(fitted(res.lm), resid(res.lm))

The diagnostic plots found with plot (res. lm) indicate that observation 261 might be a
problem. Looking at babies [261,], it appears that this case is an outlier, as it has a very
short gestation period. It could be handled separately.

The subset= argument is very useful, though repeated uses may make us wish that we
could use it just once prior to modeling. In this case the subset () function is available.

Using update() with model formulas
When comparing models, we may be interested in adding or subtracting a term and
refitting. Rather than typing in the entire model formula again, R provides a way to add

Linear regression 289

or drop terms from a model and have the new model fit. This process is called updating
and is done with the update () function. The usage is

update(model.object, formula=. ~ .+new.terms)

The model. object is the output of some modeling command, such as lm(). The formula=
argument uses a . to represent the previous value. In the template above, the . to the left of
the ~ indicates that the previous left side of the model formula should be reused. The
right-hand-side . refers to the previous right-hand side. In the template, the+new. terms
means to add terms. Use- old. terms to drop terms.

■ Example 10.6: Discovery of the parabolic trajectory The data set galileo
(UsingR) contains two variables measured by Galileo (described previously). One is the
initial height and one the horizontal distance traveled.

A plot of the data illustrates why Galileo may have thought to prove that the correct
shape is described by a parabola. Clearly a straight line does not fit the data well.
However, with modern computers, we can investigate whether a cubic term is warranted
for this data.

To do so we fit three polynomial models. The update () function is used to add terms
to the previous model to give the next model. To avoid a different interpretation of ~, the
powers are insulated with I ().

> init.h = c(600,700,800,950,1100,1300,1500)
> h.d = c(253, 337, 395, 451, 495, 534, 573)
> res.1m=lm(h.d ~ init.h)
> res.lm2=update(res.1m, . ~ .+I(init .h^2))
> res.lm3=update(res.lm2, . ~ .+I(init .ITS))

To plot these, we will use curve (), but first we define a simple function to help us plot
polynomials when we know their coefficients. The result is in Figure 10.8. The linear
model is a poor fit, but both the quadratic and cubic fits seem good.

Figure 10.8 Three polynomial
models fit to the Galileo data

> polynomial=function(x,coefs) {

Using R for introductory statistics 290

+ tot=a
+ for(in 1:length(coefs)) tot=tot+coefs[i]*x^{i-1}
+ tot
+}
> plot(h.d ~ init.h)
> curve(polynomial(x,coef(res.1m)), add=TRUE, lty=1)
> curve(polynomial(x,coef(res.lm2)), add=TRUE, lty=2)
> curve(polynomial(x,coef(res.lm3)), add=TRUE, lty=3)
>
legend(1200,400,legend=c("linear","quadratic","cubic"),
lty=l:3)

10.3.3 Interpreting the regression parameters

In many cases, interpretation in simple regression is straightforward. Changes in the
predictor variable correspond to changes in the response variable in a linear manner: a

unit change in the predictor corresponds to a change in the response.
However, in multiple regression this picture may not be applicable, as we may not be

able to change just a single variable. As well, when more variables are added to a model,
if the variables are correlated then the sign of the coefficients can change, leading to a
different interpretation.

The language often used is that we "control" the other variables while seeking a
primary predictor variable.

■ Example 10.7: Does taller mean higher paid? A University of Florida press
release from October 16, 2003, reads:

“Height matters for career success,” said Timothy Judge, a UF
management professor….

Judge’s study, which controlled for gender, weight, and age, found that
mere inches cost thousands of dollars. Each inch in height amounted to
about $789 more a year in pay, the study found.

The mathematical model mentioned would be
pay = β0 + β1 height + β2 gender + β3 weight + β4 age + ε.

(In the next chapter we see how to interpret the term involving the categorical variable

gender.) The data gives rise to the estimate The authors interpret this to mean
that each extra inch of height corresponds to a $789 increase in expected pay. So
someone who is 4 inches taller, say 6 feet versus 5 feet 8 inches, would be expected to
earn $3,156 more annually. is used to predict expected values.) The word “controlled”
means that we included these variables in the model.

Unlike in a science experiment, where we may be able to specify the value of a
variable, a person cannot simply grow an inch to see if his salary goes up. This is an
observational study, so causal interpretations are not necessarily valid.

Linear regression 291

10.3.4 Statistical inferences

As in the simple linear regression case, if the model is correct, statistical inference can be
made about the coefficients. In general, the estimators for a linear model are unbiased and
normally distributed; from this, t-tests and confidence intervals can be constructed for the
estimators, once we learn the standard errors. As before, these are output by the summary
() function.

■ Example 10.8: Galileo, continued For the Galileo data example, the summary () of
the quadratic fit contains

> summary(res.lm2)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) −2.40e+02 6.90e+01 −3.48 0.0253 *
init.h 1.05e+00 1.41e-01 7.48 0.0017 **
I(init.h^2) −3.44e-04 6.68e-05 −5.15 0.0068 **

Signif. codes: a ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’1
…

For each the standard errors are given, as is the marginal t-test, which tests for the null

hypothesis that the is 0. All three have small p-values and are flagged as such with
significance stars.

Finding a confidence interval for the parameters is straightforward, as the values

have a t-distribution with n−(p+1) degrees of freedom if the linear model
applies.

For example, a 95% confidence interval for β1 would be

> alpha =0.05
> tstar=qt(1−alpha/2, df=4) # n=7; p=2; df=n−(p+1)
> c(1.05−tstar*0.141, 1.05+tstar*0.141)
[1] 0.6585 1.4415

10.3.5 Model selection

If there is more than one possible model for a relationship, how do we know which to
prefer? There are many criteria for selecting a model. We mention two here that are
easily used within R.

Partial F-test
Consider these two nested models for Yi:

Yi=β0+β1x1i+…+βkxki+εi
(10.10)

Using R for introductory statistics 292

Yi=β0+β1x1i+…+βkxki+βk+1x(k+1)i+…+βpXpi+εi.

The first model has k+1 parameters, and the second has p+1 with p>k (not counting σ).
Recall that the residual sum of squares, RSS, measures the variation between the data and
the model. For the model with p predictors, RSS(p) can only be less than RSS(k) for the
model with k predictors. Call the difference the extra sum of squares.

If the new parameters are not really important, then there should be little difference
between the sums of squares when computed with or without the new parameters. If they
are important, then there should be a big difference. To measure big or small, we can
divide by the residual sum of squares for the full model. That is,

should measure the influence of the extra parameters. If we divide the extra sum of
squares by p−k and the residual sum of squares by n−(p+1) (the respective degrees of
freedom), then the statistic becomes

(10.11)

This statistic is actually a more general example of that in equation 10.7 and has a similar
sampling distribution. Under the null hypothesis that the extra β’s are 0 (βk+1=…=βp=0),
and the εi are i.i.d. with a Normal (0, σ2) distribution, F will have the F-distribution with
p−k and n−(p+1) degrees of freedom.

This leads to the following significance test.

Partial F-test for null hypothesis of no effect
For the nested models of Equation 10.10, a significance test for the hypotheses

H0: βk+1=βk+2=…=βp=0 and HA: at least one βj≠0 for j>k

can be performed with the test statistic (10.11):

Under H0, F has the F-distribution with p−k and n−(p+1) degrees of freedom. Large
values of F are in the direction of the alternative. This test is called the partial F-test.

The anova() function will perform the partial F-test. If res.1m1 and res. lm2 are the
return values of two nested models, then

anova(res.lm1, res.lm2)

will perform the test and produce an analysis of variance table.

■ Example 10.9: Discovery of the parabolic trajectory revisited In Example 10.6 we
fitted the data with three polynomials and graphed them. Referring to Figure 10.8, we see

Linear regression 293

that the parabola and cubic clearly fit better than the linear. But which of those two fits
better? We use the partial F-test to determine whether the extra cubic term is significant.

To do this, we use the anova() function on the two results res. lm2 and res. lm3. This
yields

> anova(res.lm2,res. lm3)
Analysis of Variance Table
Model 1: h.d ~ init.h+I(init.h^2)
Model 2: h.d ~ init.h+I(init.h^2)+I(init.h^3)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 4 744
2 3 48 1 696 43.3 0.0072 **
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’1

The F-test is significant (p=0.0072), indicating that the null hypothesis (β3=0) does not
describe the data well. This suggests that the underlying relationship from Galileo’s data
is cubic and not quadratic. Perhaps the apparatus introduced drag.

The Akaike information criterion
In the partial F-test, the trade-off between adding more parameters to improve the model
fit and making a more complex model appears in the n−(p+1) divisor. Another common
criterion with this trade-off is Akaike’s information criterion (AIC). The AIC is
computed in R with the AIC () extractor function. The details of the statistic involve the
likelihood function, a more advanced concept, but the usage is straightforward: models
with lower AICs are preferred. An advantage to the AIC is that it can be used to compare
models that are not nested. This is a restriction of the partial F-test.

The extractor function AIC() will compute the value for a given model, but the
convenient stepAIC () function from the MASS library will step through the submodels
and do the comparisons for us.

■ Example 10.10: Predicting grades based on standardized tests
The data set stud.recs (UsingR) contains five standardized test scores and a numeric value
for the initial grade in a subsequent math course. The goal is to use the test-score data to
predict the grade that a student will get. If the grade is predicted to be low, perhaps an
easier class should be recommended.

First, we view the data using paired scatterplots

> pairs(stud.recs)

The figure (not shown) indicates strong correlations among the variables.
We begin by fitting the entire model. In this case, the convenient . syntax on the right-

hand side is used to indicate all the remaining variables.

> res.lm=1m(num.grade ~ ., data=stud.recs)
> res.lm

Using R for introductory statistics 294

Call:
lm(formula=num.grade ~ ., data=stud.recs)
Coefficients:
(Intercept) seq.1 seq.2 seq.3
 sat.v

−0.73953 −0.00394 −0.00272 0.01565
− 0.00125
 sat .m
 0.00590

Some terms are negative, which seems odd. Looking at the summary of the regression
model we have

> summary(res.1m)
...
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.73953 1.21128 −0.61 0.543
seq.1 −0.00394 0.01457 −0.27 0.787
seq.2 −0.00272 0.01503 −0.18 0.857
seq.3 0.01565 0.00941 1.66 0.099 .
sat.v −0.00125 0.00163 −0.77 0.443
sat.m 0.00590 0.00267 2.21 0.029 *
...

The marginal t-tests for whether the given parameter is a or not are “rejected” only for the
seq. 3 (sequential 3 is the last high school test taken) and sat .m (the math SAT score). It
is important to remember that these are tests concerning whether the value is a given the
other predictors. They can change if predictors are removed.

The stepAIC() function can step through the various submodels and rank them by
AIC. This gives

> library(MASS) # load in MASS package for
stepAIC
> stepAIC(res.lm)
Start: AIC= 101.2
... lots skipped ...
Coefficients:
(Intercept) seq.3 sat.m
−1.14078 0.01371 0.00479

The submodel with just two predictors is selected. As expected, the verbal scores on the
SAT are not a good indicator of performance.

10.3.6 Problems

10.20 Do Example 10.5 and fit the full model to the data. For which variables is the t-test
for βi=0 flagged? What model is selected by AIC?

Linear regression 295

10.21 Following Example 10.9, fit a fourth-degree polynomial to the galileo (UsingR)
data and compare to the cubic polynomial using a partial F-test. Is the new coefficient
significant?

10.22 For the data set trees, model the Volume by the Girth and Height variables.
Does the model fit the data well?

10.23 The data set MLBattend (UsingR) contains attendance data for major league
baseball for the years 1969 to 2000. Fit a linear model of attendance modeled by year,
runs. scored, wins, and games. behind. Which variables are flagged as significant? Look
at the diagnostic plots and comment on the validity of the model.

10.24 For the deflection (UsingR) data set, fit the quadratic model
Deflection=β0+β1Load+β2Load2+ε.

How well does this model fit the data? Compare to the linear model.
10.25 The data set kid.weights contains age, weight, and height measurements for

several children. Fit the linear model
weight=β0+β1age+β2height+β3height2+β4height3+β5height4

Use the partial F-test to select between this model and the nested models found by using
only first-, second-, and third-degree polynomials for height.

10.26 The data set f at (Us ingR) contains several body measurements that can be done
using a scale and a tape measure. These can be used to predict the bodyfat percentage
(body. fat). Measuring body fat requires a special apparatus; if our resulting model fits
well, we have a low-cost alternative.

Fit the variable body. fat using each of the variables age, weight, height, BMI, neck,
chest, abdomen, hip, thigh, knee, ankle, bicep, forearm, and wrist. Use the stepAIC()
function to select a submodel. For this submodel, what is the adjusted R2?

10.27 The data set Cars93 (MASS) contains data on cars sold in the United States in
the year 1993. Fit a regression model with MPG. city modeled by the numeric variables
EngineSize, Weight, Passengers, and price. Which variables are marked as statistically
significant by the marginal t-tests? Which model is selected by the AIC?

10.28 We can simulate the data to see how often the partial F-test or AIC works. For
example, a single simulation can be done with the commands

> x = 1:10;y = rnorm(10,1+2*x+3*x^2,4)
> stepAIC(lm(y~x+I(x^2))) # needs library(MASS)
at first

Do a few simulations to see how often the correct model is selected.
10.29 The data set bay check (UsingR) contains estimated populations for a variety of

Bay checkerspot butterflies near California. A common model for population dynamics is
the Ricker model, for which t is time in years:

where a and b are parameters and Wt is a lognormal multiplicative error. This can be
turned into a regression model by dividing by Nt and then taking logs of both sides to
give

Using R for introductory statistics 296

Let yt be the left-hand side. This may be written as

because r can be interpreted as an unconstrained growth rate and K as a carrying capacity.
Fit the model to the bay check (UsingR) data set and find values for r and K. To find yt

you can do the following:

> attach(baycheck)
> n = length(year)
> yt = log(Nt[−1]/Nt[−n])
> nt = Nt[−n]

Recall that a negative index means all but that index.

Linear regression 297

Chapter 11
Analysis of variance

Analysis of variance, ANOVA, is a method of comparing means based on variations
from the mean. We begin by doing ANOVA the traditional way, but we will see that it is
a special form of the linear model discussed in the previous chapter. As such, it can be
approached in a unified way, with much of the previous work being applicable.

11.1 One-way ANOVA

A one-way analysis of variance is a generalization of the t-test for two independent
samples, allowing us to compare means for several independent samples. Suppose we
have k populations of interest. From each we take a random sample. These samples are
independent if the knowledge of one sample does not effect the distribution of another.
Notationally, for the ith sample, let designate the sample values.

The one-way analysis of variance applies to normally distributed populations. Suppose
the mean of the ith population is µi and its standard deviation is σi. We use a σ if these are
all equivalent. A statistical model for the data with common standard deviation is

Xij=µi+εij,

where the error terms, εij, are independent with Normal(0, σ) distribution.
■ Example 11.1: Number of calories consumed by month Consider 15 subjects split

at random into three groups. Each group is assigned a month. For each group we record
the number of calories consumed on a randomly chosen day. Figure 11.1 shows the data.
We assume that the amounts consumed are normally distributed with common variance
but perhaps different means. From the figure, we see that there appears to be more
clustering around the means for each month than around the grand mean or mean for all
the data. This would indicate that the means may be different. Perhaps more calories are
consumed in the winter?

The goal of one-way analysis of variance is to decide whether the difference in the
sample means is indicative of a difference in the population means of each sample or is
attributable to sampling variation.

Figure 11.1 Amount of calories
consumed by subjects for different
months. Sample means are marked,
as is the grand mean.

This problem is approached as a significance test. Let the hypotheses be
H0: µ1=µ2=…=µk, HA: µi≠µj for at least one pair i and j.
A test statistic is formulated that compares the variations within a single group to

those among the groups.
Let be the grand mean, or mean of all the data, and the mean for the ith sample.

Then the total sum of squares is given by

This measures the amount of variation from the center of all the data.
An analysis of variance breaks this up into two sums:

 (11.1)

The first sum is called the error sum of squares, or SSE. The interior sum,

measures the variation within the ith group. The SSE is then a measure of
the within-group variability. The second term in (11.1) is called the treatment sum of
squares (SSTr). The word treatment comes from medical experiments where the
population mean models the effect of some treatment. The SSTr compares the means for
each group, with the grand mean, It measures the variability among the means of the
samples. We can reexpress Equation 11.1 as

SST=SSE+SSTr.

From looking at the data in Figure 11.1 we expect that the SSE is smaller than the SSTr,
as there appears to be more variation among groups than within groups. If the data came
from a common mean, then we would expect SSE and SSTr to be roughly the same. If
SSE and SSTr are much different, it would be evidence against the null hypothesis. How

Analysis of variance 299

can we tell whether the differences are due to the null hypothesis being false or merely to
sampling variation? As usual, we tell by finding a test statistic that can discriminate.

Based on our observation, a natural test statistic to test whether µ1=µ2= …=µk would
be to compare the two values SSTr and SSE. The F statistic,

 (11.2)

does so by a ratio. Large values would be consistent with a difference in the means. To
get the proper scale, each term is divided by its respective degrees of freedom, yielding
the mean sum of squares. The degrees of freedom for the total sum of squares is n−1, as
only the grand mean is estimated. For the SSE the degrees of freedom are n−k, so the
degrees of freedom for SSTr is k−1.

Under the assumption that the data is normally distributed with common mean and
variance, this statistic will have a known distribution: the F-distribution with k−1 and
n−k degrees of freedom. This is a consequence of the partial Ftest discussed in Chapter
10.*

The one-way analysis-of-variance significance test
Suppose we have k independent, i.i.d. samples from populations with Normal(µi, σ)
distributions, i=1, …k. A significance test of

H0:µ1=µ2=…=µk, HA:µi≠µj for at least one pair i and j,

*This can be shown by identifying RSS(k) with the total sum of squares and RSS(p) with SSE in
(10.11) and simplifying.

can be performed with test statistic

Under H0, F has the F-distribution with k−1 and n−k degrees of freedom. The p-value
is calculated from P(F≥observed value |H0).

The R function oneway. test () will perform this significance test.

■ Example 11.2: Number of calories consumed by month, continued The one-way
test can be applied to the example on caloric intake. The two sums can be calculated
directly as follows:

> may=c(2166, 1568, 2233, 1882, 2019)
> sep=c(2279, 2075, 2131, 2009, 1793)
> dec=c(2226, 2154, 2583, 2010, 2190)
> xbar=mean(c(may,sep,dec))
> SST=5*((mean(may)-xbar)^2+(mean(sep)-
xbar)^2+(mean(dec)-xbar)^2)
> SST
[1] 174664

Using R for introductory statistics 300

> SSE=(5–1)*var(may)+(5–1)*var(sep)+(5–1)*var(dec)
> SSE
[1] 586720
> F.obs=(SST/(3–1)) / (SSE/(15–3))
> pf(F.obs,3–1,15–3,lower.tail=FALSE)
[1] 0.2094

We get a p-value that is not significant. Despite the graphical evidence, the differences
can be explained by sampling variation. ■

11.1.1 Using R’s model formulas to specify ANOVA models

The calculations for analysis of variance need not be so complicated, as R has functions
to compute the values desired. These functions use model formulas. If x stores all the
data and f is a factor indicating which group the data value belongs to, then

x~f

represents the statistical model
Xij=µi+εij.

In Chapter 4 we remarked that the default behavior for plot() of the model formula x ~ f
was to make a boxplot. This is because this graphic easily allows for comparison of
centers for multiple samples. The strip chart in Figure 11.1 is good for a small data set,
but the boxplot is preferred when there are larger data sets.

11.1.2 Using oneway.test() to perform ANOVA

The function oneway. test() is used as
oneway test(x~f, data=…, var.equal=FALSE)

As with the t.test function, the argument var. equal=is set to TRUE if appropriate. By
default it is FALSE.

Before using oneway. test() with our example of caloric intake, we put the data into
the appropriate form: a data vector containing the values and a factor indicating the
sample the corresponding value is from. This can be done using stack().

> d = stack(list(may=may,sep=sep,dec=dec)) # need names
for list
> names(d) # stack returns two
variables
[1] "values" "ind"
> oneway.test(values ~ ind, data=d, var.equal=TRUE)
 One-way analysis of means
data: values and ind
F = 1.786, num df = 2, denom df = 12, p-value = 0.2094

We get the same p-value as in our previous calculation, but with much less effort.

Analysis of variance 301

11.1.3 Using aov() for ANOVA

The alternative aov() function will also perform an analysis of variance. It returns a
model object similar to lm() but has different-looking outputs for the print() and
summary() extractor functions. These are analysis-of-variance tables that are typical of
other computer software and statistics books.

Again, it is called with a model formula, but with no specification of equal variances:

> res = aov(values ~ ind, data = d)
> res # uses print()
Call:
 aov(formula = values ~ ind, data = d)
Terms:
 ind Residuals
Sum of Squares 174664 586720
Deg. of Freedom 2 12
Residual standard error: 221.1
Estimated effects may be unbalanced

It returns the two sums of squares calculated in Example 11.2 with their degrees of
freedom. The Residual standard error, is found by the square root of RSS/(n−A;),
which in this example is

> sqrt(586720/12)
[1] 221.1

The result of aov() has more information than shown, just as the result of lm() does. For
example, the summary() function returns

> summary(res)
 Df Sum Sq Mean Sq F value Pr(>F)
ind 2 174664 87332 1.79 0.21
Residuals 12 586720 48893

These are the values needed to perform the one-way test. This tabular layout is typical of
an analysis of variance.

■ Example 11.3: Effect of grip on cross-country skiing Researchers at Montana
State University performed a study on how various ski-pole grips affect cross-country
skiing performance. There are three basic grip types: classic, modern, and integrated. For
each of the grip types, a skier has upper-body power output measured three times. The
data is summarized in Table 11.1.

Table 11.1 Upper-body power output (watts) by
ski-pole grip type

Grip type classic integrated modern
 168.2 166.7 160.1
 161.4 173.0 161.2

Using R for introductory statistics 302

 163.2 173.3 166.8
asimulated from study values

Does there appear to be a difference in power output due to grip type?
We can investigate the null hypothesis that the three grips will produce equal means

with an analysis of variance. We assume that the errors are all independent and that the
data is sampled from normally distributed populations with common variance but perhaps
different means.

First we enter in the data. Instead of using stack(), we enter in all the data at once and
create a factor using rep() to indicate grip type.

>
UBP=c(168.2,161.4,163.2,166.7,173.0,173.3,160.1,161.2,1
66.8)
>
grip.type=rep(c("classic","integrated","modern"),c(3,3,
3))
> grip.type=factor(grip.type)
> boxplot(UBP ~ grip.type, ylab="Power (watts)",
+ main="Effect of cross country grip”)

(We use rep() repeatedly. In particular, if u and v are data vectors of the same length, then
rep (u, v) repeats u[i]—the ith value of u−v [i] times.)

The boxplot in Figure 11.2 indicates that the integrated grip has a significant
advantage. But is this due to sampling error? We use aov() to carry out the analysis of
variance.

> res=aov(UBP ~ grip.type)
> summary(res)
 Df Sum Sq Mean Sq F value Pr(>F)
grip.type 2 116.7 58.3 4.46 0.065 .
Residuals 6 78.4 13.1
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’1

We see that there is a small p-value that is significant at the 10% level. (Although, in
most cases, samples with only three observations will fail to pick up on actual
differences.)

Analysis of variance 303

Figure 11.2 Effect of cross-country
ski pole grip on measured power
output

11.1.4 The nonparametric Kruskal-Wallis test

The Wilcoxon rank-sum test was discussed as a nonparametric alternative to the two-
sample t-test for independent samples. Although the populations had no parametric
assumption, they were assumed to have densities with a common shape but perhaps
different centers.

The Kruskal-Wallis test, a nonparametric test, is analogous to the rank-sum test for
comparing the population means of k independent samples.

In particular, if f(x) is a density of a continuous random variable with mean a, the
assumption on the data is that Xij is drawn independently of the others from a population
with density f(x−µi). The hypotheses tested are

H0:µ1=µ2=…=µk, HA:µi≠µj for at least one pair i and j.

The test statistic involves the ranks of all the data. Let rij be the respective rank of a data
point when all the data is ranked from smallest to largest, be the mean of the ranks for
each group, the grand mean. The test statistic is:

 (11.3)

Statistical inference is based on the fact that T has an asymptotic χ2-distribution with k−1
degrees of freedom.

Kruskal-Wallis test for equivalence of means
Assume k populations, the ith one with density f(x−µi). Let Xij,i= 1, …, k, j=1, …, ni
denote k independent, i.i.d. random samples from these populations. A significance test
of

H0:µ1=µ2=…=µk, HA: µi≠µ for at least one pair i and j,

Using R for introductory statistics 304

can be performed with the test statistic T given by (11.3). The asymptotic distribution
of T under H0 is the χ2-distribution with k−1 degrees. This is used as the approximate
distribution for T when there are at least five observations in each category. Large values
of T support the alternative hypothesis.

The kruskal. test() function will perform the test. The syntax is
Kruskal.test (x~f, data=…, subset=…)

■ Example 11.4: Multiple tests An instructor wishing to cut down on cheating makes
three different exams and distributes them randomly to her students. After collecting the
exams, she grades them. The instructor would like to know whether the three exams are
equally difficult. She will decide this by investigating whether the scores have equal
population means. That is, if she could give each exam to the entire class, would the
means be similar? The test scores are in Table 11.2. Is there a difference in the means?

We enter the data and then use stack() to put it in the proper format:

> x = c(63, 64, 95, 64, 60, 85)
> y = c(58, 56, 51, 84, 77)

Table 11.2 Test scores for three separate exams
test 1 63 64 95 64 60 85
test 2 58 56 51 84 77
test 3 85 79 59 89 80 71 43

> z = c(85, 79, 59, 89, 80, 71, 43)
> d = stack(list("test 1"=x,"test 2"=y,"test 3"=z))
> plot(values ~ ind, data=d, xlab=“test”, ylab="grade”)

The boxplots in Figure 11.3 show that the assumption of independent samples from a
common population, which perhaps is shifted, is appropriate.

Analysis of variance 305

Figure 11.3 Boxplots comparing
grades for three separate exams

The Kruskal-Wallis test returns

> kruskal.test(values ~ ind, data=d)
Kruskal-Wallis rank sum test
data: values by ind
Kruskal-Wallis chi-squared=1.775, df=2, p-value
0.4116

This large p-value indicates no reason to doubt the null hypothesis of equally difficult
exams.

11.1.5 Problems

11.1 The morley data set contains speed-of-light measurements by Michaelson and
Morley. There were five experiments, each consisting of multiple runs. Perform a one-
way analysis of variance to see if each of the five experiments has the same population
mean.

11.2 For the data set Cars93 (MASS) perform a one-way analysis of variance of MPG.
highway for each level of DriveTrain. Does the data support the null hypothesis of equal
population means?

11.3 The data set female. inc (UsingR) contains income data for females age 15 or
over in the United States for the year 2001, broken down by race. Perform a one-way
analysis of variance of income by race. Is there a difference in the mean amount earned?
What is the p-value? What test did you use and why?

11.4 The data set car safety (UsingR) contains car-crash data. For several makes of car
the number of drivers killed per million is recorded in Drivers. deaths. The number of
drivers of other cars killed in accidents with these cars, per million, is recorded in Other.
deaths. The variable type is a factor indicating the type of car.

Perform a one-way analysis of variance of the model Drivers. deaths ~ type. Is there a
difference in population means? Did you assume equal variances? Normally distributed
populations?

Using R for introductory statistics 306

Repeat with an analysis of variance of the model Other. deaths ~ type. Is there a
difference in population means?

11.5 The data set hall. fame (UsingR) contains statistics for several major league
baseball players. Perform a one-way test to see whether the mean batting average, BA, is
the same for Hall of Fame members (Hall. Fame. Membership) as for other players.

Table 11.3 Production of a chemical
Lab 1 4.13 4.07 4.04 4.07 4.05
Lab 2 3.86 3.85 4.08 4.11 4.08
Lab 3 4.00 4.02 4.01 4.01 4.04
Lab 4 3.88 3.89 3.91 3.96 3.92

11.6 A manufacturer needs to outsource the production of a chemical. Before deciding on
a laboratory, the manufacturer asks four laboratories to manufacture five batches each. A
numeric measurement is assigned to each batch. The data is given in Table 11.3. Perform
a one-way analysis of variance to see if there is a difference in the population means. Is
the data appropriate for oneway.test()? kruskal.test()?

11.7 A manufacturer of point-of-sale merchandise tests three types of ENTERbutton
markings. They wish to minimize wear, as customers get annoyed when the markings on
this button wear off. They construct a test of the three types, and conduct several trials for
each. The results, in unspecified units, are recorded in Table 11.4. Is there a difference in
wear time among the three types? Answer this using a one-way ANOVA.

Table 11.4 Wear times for point-of-sale test
Type 1 303 293 296 299 298
Type 2 322 326 315 318 320 320
Type 3 309 327 317 315

11.8 Perform a Kruskal-Wallis test on the data in the data set Plant Growth, where weight
is modeled by the factor group. Is there a significant difference in the means?

11.9 Perform a one-way analysis of variance on the data in Example 11.4. Is there a
different conclusion from the example?

11.2 Using lm() for ANOVA

The mathematics behind analysis of variance is the same as that behind linear regression.
Namely, it uses least-squares estimates based on a linear model. As such, it makes sense
to unify the approaches. To do so requires a new idea in the linear model.

To illustrate, we begin with an example comprising just two samples, to see how t-
tests are handled with the lm() function.

■ Example 11.5: ANOVA for two independent samples
Suppose we have two independent samples from normally distributed populations. Let
X11, X12,…,X1n record the first and X21, X22, …, X2n the second. Assume the population

Analysis of variance 307

means are µ1 and µ2 and the two samples have a com-mon variance. We may perform a
two-sided significance test of µ1=µ2 with a t-test.

We illustrate with simulated data:

> mu1=0; mu2=1
> x=rnorm(15,mu1); y=rnorm(15,mu2)
> t.test(x,y, var.equal=TRUE)
 Two Sample t-test
data: x and y
t=−2.858, df=28, p-value=0.007961
alternative hypothesis: true difference in means is not
equal to a
95 percent confidence interval:
 −2.0520 −0.3386
sample estimates:
mean of x mean of y
 0.0157 1.211

We see that the p-value is small, as expected.
We can approach this test differently, in a manner that generalizes to the case when

there are more than two independent samples. Combine the data into a single data vector,
Y, and a factor keeping track of which sample, 1 or 2, the data is from. This presumes
some ordering on the data after it is stored in Y. For example, we can let the first n1
values be from the first sample and the second n2 from the last. This is what stack() does.
Using this order, let 11(i) be an indicator function that is 1 if the level of the factor for the
ith data value is 1. Similarly, define 12(i). Then we can rewrite our model as

Yi=µ1l1(i)+µ212(i)+εi.

When the data for the first sample is considered, 12(i)=0, and this model is simply
Yi=µ1+εi. When the second sample is considered, the other dummy variable is 0, and the
model considered is Yi=µ2+εi.

We can rewrite the model to use just the second indicator variable. We use different
names for the coefficients:

Yi=β1+β2l2(i)+εi.

Now when the data for the first sample is considered the model is Yi=β1+εi, so β1 is still
µ1. However, when the second sample is considered, we have Yi= β1+β2+εi, so µ2=β1+β2.
That is, β2=µ2−µ1. We say that level 1 is a reference level, as the mean of the second level
is represented in reference to the first.

It turns out that statistical inference is a little more natural when we pick one of the
means to serve as a reference. The resulting model looks just like a linear-regression
model where xi is 12(i). We can fit it that way and interpret the coefficients accordingly.
The model is specified the same way, as with oneway.test(), y ~ f, where y holds the data
and f is a factor indicating which group the data is for.

To model, first we stack, then we fit with lm().

> d=stack(list(x=x,y=y)) # need named list.

Using R for introductory statistics 308

> d
 values ind
1 −0.5263 x
2 −0.9709 x
…
> res=1m(values ~ ind, data=d)
> summary(res)
…
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.157 0.261 0.60 0.553
indy 1.054 0.369 2.86 0.008 **
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 1.01 on 28 degrees of freedom
Multiple R-Squared: 0.226, Adjusted R-squared: 0.198
F-statistic: 8.17 on 1 and 28 DF, p-value: 0.00796

Look at the variable indy, which means the y part of ind. The marginal ttest tests the null
hypothesis that β2=0, which is equivalent to the test that µ1=µ2. This is why the t-value of
2.86 coincides (up to a sign and rounding) with t=−2.858 from the output of t.test (x, y).

The F-statistic also tests the hypothesis that β2=0. In this example, it is identical to the
marginal t-test, as there are only two samples.

Alternatively, we can try to fit the model using two indicator functions, Yi=
µ111(i)+µ212(i)+εi.

This model is specified in R by dropping the implicit intercept term with a—1 in the
model formula.

> res=lm(values ~ ind − 1, data=d)
> summary(res)
…
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
indx 0.157 0.261 0.60 0.55
indy 1.211 0.261 4.64 7.4e-05 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’1
Residual standard error: 1.01 on 28 degrees of freedom
Multiple R-Squared: 0.439, Adjusted R-squared:
0.399
F-statistic: 11 on 2 and 28 DF, p-value: 0.000306

Now the estimates have a clear interpretation in terms of the means, but the marginal t-
tests are less useful, as they are testing simply whether the respective means are a, rather
than whether their difference is a. The F-statistic in this case is testing whether both β’s
are 0.

Analysis of variance 309

11.2.1 Treatment coding for analysis of variance

The point of the above example is to use indicator variables to represent different levels
of a factor in the linear model. When there are k levels, k−1 indicator variables are used.
For example, if the model is

Xij=µi+εij, i,…,k,
(11.4)

then this can be fit using
Yi=β1+β212+…+βk1k(i)+εi.

(11.5)

The mean of the reference level, µ1, is coded by β1, and the other β’s are differences from
that. That is, βi=µi−µ1 for i=2,…,k.

This method of coding is called treatment coding and is used by default in R with
unordered factors. It is not the only type of coding, but it is the only one we will discuss.†

Treatment coding uses a reference level to make comparisons. This is chosen to be the
first level of the factor coding the group. To change the reference level we can use the
relevel() function in the following manner:

f=relevel(f, ref=…)

The argument ref=specifies the level we wish to be the reference level.

■ Example 11.6: Child’s birth weight and mother’s smoking history
The babies (UsingR) data set contains information on birth weight of a child and whether
the mother smoked. The birth weight, wt, is coded in ounces, and smoke is a numeric
value: a for never, 1 for smokes now, 2 for smoked until current pregnancy, 3 for smoked
previously but not now, and 9 if unknown.

To do an analysis of variance on this data set, we use subset() to grab just the desired
data and then work as before, only we use factor() to ensure that smoking is treated as a
factor. First, we see whether there appears to be a difference in the means with a boxplot
(Figure 11.4).

> library(UsingR)
> df=subset(babies,select=c("wt","smoke"))
> plot(wt ~ factor(smoke), data=df, # notice factor()
for boxplot
+ main="Birthweight by smoking level”)

† For more detail see ?contrasts and the section on contrasts in the manual An Introduction to R that
accompanies R.

Using R for introductory statistics 310

Figure 11.4 Birth weight by smoking
history

Perhaps the assumption of normality isn’t correct, but we ignore that. If the test is valid, it
looks like level 1 (smokes now) has a smaller mean. Is this due to sampling? We fit the
model as follows:

> res=1m(wt factor(smoke), data=df)
> summary(res)
…
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 122.778 0.760 161.60 < 2e−16 ***
factor (smoke) 1 -8.668 1.107 −7.83 1.1e-14 ***
factor (smoke) 2 0.307 1.970 0.16 0.88
factor (smoke) 3 1.659 1.904 0.87 0.38
factor (smoke) 9 3.922 5.655 0.69 0.49
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘’
Residual standard error: 17.7 on 1231 degrees of
freedom
Multiple R-Squared: 0.0588, Adjusted R-squared:
0.0557
F-statistic: 19.2 on 4 and 1231 DF, p-value: 2.36e-15

The marginal t-tests indicate that the level 1 of the smoke factor is important, whereas the
others may not contribute. That is, this is strong evidence that a mother’s smoking during
pregnancy decreases a baby’s birth weight. The treatment coding quantifies this in terms
of differences from the reference level of never smoked. The estimate, −8.668, says that
the birth weight of a baby whose mother smoked during her pregnancy is predicted to be
8.688 grams less than that of a baby whose mother never smoked.

Analysis of variance 311

11.2.2 Comparing multiple differences

When analysis of variance is performed with lm(), the output contains numerous
statistical tests. The F-test that is performed uses for the null hypothesis that β2=β3=…=
βk=0 against an alternative that one or more differ from 0. That is, that one or more of the
treatments has an effect compared to the reference level. The marginal t-tests that are
performed are two-sided tests with a null hypothesis that βi=β1. One each is done for i=2,
…, k. These test whether any of the additional treatments have a different effect from the
reference one when controlled by the other variables. However, we may wish to ask other
questions about the various parameters. For example, comparisons not covered by the
standard output are “Do the β2 and β3 differ?” and “Are β1 and β2 half of β3?” We show
next how to handle simultaneous pairwise comparisons of the parameters, such as the
first comparison.

If we know ahead of time that we are looking for a pairwise difference, then a simple
t-test is appropriate (as in the case where we are considering just two independent
samples). However, if we look at the data and then decide to test whether the second and
third parameters differ, then our t-test is shaky. Why? Remember that any test is correct
only with some probability—even if the models are correct. This means that sometimes
they fail, and the more tests we perform, the more likely one or more will fail. When we
look at the data, we are essentially performing lots of tests, so there is more chance of
failing.

In this case, to be certain that our t-test has the correct significance level, we adjust it
to include all the tests we can possibly consider. This adjustment can be done by hand
with the simple, yet often overly conservative Bonferroni adjustment. This method uses a
simple probability bound to ensure the proper significance level.

However, with R it is straightforward to perform Tukey’s generally more useful and
powerful “honest significant difference” test. This test covers all pairwise comparisons at
one time by simultaneously constructing confidence intervals of the type

(11.6)

The values are the sample means for the i-th level and q* is the quantile for a
distribution known as the studentized range distribution. This choice of q* means that all
these confidence intervals hold simultaneously with probability 1−α.

This procedure is implemented in the TukeyHSD() function as illustrated in the next
example.

■ Example 11.7: Difference in takeoff times at the airport
We investigate the takeoff times for various airlines at Newark Liberty airport. As with
other busy airports, Newark’s is characterized by long delays on the runway due to
requirements that plane departures be staggered. Does this affect all the airlines equally?
Without suspecting that any one airline is favored, we can perform a simultaneous pair-
wise comparison to investigate.

First, we massage the data in ewr (UsingR) so that we have two variables: one to keep
track of the time and the other a factor indicating the airline.

Using R for introductory statistics 312

> ewr.out=subset(ewr, subset=inorout=="out”,
select=3:10)
> out=stack(ewr.out)
> names(out)=c("time","airline”)
> levels(out$airline)
[1] “AA" “CO" “DL" “HP" “NW" “TW" “UA" “US"

In modeling, the reference level comes from the first level reported by the levels()
function. This is AA, or American Airlines.

Figure 11.5 Boxplots and plots of
confidence intervals given by the
Tukey procedure for time it takes to
takeoff at Newark Liberty airport
by airline

Now plot (the boxplots in Figure 11.5) and fit the linear model as follows:

> plot(time ~ airline, data=out)
> res=lm(time ~ airline, data=out)
> summary(res)
Call:
1m(formula=time ~ airline, data=out)
…
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.0565 0.7204 37.56 < 2e−16 ***
airlineCO 3.8348 1.0188 3.76 0.00023 ***
airlineDL −2.0522 1.0188 −2.01 0.04550 *
airlineHP 1.5261 1.0188 1.50 0.13595
airlineNW −4.0609 1.0188 −3.99 9.8e−05 ***
airlineTW −1.6522 1.0188 −1.62 0.10667
airlineUA -0.0391 1.0188 -0 04 0.96941
airlineUS -3.8304 1.0188 -3 76 0.00023 ***
--

Analysis of variance 313

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 3.45 on 176 degrees of freedom
Multiple R-Squared: 0.355, Adjusted R-squared: 0.329
F-statistic: 13.8 on 7 and 176 DF, p-value: 3.27e-14

The boxplots show many differences. Are they statistically significant? We assume for
now that the data is actually a collection of independent samples (rather than monthly
averages of varying sizes) and proceed using the TukeyHSD() function.

> TukeyHSD(res)
Error in TukeyHSD(res) : no applicable method for
“TukeyHSD"

Oops, the TukeyHSD() function wants aov() to fit the linear model, not
lm(). The commands are the same.

> res.aov=aov(time ~ airline, data=out)
> TukeyHSD(res.aov)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula=time ~ airline, data=out)
$airline
 diff lwr upr
CO-AA 3.83478 0.7093 6.96025
DL-AA −2.05217 −5.1776 1.07330
…
US-TW −2.17826 −5.3037 0.94721
US-UA −3.79130 −6.9168 −0.66583
> plot(TukeyHSD(res.aov), las=2)

The output of TukeyHSD() is best viewed with the plot of the confidence intervals
(Figure 11.5). This is created by calling plot() on the output. The argument las=2 turns
the tick-mark labels perpendicular to the axes.

Recall the duality between confidence intervals and tests of hypothesis discussed in
Chapter 8. For a given confidence level and sample, if the confidence interval excludes a
population parameter, then the two-sided significance test of the same parameter will be
rejected. Applying this to the Newark airport example, we see several statistically
significant differences at the α=.05 level, the first few being CO-AA and NW-AA (just
visible on the graph shown).

11.2.3 Problems

11.10 The data set MLB At tend (UsingR) contains attendance data for major league
baseball between the years 1969 and 2000. Use 1m () to perform a t-test on attendance
for the two levels of league. Is the difference in mean attendance significant? Compare
your results to those provided by t. test ().

Using R for introductory statistics 314

11.11 The Traffic (MASS) data set contains data on road deaths in Sweden during
1961 and 1962. An investigation into the effect of an enforced speed limit on the number
of traffic fatalities was conducted. The y variable contains the number of deaths for a
given day, the year variable is the year of the data, and limit is a factor indicating when
the speed limit was enforced.

Use lm () to perform a t-test to investigate whether the year has an effect on the
number of deaths. Repeat to test whether the variable limit has an effect.

11.12 For the data in Table 11.4, perform the one-way ANOVA using lm(). Compare
to the results of oneway.test().

11.13 For the mt cars data set, perform a one-way analysis of variance of the response
variable mpg modeled by cyl, the number of cylinders. Use factor(), as cyl is stored as a
numeric variable.

11.14 The data set npdb (UsingR) contains malpractice award information. The
variable amount contains the amount of a settlement, and the variable year contains the
year of the award. We wish to investigate whether the dollar amount awarded was steady
during the years 2000, 2001, and 2002.

1. Make boxplots of amount broken up by year. Why is the data not suitable for a one-
way analysis of variance?

2. Make boxplots of log (amount) broken up by year. Is this data suitable for a one-
way analysis of variance?

3. Perform an analysis of variance of log (amount) by factor (year) for the years 2000,
2001, and 2002. Is the null hypothesis of no difference in mean award amount reasonable
given this data?

11.15 For the mtcars data set, perform a one-way analysis of variance of the response
variable mpg modeled by am, which is a for automatic and 1 for manual. Use factor(), as
am is stored as a numeric variable.

11.16 Perform the Tukey procedure on the data set morley after modeling Speed by
expt. Which differences are significant? Do they include all the ones flagged by the
marginal t-tests returned by lm() on the same model?

11.17 The car safety (UsingR) data set shows a difference in means through an
analysis of variance when the variable Other. deaths is modeled by type. Perform the
Tukey HSD method to see what pairwise differences are flagged at a 95% confidence
level. What do you conclude?

11.18 The InsectSprays data set contains a variable count, which counts the number of
insects and a factor spray, which indicates the treatment given.

First perform an analysis of variance to see whether the treatments make a difference.
If so, perform the Tukey HSD procedure to see which pairwise treatments differ.

Analysis of variance 315

11.3 ANCOVA

An analysis of covariance (ANCOVA) is the term given to models where both
categorical and numeric variables are used as predictors. Performing an ANCOVA in R is
also done using lm().

■ Example 11.8: Birth weight by mother’s weight and smoking history
In Example 11.6 we performed an analysis of variance of a baby’s birth weight

modeled by whether the mother smoked. In this example, we also regress on the numeric
measurement of the mother’s weight. First we make a plot, marking the points with
different characters depending on the value of smoke. As smoke is stored as a numeric
variable, the different plot symbols for those numbers are used.

> plot(wt ~ wt1, data=babies, pch=smoke, subset=wt1 <
800)

The graph in Figure 11.6 indicates a possible linear relationship. The analysis of
covariance model, fit next, is essentially the model

birth weight=β1+β2mom’s weight+β31mom smokes now

This model is a parallel-lines model. For those mothers who don’t smoke, the intercept is
given by β1; for those who do, the intercept is β1+β3. The slope is given by β2. The actual
model we fit is different, as there are four levels to the smoke variable, so there would be
three indicator variables, each indicating a difference in the intercept.

In R, we fit the model as follows, using factor() to coerce smoke to be a factor:

> res=lm(wt ~ wt1+factor(smoke), data=babies,
+ subset=wt1 < 800)
> summary(res)
Call:
lm(formula=wt ~ wt1+factor(smoke), data=babies,
subset=wt1 <
 800)
Residuals:
 Min 1Q Median 3Q Max
−68.928 −10.901 0.437 11.014 52.685

Using R for introductory statistics 316

Figure 11.6 Parallel-lines model
showing reference slope and slope
for smokers (dashed line)

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 107.0674 3.2642 32.80 < 2e-16

wt1 0.1204 0.0245 4.93 9.6e-07

factor(smoke)1 −8.3971 1.1246 −7.47 1.6e−13 ***
f act or(smoke) 2 0.7944 1.9974 0.40 0.69
factor(smoke)3 1.2550 1.9112 0.66 0.51
factor(smoke)9 2.8683 5.6452 0.51 0.61
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 17.7 on 1194 degrees of
freedom
Multiple R-Squared: 0.0775, Adjusted R-squared: 0.0736
F-statistic: 20.1 on 5 and 1194 DF, p-value: <2e−16

We read this output the same way we read the output of any linear regression. For each
coefficient, the marginal t-test of βi=0 against a two-sided alternative is performed. Three
variables are flagged as highly significant. The third one for the variable factor (smoke) 1
says that the value of this coefficient, −8.3971, is statistically different from 0. This value
is an estimate of the difference between the intercept for the data of nonsmoking mothers
(level 0) and the data of mothers who answered “smokes now” (level 1).

We plot the data with two different but parallel regression lines in Figure 11.6.

> plot(wt ~ wt1, pch=smoke, data=babies, subset=wt1 <
800)

Analysis of variance 317

> abline(107.0674, 0.1204)
| > abline(107.0674–8.3971, 0.1204, lty=2)

The last line of the output of summary (res) shows that the F-test is rejected. This is a test
of whether all the coefficients except the intercept are 0. A better test would be to see
whether the additional smoke variable is significant once we control for the mother’s
weight. This is done using anova() to compare the two models.

> res.1=lm(wt ~ wt1, data=babies, subset=wt1 < 800)
> anova(res.1,res)
Analysis of Variance Table
Model 1: wt ~ wt1
Model 2: wt ~ wt1+factor(smoke)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 1198 394572
2 1194 372847 4 21725 17.4 7e-14 ***
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1

The small p-value indicates that the additional term is warranted. ■

11.3.1 Problems

11.19 The nym. 2002 (UsingR) data set contains data on the finishers of the 2002 New
York City Marathon. Do an ANCOVA of time on the numeric variable age and the factor
gender. How much difference is there between the genders?

11.20 For the mtcars data set, perform an ANCOVA of mpg on the weight, wt, and the
transmission type, am. You should use factor (am) in your model to ensure that this
variable is treated as a factor. Is the transmission type significant?

11.21 Perform an ANCOVA for the babies (UsingR) data set modeling birth weight
(wt) by gestation (gestation), mother’s weight (wt1), mother’s height (ht), and mother’s
smoking status (smoke).

11.22 From the kid. weights (UsingR) data set, the body mass index (BMI) can be
computed by dividing the weight by the height squared in metric units.

The following will add a BMI variable:
> kid.weights$BMI=(kid.weights$weight/2.54)/
+ (kid.weights$height*2.54/100)^2

Model the BMI by the age and gender variables. This is a parallel-lines model. Which
variables are significant? Use the partial F-test to find the preferred model. Does this
agree with the output of stepAIC()?

11.23 The cf b (UsingR) data set contains information on consumer expenses. In
particular, INCOME contains income figures, EDUC is the number of years of education,
and AGE is the age of the participant. Perform an ANCOVA modeling log (INCOME+1)
by AGE and EDUC. You need to force EDUC to be a factor. Are both variables
significant?

Using R for introductory statistics 318

11.24 The data set normtemp (UsingR) contains body temperature and heart rate (hr)
for 65 randomly chosen males and 65 randomly chosen females (marked by gender with
1 for males and 2 for females). Perform an ANCOVA modeling temperature by heart rate
with gender treated as a factor.

11.4 Two-way ANOVA

“Two-way analysis of variance” is the term given when a numeric response variable is
modeled by two categorical predictors. After we fit the model into the regression
framework, the t-tests and partial F test will be available for analysis.

Let Y be the response variable and x1 and x2 be two categorical predictors, with n1 and
n2 levels respectively. The simplest generalization of the one-way ANOVA model (11.4)
is the two-way additive model:

Yijk=µ+αi+δj+εijk.
(11.7)

The grand mean is µ, αi the mean for the ith level of x1, δj is the mean for the ith level of
x2, and the error terms, εijk, are an i.i.d. sequence with a Normal(0,σ) distribution.

Two common significance tests investigate whether the different levels of x1 and x2
have an effect on the mean of Y. For the first variable, x1, the hypotheses are

The equivalent one for x2 replaces the α’s above with δ’s.
■ Example 11.9: Driver differences in evaluating gas mileage An automotive web

site wishes to test the miles-per-gallon rating of a car. It has three drivers and two cars of
the same type. Each driver is asked to drive each car three times and record the miles per
gallon. Table 11.5 records the data. Ideally, there should be little variation. But is this the
case with the data?

Table 11.5 Does the driver or car make a
difference in mileage?

Driver Driver
Car a b c Car a b c
A 33.3 34.5 37.4 B 32.6 33.4 36.6
 33.4 34.8 36.8 32.5 33.7 37.0
 32.9 33.8 37.6 33.0 33.9 36.7

11.4.1 Treatment coding for additive two-way ANOVA

Before analyzing this model, we incorporate it into our linear-model picture using
dummy variables. We follow the same coding (treatment coding) in terms of indicators as

the one-way case. Relabel the observations 1 through 18. Let be the indicator

Analysis of variance 319

that the observation is for driver b, (similarly and the indicator that the car
is B. Then the additive model becomes

Again, the εi are i.i.d. Normal(0, σ).
Recall that with treatment coding we interpret the parameters in terms of differences.

For this model, β1=µ+αA+δa, or the sum of the grand mean, the mean of the first level of
the first variable, and the mean of the first level of the second variable. As β1+β2 is the
mean for car A, driver b, this would be µ+αA+δb or β2=δb−δa. Similarly, the β3 and β4 can
be interpreted in terms of differences, as β3=δc−δa and β4=αB−αA.

11.4.2 Testing for row or column effects

To perform the significance test that the row variable has constant mean we can use the
partial F-test. In our example, this is the same as saying β4=0. The partial F-test fits the
model with and without β4 and uses the ratio of the residual sum of squares to make a test
statistic. The details are implemented in the anova() function.

First we enter the data:

> x = c(33.3, 33.4, 32.9, 32.6, 32.5, 33.0, 34.5, 34.8,
33.8,
+ 33.4, 33.7, 33.9, 37.4, 36.9, 37.6, 36.6, 37.0, 36.7)
> car = factor(rep(rep(l:2,c(3,3)) , 3))
> levels(car) = c("A","B")
> driver = factor(rep(1:3,c(6,6,6)))
> levels(driver) = letters[1:3] # make letters not
numbers

The additive model is fit with

> res.add = lm(x ~ car + driver)

We want to compare this to the model when β4=0.

> res.nocar=lm(x ~ driver)

We compare nested models with anova():

> anova(res.add,res.nocar)
Analysis of Variance Table
Model 1: x ~ car+driver
Model 2: x ~ driver
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 14 1.31
2 15 2.82 −1 −1.50 16 0.0013 **
--

Using R for introductory statistics 320

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1

We see that the difference is significant, leading us to rule out the simpler model.
What about the effect of the car? The two cars should have been identical. Is there a

difference? The null hypothesis is now H0: δa=δb=δc, which can be rewritten as β2=β3=0.
As such, we fit the model without the β2 and β3 terms and compare to the full model as
above.

> res.nodriver = 1m(x ~ car)
> anova(res.add,res.nodriver)
Analysis of Variance Table
Model 1: x car + driver
Model 2: x ~ car
Res.Df RSS Df Sum of Sq F Pr(>F)
1 14 1.3
2 16 55.1 −2 −53.8 287 4.4e−12 ***
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1

This too is flagged as significant.

11.4.3 Testing for interactions

The extra factor in two-way ANOVA introduces another possibility: interaction. For
example, as there seems to be a difference in the two cars, perhaps one is sportier, which
makes one of the drivers drive faster. That is, there is an interaction when the two factors
combine. A statistical model for interactions in the two-way analysis of variance model is

Yijk=µ+αi+δj+γij+εijk, 1≤i≤n1,1≤j≤n2.
(11.8)

The γij terms add to the grand mean and group means when both levels are present.
We again rewrite this in terms of dummy variables. We get extra variables

corresponding to all possible combinations of the two factors:

Although (11.8) has 1+n1+n2+n1·n2 parameters, this is more than can be identified.
Instead, (11.9) has only n1·n2=1+(n1−1)+(n2–1)+(n1− 1)(n2−1) parameters needed for the
modeling.

A significance test to see if the extra terms from the interaction are necessary can be
done with the partial F-test. Before doing so, we introduce a diagnostic plot to see if the
extra terms are warranted.

Interaction plots
An interaction plot is a plot that checks to see whether there is any indication of
interactions. For two-way analysis of variance there are three variables. To squeeze all

Analysis of variance 321

three onto one graphic, one of the factors is selected as the trace factor. Different lines
will be drawn for each level of this factor. Fix a level, for now, of the trace factor. For
each level of the main factor, the mean of the data where both levels occur is plotted as a
point. These points are then connected with a line segment. Repeat for the other levels of
the trace factor. If the line segments for each level of the trace factor are roughly parallel,
then no interaction is indicated. If the lines differ dramatically, then an interaction is
indicated.

This graphic is made with the function interaction.plot(). The template is
interaction.plot(f, trace.factor, y, legend=TRUE)

The response variable is stored in y, the f holds the main factor, and the other is in trace.
factor. By default, a legend will be drawn indicating the levels of the trace factor.

For our example, Figure 11.7 is made with the following commands. The line
segments are nearly parallel, indicating that no interaction is present.

> interaction.plot(driver,car,x)

Significance test for presence of interactions
To test the hypothesis of no interaction formally we can use the partial F-test. The null
hypothesis can be expressed as γij=0 in (11.8) or, for our car-and-driver example, as
β5=β6=0 from Equation (11.9). For our car-and-driver example, this is done by comparing
the models with and without interaction.

Specifying an interaction in a model formula An interaction can be specified in
different ways in the model formula. The symbol :, used as f1:f2, will introduce the
interaction terms for the two factors. Whereas *, as in f1*f2, will

Figure 11.7 Interaction plot for car-
and-driver data. The lines are nearly
parallel, indicating no interaction.

introduce not only an interaction, but the main effects, f1+f2, as well. Finally, the power
notation, ^, as in (f1+f 2) ^2, will do the main effects and all possible interactions up to
order 2. This generalizes with higher powers and more terms. For our example with two

Using R for introductory statistics 322

factors, all three of these model formulas are equivalent:fl+f2+f1:f2, f1*f2, and
(f1+f2)^2.

To proceed, we save the model with an interaction and then use anova () to compare
nested models.

> Im.int=1m(x ~ car * driver)
> 1m.add=1m(x ~ car + driver)
> anova(lm.add,1m.int)
Analysis of Variance Table
Model 1: x ~ car + driver
Model 2: x ~ car * driver
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 14 1.314
2 12 1.280 2 0.034 0.16 0.85

The large p-value is consistent with Figure 11.7, indicating no interaction.
■ Example 11.10: Factors in movie enjoyment The proprietors of a movie house

want to maximize their customers’ movie-going experience. In particular, they want to
know whether either eating popcorn or sitting in more comfortable seats makes a
difference in customer enjoyment. They randomly assign 16 people equally to the four
possible combinations and then ask them to rate the same movie on a 0–100 scale. The
data is in Table 11.6.

The data is entered in with

> x = scan()
1:92 80 80 78 63 65 65 69 60 59 57 51 60 58 52 65
17:
Read 16 items

Table 11.6 Factors affecting movie enjoyment
seat type good bad
popcorn yes 92 80 80 78 60 59 57 51
 no 63 65 65 69 60 58 52 65

> Seat=factor(rep(c("Good","Bad"),c(8,8)))
> Popcorn=factor(rep(rep(c("Y","N"),c(4,4)), 2))

We can check our numbers using xtabs() and ftable(). First we add a variable to keep the
data from being summed.‡

> replicate = rep(1:4,4)
> ftable(xtabs(x ~ Popcorn + Seat + replicate))
 replicate 1 2 3 4
Popcorn Seat
N Bad 60 58 52 65
 Good 63 65 65 69
Y Bad 60 59 57 51
 Good 92 80 80 78

Analysis of variance 323

It matches up, although we didn’t fuss with the order.
Now to see if an interaction term is warranted:

> interaction.plot(Seat, Popcorn, x)

Figure 11.8 Interaction plot
indicating presence of an
interaction, as lines are not parallel

‡See ?xtabs for a similar example.

Figure 11.8 seems to show an interaction, as the slopes are not parallel. We can do a
formal test with anova().

> res.int=1m(x ~ Seat * Popcorn)
> res.add=lm(x ~ Seat + Popcorn)
> anova(res.int,res.add)
Analysis of Variance Table
Model 1: x ~ Seat * Popcorn
Model 2: x ~ Seat + Popcorn
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 12 277
2 13 638 −1 −361 15.6 0.0019 **

The small p-value casts doubt on the null hypothesis model of no interaction. The
summary() function gives more detailed information about the interaction model.

> summary(res.int)
Call:
1m(formula = x ~ Seat * Popcorn)
--
Coefficients:
 Estimate Std. Error t value Pr(>|t|)

Using R for introductory statistics 324

(Intercept) 58.75 2.40 24.43 1.3e−11

SeatGood 6.75 3.40 1.99 0.0705 .
PopcornY −2.00 3.40 −0.59 0.5673
SeatGood:PopcornY 19.00 4.81 3.95 0.0019
**
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
Residual standard error: 4.81 on 12 degrees of freedom
Multiple R-Squared: 0.855, Adjusted R-squared: 0.819
F-statistic: 23.7 on 3 and 12 DF, p-value: 2.50e-05

It appears that a good seat and popcorn can go a long way toward a moviegoer’s
satisfaction (at least from this fabricated data). Perhaps new seats and less expensive
popcorn will keep the customers coming back.

11.4.4 Problems

11.25 A politician’s campaign manager is interested in the effects of television and
internet advertising. She surveys 18 people and records changes in likability after a small
advertising campaign. Additionally, she records the amount of exposure her subjects have
to the ad campaigns. The data is in Table 11.7. Use an analysis of variance to investigate
the following questions:

1. Is there any indication that web advertising alone is effective?

2. After controlling for television exposure, is there any indication that web
advertising is effective?

Table 11.7 Change in likahility of politician
TV ad exposure (viewings) 0 1-2 3+
Web exposure N −1−4 0−1 4 1 6 2 7
 Y 1 2 2 7 5 2 3 6 1

11.26 The grip (UsingR) data set contains more data than is used in Example 11.3. The
data is from four skiers instead of one. You can view the data in a convenient manner
with the command

> ftable(xtabs(UBP ~ person + replicate + grip.type,
data=grip))

Perform a two-way analysis of variance on the data. Check first to see whether there are
any interactions, then see whether the difference in skier or grip has an effect.

11.27 In the data set mtcars the variables mpg, cyl, and am indicate the miles per
gallon, the number of cylinders, and the type of transmission respectively. Perform a two-
way ANOVA modeling mpg by the cyl and am, each treated as categorical data.

Analysis of variance 325

Is there an indication of an interaction? Do both the number of cylinders and the type
of transmission make a difference?

11.28 The data set ToothGrowth has measurements of tooth growth (len) of guinea
pigs for different dosages of Vitamin C (dose) and two different delivery methods (supp).

Perform a two-way analysis of variance of tooth growth modeled by dosage and
delivery method. First, fit the full model including interactions and use the F-test to
compare this with the additive model.

11.29 The data set OrchardSprays contains measurements on the effectiveness of
various sprays on repelling honeybees. The variable decrease measures effectiveness of
the spray, treatment records the type of treatment, and rowpos records the row in the field
the measurement comes from.

Make an interaction plot of the mean of decrease with treatment as a trace factor. Then
fit the additive analysis-of-variance model and the model with interaction. Compare the
two models using anova(). Is the interaction model suggested by the results of the
modeling?

Using R for introductory statistics 326

Chapter 12
Two extensions of the linear model

The linear-regression ideas are building blocks for many other statistical models. The R
project’s archive (CRAN, http://cran.r-project.org/) warehouses over 300 add-on
packages to R, many of which implement extensions to the linear-regression model
covered in the last two chapters. In this chapter, we look at two extensions: logistic-
regression models and nonlinear models. Our goal is to illustrate that most of the
techniques used for linear models carry over to these (and other) models.

The logistic-regression model covers the situation where the response variable is a
binary variable. Logistic regression, which is a particular case of a generalized linear
model, arises in several areas, including, for example, analyzing survey data. The
nonlinear models we discuss use a function to describe the mean response that is not
linear in the parameters.

12.1 Logistic regression

A binary variable is one that can have only two values, “success” or “failure,” often
coded as 1 or 0. In the ANOVA model we saw that we can use binary variables as
predictors in a linear-regression model by using factors. But what if we want to use a
binary variable as a response variable?

■ Example 12.1: Spam Junk e-mail, or spam, is a real nuisance, but it must make
some business sense, as the internet is flooded with it. Let’s look at the situation from the
spammer’s perspective.

The spammer’s problem is that very few people will open spam. How to entice
someone to do so? Is it worth the expense of buying an e-mail list that includes names?
Does the subject line make a difference? Imagine a test is done in which 5,000 e-mails
are sent out in four different ways. The subject heading on some includes a first name, on
some an offer, on some both, and on some neither. The number that are opened by the
recipient is measured by an embedded image in the e-mail body that can be tracked via a
web server.

Table 12.1 Number of spam e-mails opened
Offer in subject

 yes no
First name yes 20 of 1,250 15 of 1,250
in subject no 17 of 1,250 8 of 1,250

If Table 12.1 contains data on the number of e-mails opened for each possible
combination, what can we say about the importance of including a name or an offer in the
subject heading?

For simplicity, assume that we have two variables, X and Y, where Y is a binary
variable coded as a 0 or 1. For example, 1 could mean a spam message was opened. If we
try to model the response with Yi=β0+εi or Yi=β0+β1xi+ εi, then, as Yi is either 0 or 1, the
εi can’t be an i.i.d. sample from a normal population. Consequently, the linear model
won’t apply. As having only two answers puts a severe restriction on the error term,
instead the probability of success is modeled.

Let πi=P(Yi=1). Then πi is in the range 0 to 1. We might try to fit the model
πi=β0+β1xi+εi, but again the range on the left side is limited, whereas that on the right
isn’t. Even if we restrict our values of the xi, the variation of the εi can lead to
probabilities outside of [0,1].

Let’s change tack. For a binary random variable, the probability is also an expected
value. That is, after conditioning on the value of xi, we have E(Yi/xi)= πi. In the simple
linear model we called this µy/x, and we had the model Yi= µy|x+εi. Interpreting this
differently will let us continue. We mentioned that the assumption on the error can be
viewed two ways. Either assuming the error terms, the εi values, are a random sample
from a mean a normally distributed population, or, equivalently that each data point Yi is
randomly selected from a Normal (µy|x,σ) distribution independently of the others. Thus,
we have the following ingredients in simple linear regression:

■ The predictors enter in a linear manner through β0+β1x1
■ The distribution of each Yi is determined by the mean, µy/x, and some scale parameter σ
■ There is a relationship between the mean and the linear predictors (µy|x= β0+β1x1)

The last point needs to be changed to continue with the binary regression model. Let
η=β0+β1x1. Then the change is to assume that η can be transformed to give the mean by
some function m() via µy|x=W(η), which can be inverted to yield back η=m−1(µy|x). The
function m() is called a link function, as it links the predictor with the mean.

The logistic function m(x)=ex/(1+ex) is often used (see Figure 12.1), and the
corresponding model is called logistic regression. For this, we have

The logistic function turns values between −∞ and ∞ into values between 0 and 1, so the
numbers specifying the probabilities will be between 0 and 1. When m() is inverted we
have

 (12.1)

Using R for introductory statistics 328

Figure 12.1 Graph of logistic
function, m(x)=ex/(1+ex). The
inflection point is marked with a
square.

This log term is called the log-odds ratio. The odds associated to some probability are
p/(1−p), which is evident if we understand that an event having odds a to b means that in
a+b i.i.d. trials we expect a wins. Thus the probability of success should be a/(a+b).
Reversing, if the probability of success is a/(a+b), then the ratio becomes
(a/(a+b))/(1−a/(a+b)) or a/b, which is the ratio of the odds.

To finish the model, we need to specify the distribution of Yi. It is Bernoulli with
success probability πi, so that no extra parameters, such as a standard deviation, are
needed.

12.1.1 Generalized linear models

Logistic regression is an example of a generalized linear model. The key ingredients are
as above: a response variable Y and some predictor variables x1, x2,…,xp. The predictors
enter into the model via a single linear function:
η=β0+β1x1+ …+βpxp.

The mean of Y given the x values is related to η by an invertible link function m() as
µ=m(η) or m−1(µ)=η. Finally, the distribution of Y is given in terms of its mean and,
perhaps, a scale parameter such as σ.

Thus, the model is specified by the coefficients βi, a link function m(), and a
probability distribution that may have an additional scale parameter.

12.1.2 Fitting the model using glm()

Generalized linear models are fit in R using the glm() function. Its usage is similar to that
of lm(), except that we need to specify the probability distribution and the link function.
A template for usage is

Two extensions of the linear model 329

res=glm(formula, family=…, data=…)

The formula is specified as though it were a linear model. The argument family=allows
us to specify the distribution and the link. Details are in the help page ? family and in the
section “Generalized linear models” in the manual An Introduction to R accompanying R.
We will use only two: the one for logistic regression and one to compare the results with
simple linear regression.

For logistic regression the argument is specified by f amily=binomial, as the default
link function is what we want. For comparison to simple linear regression, the link
function is just an identity, and the family is specified as family=gaussian.*

As an illustration, let’s compare using glm() and 1m () to analyze a linear model. We
will use simulated data so we already “know” the answer.

■ Example 12.2: Comparing glm () and 1m () We first simulate data from the model
that Yi has a Normal(x1i+2x2i, σ) distribution.

> x1 = rep(1:10,2)
> x2 = rchisq(20,df=2)
> y = rnorm(20,mean=xl + 2*x2, sd=2)

*Gaussian is a mathematical term named for Carl Gauss that describes the normal distribution.

We fit this using 1m () as follows:

> res.lm=lm(y ~ x1+x2)
> summary(res.1m)
…
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.574 1.086 -0.53 0.6
x1 1.125 0.143 7.89 4.4e-07 ***
x2 1.971 0.254 7.75 5.6e-07 ***
…
Signif. codes: 0 ‘***’ 0.001 ‘**’0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1
…

Both the coefficients for x1 and x2 are flagged as significantly different from a in the
marginal t-tests.

The above can all be done using glm (). The only difference is that the modeling
involves specifying the family=argument. We show all the output below.

> res.glm=glm(y ~ x1+x2, family=gaussian)
> summary(res.glm)
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) −0.574 1.086 −0.53 0.6
x1 1.125 0.143 7.89 4.4e-07 ***
x2 1.971 0.254 7.75 5.6e-07 ***

Using R for introductory statistics 330

--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
(Dispersion parameter for gaussian family taken to be
3.239)
 Null deviance: 387.747 on 19 degrees of freedom
Residual deviance: 55.057 on 17 degrees of freedom
AIC: 85.01
Number of Fisher Scoring iterations: 2

The same coefficients are found. This is not surprising, but technically a different method
is used. For each coefficient, a two-sided significance test is done with null hypothesis
that the value is a. For this model, the results are identical, as with lm(). No information
about the F statistic is given, as the theory does not apply here in general. Rather, the AIC
is given. Recall that this could be used for model selection. Lower values are preferred.

Now we fit a logistic model.

■ Example 12.3: Premature babies According to the web site
http://www.keepkidshealthy.com/, risk factors associated with premature births include
smoking and maternal malnutrition. Do we find this to be the case with the data in the
babies (UsingR) data set?

We’ll need to manipulate the data first. First we extract just the variables of interest,
using the subset= argument to eliminate the missing values.

> babies.prem = subset(babies,
+ subset= gestation < 999 & wt1 < 999 & ht < 99 & smoke
< 9,
+ select=c("gestation","smoke","wtl","ht"))

A birth is considered premature if the gestation period is less than 37 full weeks.

> babies.prem$preemie=as.numeric(babies.prem$gestation
< 7*37)
> table(babies.prem$preemie)
 0 1
1079 96

For glm () and binomial models the response variable can be numeric, as just defined, or
a factor (the first level is “failure,” the others are “success”).

We will use the body mass index (BMI) as a measure of malnutrition. The BMI is the
weight in kilograms divided by the height in meters squared. If there is some dependence,
we will investigate further.

> babies.prem$BMI=with(babies.prem,(wt1 / 2.2) /
(ht*2.54/100)^2)
> hist(babies.prem$BMI) # looks okay

Two extensions of the linear model 331

We can now model the variable preemie by the levels of smoke and the variable BMI.
This is similar to an ANCOVA, except that the response variable is binary.

> res=glm(preemie ~ factor(smoke)+BMI, family=binomial,
+ data=babies.prem)
> summary(res)
…
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) −3.4246 0.7113 −4.81 1.5e-06 ***
factor(smoke)1 0.1935 0.2355 0.82 0.41
factor(smoke)2 0.3137 0.3888 0.81 0.42
factor(smoke)3 0.1011 0.4047 0.25 0.80
BMI 0.0401 0.0304 1.32 0.19
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
…

None of the variables are flagged as significant. This indicates that the model with no
effects is, perhaps, preferred. (The sampling distribution under the null hypothesis is
different from the previous example, so the column gets marked with “z value” as
opposed to “t value”) We check which model is preferred by the AIC using stepAIC ()
from the MASS package.

> library(MASS)
> stepAIC(res)
Start: AIC= 672.3
…
Step: AIC= 666.8
preemie ~ 1
Call:
glm(formula=preemie ~ 1, family=binomial,
data=babies.prem)
Coefficients:
(Intercept)
 −2.42
…

The model of constant mean is chosen by this criteria, indicating that these risk factors do
not show up in this data set.

■ Example 12.4: The spam data Let’s apply logistic regression to the data on spam
in Table 12.1. Set Yi to be 1 if the e-mail is opened, and a otherwise. Likewise, let x1i be 1
if the e-mail has a name in the subject, and X2i be 1 if the e-mail has an offer in the
subject. Then we want to model Yi by x1i and X2i. To use logistic regression, we first turn
the summarized data into 5,000 samples. We use rep () repeatedly to do so.

> first.name = rep(1:0,c(2500,2500))
> offer = rep(c(1,0,1,0),rep(1250,4))

Using R for introductory statistics 332

> opened = c(rep(1:0,c(20,1250–20)), rep(1:0,c(15,1250–
15)),
+ rep(1:0,c(17,1250–17)), rep(1:0,c(8,1250–8)))
> xtabs(opened ~ first.name+offer)
 offer
first.name 0 1
 0 8 17
 1 15 20

This matches Table 12.1, but the default ordering is different, as a or, “no,” is first.
We remark that the value of opened could have been defined a bit more quickly using

a function and sapply() to repeat the typing. (See below for furthur savings in work.)

> f = function(x) rep(1:0,c(x,1250-x))
> opened = c(sapply(c(20,15,17,8),f))

Now to fit the logistic regression model. We use factor() around each predictor; otherwise
they are treated as numeric values.

> res.glm = glm(opened ~ factor(first.name) +
factor(offer),
+ family = binomial)
> summary(res.glm)
Call:
glm(formula = opened ~
factor(first.name)+factor(offer),
 family = binomial)
Deviance Residuals:
 Min 1Q Median 3Q Max
−0.187 −0.158 −0.147 −0.124 3.121
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) −4.864 0.259 −18.81 <2e-16

factor(first.name)1 0.341 0.263 1.30 0.195
factor(offer)1 0.481 0.266 1.81 0.071 .
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
‘ ’ 1
(Dispersion parameter for binomial family taken to be
1)
 Null deviance: 650.02 on 4999 degrees of freedom
Residual deviance: 644.99 on 4997 degrees of freedom
AIC: 651
Number of Fisher Scoring iterations: 6

Although only the intercept is flagged as significant at the 0.05 level, suppose the
estimates are correct. How can we interpret them? The coding is such that when no first
name or offer is included, the log-odds ratio is −4.864. When the first name is included
but not the offer, the log-odds ratio is −4.864+0.341. When both are included, it’s

Two extensions of the linear model 333

−4.864+0.341+0.481. Let o0 be the odds ratio when neither a name nor an offer is
included:

If we include the first name, the odds ratio goes up to e−4.864+0.341=o0.e0.341, which is an
additional factor of e0.341=1.406. So, if the original odds were 2 to 100, they go up to
2(1.406) to 100.

Avoiding replication In the previous example the data was replicated to produce
variables first .name, offer, and opened with 5,000 values, so that all the recorded data
was present. The interface for glm () conveniently allows for tabulated data when the
binomial family is used. Not only is tabulated data easier to type in, we can save memory
as we don’t store large vectors of data.

A two-column matrix is used, with its first column recording the number of successes
and its second column the number of failures. In our example, we can construct this
matrix using cbind as follows:

> opened=c(8,15,17,20)
> not.opened=1250—opened
> opened.mat=cbind(opened=opened,
not.opened=not.opened)
> opened.mat
opened not.opened
[1,] 8 1242
[2,] 15 1235
[3,] 17 1233
[4,] 20 1230

The predictor variables match the levels for the rows. For example, for the values of 8
and 15 for opened, offer was a and first. name was a then 1. Continuing gives these
values:

> offer = c(0,0,1,1)
> first.name = c(0,1,0,1)

Finally, the model is fit as before, using opened. mat in place of opened.

> glm(opened.mat ~ first.name+offer, family=binomial)
Call: glm(formula=opened.mat ~ first.name+offer,
 family=binomial)
Coefficients:
(Intercept) first.name offer
 −4.864 0.341 0.481
Degrees of Freedom: 3 Total (i.e. Null); 1 Residual
Null Deviance: 5.77
Residual Deviance: 0.736 AIC: 24.7

Using R for introductory statistics 334

12.2 Nonlinear models

The linear model is called “linear” because of the way the coefficients βi enter into the
formula for the mean. These coefficients simply multiply some term. A nonlinear model
allows for more complicated relationships. For example, an exponential model might
have the response modeled as

Here, is not linear in the parameters due to the β1. It does not appear as an
additive term like β1xi.

Variations on the exponential model are

The exponential model, with β1>0, may be used when the response variable decays as the
predictor increases. The second model has a growth-then-decay phase, and the third a
decay, not to a but to some threshold amount β0·β2.

In general, a single-covariate, nonlinear model can be written as follows:
Yi=f(xi|β0,β1,…,βr)+εi.

We have r+1 parameters and only one predictor with an additive error. More general
models could have more predictors and other types of errors, such as multiplicative.

The possibilities seem endless but in fact are constrained by the problem we are
modeling. When using nonlinear models we typically have some idea of which types of
models are appropriate for the data and then fit just those. If the model has i.i.d. errors
that are normally distributed, then using the method of least squares allows us to find
parameter estimates and use AIC to compare models.

12.2.1 Fitting nonlinear models with nls()

Nonlinear models can be fit in R using nls(). The nls() function computes nonlinear least
squares. Its usage is similar to, but different from lm(). A basic template is

res=nls(formula, data=…, start=c(…), trace=FALSE)

The model formula is different for nonlinear models. The formula again looks like
response ~ mean, but the mean is specified using ordinary math notations. For example,
the exponential model for the mean could be written y ~ N * exp (−r* (t−t0)), where N, r,
and t0 are parameters. It is often convenient to use a function to return the mean, such as
y ~ f (x, beta0, beta1,…). That is, a function that specifies the parameter values by name.

The method of nonlinear least squares uses an algorithm that usually needs to start
with parameter values that are close to the actual ones. The argument start=c (…) is
where we put the initial guesses for the parameters. This can be a vector or list using
named values, such as start=c (beta0=1 ,betal=2). Finally, the optional argument
trace=TRUE can be used if we want to see what is happening during the execution of the
algorithm. This can be useful information if the algorithm does not converge. By default
it is FALSE.

Two extensions of the linear model 335

The initial parameter guesses are often found by doing some experimental plots. These
can be done quickly using the curve () function with the argument add=TRUE, as
illustrated in the examples. When we model with a given function, it helps to have a
general understanding of how the parameters change the graph of the function. For

example, the parameters in the exponential model, written may
be interpreted by t0 being the place where we want time to begin counting, N the initial
amount at this time, and r the rate of decay. For this model, the mean of the data decays
by 1/e, or roughly 1/3 in 1/r units of time.

Some models have self-starting functions programmed for them. These typically start
with SS. A list can be found with the command apropos("SS"). These functions do not
need starting values.

■ Example 12.5: Yellowfin tuna catch rate The data set yellowf in (UsingR)
contains data on the average number of yellowfin tuna caught per 100 hooks in the
tropical Indian Ocean for various years. This data comes from a paper by Myers and
Worm (see ?yellowf in) that uses such numbers to estimate the decline of fish stocks
(biomass) since the advent of large-scale commercial fishing. The authors fit the
exponential decay model with some threshold to the data.

We can repeat the analysis using R. First, we plot (Figure 12.2).

> plot(count ~ year, data=yellowfin)

A scatterplot is made, as the data frame contains two numeric variables. The count
variable does seem to decline exponentially to some threshold. We try to fit the model

Y=N(e−r(t−1952)(1−d)+d)+ε.

(Instead of βi we give the parameters letter names.)
To fit this in R, we define a function for the mean

> f = function(t, N, r, d) N*(exp(-r*(t-1952))*(l-d)
+d)

We need to find some good starting points for nls (). The value of N=7 seems about right,
as this is the starting value when t=1952. The value r is a decay rate. It can be estimated
by how long it takes for the data to decay by roughly 1/3. We guess about 10, so we start
with r=1/10. Finally, d is the percent of decay, which seems to be .6/6 = .10.

We plot the function with these values to see how well they fit.

> curve(f(x, N=6, r=1/10, d=0.1), add=TRUE)

The fit is good (the solid line in Figure 12.2), so we expect nls() to converge with these
starting values.

> res.yf = nls(count ~ f(year, N, r, d),
start=c(N=6,r=1/10, d=.1),
+ data=yellowfin)
> res.yf

Using R for introductory statistics 336

Nonlinear regression model
 model: count ~ f(year, N, r, d)
 data: yellowfin
 N r d
6.02019 0.09380 0.05359
residual sum-of-squares: 15.48

The numbers below the coefficients are the estimates. Using these, we add the estimated
line using curve () again. This time it is drawn with dashes, and it visually seems to fit all
the data a little better.

> curve(f(x,N=6.02,r=.0939,d=.0539), add=TRUE,
lty=2,lwd=2)
>
legend(1980,6,legend=c("exploratory","exponential"),lty
=l:2)

The value for d estimates that only 5.3% of the initial amount remains. ■
Using predict() to plot the prediction line The output of nls () has many of the same

extractor functions as lm(). In particular, the predict () function can be used to make
predictions for the model. You can use this in place of

Figure 12.2 Mean catch per 100
hooks of yellowfin tuna in the
tropical Indian Ocean. An
exponential decay model with
threshold is given by the dashed line.

curve () to draw the predicted line for the mean response. For example, to draw the line
for the yellowfin tuna data, we create a range of values for the year variable, and then call
predict () with a named data frame.

> tmp = 1952:2000
> lines(tmp, predict(res.yf, data.frame(year = tmp)))

Two extensions of the linear model 337

■ Example 12.6: Sea urchin growth The urchin. growth (UsingR) data set is derived
from thesis work by P.Grosjean. It contains growth data of reared sea urchins over time.
Typical growth starts at a and progresses to some limiting size. Some models for growth
include logistic growth

and a Richards growth model

The logistic-growth function is identical to that used in logistic regression, although it is
written differently. Our goal here is to fit both of these models to the data, assuming i.i.d.,
additive error terms, and decide between the two based on AIC. As the Richards model
has more parameters, its fit should be much better to be considered a superior model for
the data.

We follow the same outline as the previous example: define functions, find initial
guesses by plotting some candidates, and then use nlm() to get the estimates.

We define two functions and plot the jittered scatterplot (Figure 12.3).

> g=function(t, Y, k, t0) Y*(1+exp(-k*(t-t0)))^(−1)
> f=function(t, Y, k, t0, m) Y*(1−exp(-k*(t−t0)))^m
> plot(jitter(size) ~ jitter(age,3),
data=urchin.growth,
+ xlab="age",ylab="size",main="Urchin growth by age”)

Next, we try to fit g. The parameters can be interpreted from the scatterplot of the data.
The value of Y corresponds to the maximum growth of the urchins, which appears to be
around 60. The value of t0 is where the inflection point of the graph occurs. The
inflection point is when the curve stops growing faster. A guess is that it happens around
2 for the data. Finally, k is a growth rate around this point. It should correspond to
roughly 1 over the time it takes to grow onethird again after the value at t0. We guess 1
from the data. With these guesses, we do an exploratory graph with curve () (not shown
but looks okay).

> curve(g(x, Y=60, k=1, t0=2), add=TRUE)

We fit the model with nls ()

> res.g=nls(size ~ g(age,Y,k,t0), start=c(Y=60, k=1,
t0=2),
+ data=urchin.growth)
> res.g
Nonlinear regression model
 model: size ~ g(age, Y, k, t0)
 data: urchin.growth
 Y k t0
53.903 1.393 1.958
residual sum-of-squares: 7299

Using R for introductory statistics 338

> curve(g(x, Y=53.903, k=1.393, t0=1.958), add=TRUE)

Finally, so we can compare, we find the AIC:

> AIC(res.g)
[1] 1559

Next, we fit the Richards model. First, we try to use the same values, to see if that will
work (not shown).

> curve(f(x, Y=53.903, k=1.393, t0=1.958, m=1),
add=TRUE)
> legend(4,20, legend=c("logistic
growth","Richards"),lty=l:2)

It is not a great fit, but we try these as starting points for the algorithm anyway:

> res.f=nls(size ~ f(age, Y, k, t0, m),
data=urchin.growth,
+ start=c(Y=53, k=1.393, t0=1.958, m=1))
Error in numericDeriv(form[[3]], names(ind), env) :
 Missing value or an Infinity produced when
evaluating the model

This is one of the error messages that can occur when the initial guess isn’t good or the
model doesn’t fit well.

Using a little hindsight, we think that the problem might be to and k. For this model, a
few exploratory graphs indicate that we should have t≥t0 for a growth model, as the
graphs decay until t0. So,we should start with t0<0. As well, we slow the rate of growth.

> res.f=nls(size ~ f(age, Y, k, t0, m),
+ start=c(Y=53, k=.5, t0=0, m=1), data=urchin.growth)
> res.f
Nonlinear regression model
 model: size ~ f(age, Y, k, t0, m)
 data: urchin.growth
 Y k t0 m
57.2649 0.7843 −0.8587 6.0636
residual sum-of-squares: 6922
> curve(f(x, Y=57.26, k=0.78, t0=-0.8587, m = 6.0636),
add=TRUE, lty=2)

Now we have convergence. The residual sum-of-squares, 6,922, is less than the 7,922 for
the logistic model. This is a good thing, but if we add parameters this is often the case.†
We compare models here with AIC.

> AlC(res.f)
[1] 1548

Two extensions of the linear model 339

This is a reduction from the other model. As such, we would select the Richards model as
a better fit by this criteria.

Figure 12.3 Sea urchin growth data,
with logistic model fit in solid and
Richards model fit in dashed line

Problems

12.1 The data set tastesgreat (UsingR) is data from a taste test for New Goo, a fictional
sports-enhancement product. Perform a logistic regression to investigate whether the two
covariates, age and gender, have a significant effect on the enjoyment variable, enjoyed
oyed.

†We do not have nested models, for which this would always be the case.

12.2 The data set healthy (UsingR) contains information on whether a person is
healthy or not (healthy uses a for healthy and 1 for not healthy) and measurements for
two unspecified covariates, p and g.

Use stepAIC() to determine which submodel is preferred for the logistic model of
healthy, modeled by the two covariates p and g.

12.3 The data set birthwt (MASS) contains data on risk factors associated with low
infant birth weight. The variable low is coded as a or 1 to indicate whether the birth
weight is low (less than 250 grams). Perform a logistic regression modeling low by the
variables age, Iwt (mother’s weight), smoke (smoking status), ht (hypertension), and ui
(uterine irritability). Which variables are flagged as significant? Run stepAIC(). Which
model is selected?

12.4 The data set hall. fame (UsingR) contains statistics for several major league
baseball players over the years. We wish to see which factors contribute to acceptance
into the Hall of Fame. To do so, we will look at a logistic regression model for

Using R for introductory statistics 340

acceptance modeled by the batting average (BA), the number of lifetime home runs (HR),
the number of hits (hits), and the number of games played (games).

First, we make binary variable for Hall of Fame
membership.
> hfm=hall.fame$Hall.Fame.Membership != "not a member"

Now, fit a logistic regression model of hfm modeled by the variables above. Which are
chosen by stepAIC () ?

12.5 The esoph data set contains data from a study on esophageal cancer. The data
records the number of patients with cancer in ncases and the number of patients in the
control group with ncontrols. The higher the ratio of these two variables the worse the
cancer risk. Three factors are recorded: the age of the patient (agegp), alcohol
consumption (alcgp), and tobacco consumption (tobgp).

We can fit an age-adjusted model of the effects of alcohol and tobacco consumption
with an interaction as follows:

> res.full <− glm(cbind(ncases, ncontrols) ~
agegp+tobgp * alcgp,
+ data=esoph, family=binomial())

A model without interaction is fit with

> res.add <− glm(cbind(ncases, ncontrols) ~
agegp+tobgp+alcgp,
+ data=esoph, family=binomial())

Use AIC () to compare the two models to determine whether an interaction term between
alcohol and tobacco is hinted at by the data.

12.6 The data set Orange contains circumference measurements for several trees
(Tree) based on their age. Use a logistic growth model to fit the data for tree 1. What are
the estimates?

12.7 The data set ChickWeight contains measurements of weight and age (Time) for
several different chicks (coded with Chick). For chick number 1, fit a logistic model for
weight modeled by Time. What are the coefficients?

12.8 The data set wtloss (MASS) contains weight measurements of an obese patient
recorded during a weight-rehabilitation program. The variable Weight records the
patient’s weight in kilograms, and the variable Days records the number of days since the
start of the program. A linear model is not a good model for the data, as it becomes
increasing harder to lose the same amount of weight each week. A more realistic goal is
to lose a certain percentage of weight each week. Fit the nonlinear model

The estimated value of c would be the time it takes to lose b times half the excess weight.

Two extensions of the linear model 341

What is the estimated weight for the patient if he stays on this program for the long
run? Suppose the model held for 365 days. How much would the patient be expected to
weigh?

12.9 The reddrum (UsingR) data set contains length-at-age data for the red drum fish.
Try to fit both the models

(These are the von Bertalanffy and “linear” von Bertalanffy curves.) Use the AIC to
determine which is preferred.

Good starting values for the “linear” curve are 32, 1/4, 1/2, and 0.
12.10 The data set midsize (UsingR) contains values of three popular midsize cars for

the years 1990 to 2004. The 2004 price is the new-car price, the others values of used
cars. For each car, fit the exponential model with decay. Compare the decay rates to see
which car depreciates faster. (Use the variable year=2004-Year and the model for the
mean µy|x=Ne−rt.)

Using R for introductory statistics 342

Appendix A
Getting, installing, and running R

R is being developed for the Unix, Windows (Windows 95, 98, ME, NT4, 2000, or XP),
and Mac OS X platforms. For each operating system the installation of R is similar to that
of other software programs. This appendix covers the basics of installation. It also
includes information about extending the base functionality of R by adding external
packages to the system. Once R is installed, more information of this type is available in
the R Administrators Manual that accompanies the R program. This document can be
accessed via the html-based help system started by the function help. start ().

A.1 Installing and starting R

R is available through source code, allowing users to compile the program to their liking.
However, for most purposes, a convenient binary package is available for installation.

The files for R are available at the Comprehensive R Archive Network, or CRAN,
http://cran.r-project.org/. There is a series of mirror sites to lessen the load on any one
server. Choose one close to you. A list is found at http://cran.r-project.org/mirrors.html.

What follows are brief instructions, to give you an idea of what is involved in
installing R. For each operating system mentioned, more complete instructions are
available with the accompanying files.

A.1.1 Binary installation under Windows

R’s version for Windows has its own installer. To begin, download R from the
/bin/windows/base directory of a CRAN mirror.* The file to download is large, over 20
megabytes. It is titled rwXXXX. exe, where XXXX contains the current version
information, such as 2000 for version 2.0.0. This is a self-extracting file, which contains
the necessary installation program. After being downloaded to the desktop, R will be
installed when you double-click on the icon for the downloaded file. The directory for
installation can be adjusted during installation.

Once installed, R can be started with its GUI when you double-click the desktop icon,
or from the R submenu under the start menu.

A.1.2 Binary installation under Linux

The Linux operating system is packaged into many different distributions. Familiar ones
are Debian, RedHat, and Gentoo. Installation for each follows its usual installation
procedure. The /bin/linux directory of a CRAN mirror contains several different binary
builds of R.

There is an up-to-date Debian package for R that can be installed with the apt-get
command. You just need to add the CRAN directory to a configuration file. (Look under
/bin/linux/debian) for details.) The main files are contained in r-base and r-base-core. In
addition, several contributed CRAN packages can be installed this way, rather than
through the installation methods described later in this appendix. This makes updating R
even easier.

The Debian distribution has proved popular for making bootable CD-ROMs that
contain the Linux operating system. In particular, the Quantian Scientific Computing
Environment (http://dirk.eddelbuettel.com/quantian.html) contains R and many other pre-
configured, open-source scientific software packages. To use Quantian, you need to
download the ISO image, burn it to a CDROM, and then boot your computer from this
CD-ROM. This boots to the KDE desktop environment, from which R may be run from a
shell or from within an ESS session.

The RedHat Linux distribution has binary files distributed in rpm format. These files
can be found on a CRAN mirror under the /bin/limix/redhat directory. Installation can be
done from the shell with the following command:

rpm −i filename.rpm

This also applies to SuSE Linux and other rpm-based distributions. The help files for the
rpm mention issues people have with external libraries. If this installation fails, the help
files are the first place to look for solutions.

The Gentoo Linux installation is a single command at the shell:

*For example, if the mirror is the main CRAN site, the url is http://cran.r-
project.org/bin/windows/base.

 emerge R

Technically, this isn’t a binary installation, as R is compiled from source, but it is just as
straightforward.

On a UNIX machine, once R is installed you can start it from the shell with the
command “R.”

A.1.3 Binary installation under Mac OS X

The /bin/macosx directory of a CRAN site contains a disk image R. dmg that should be
downloaded. Once that’s done, the Finder application should open to the image. The file
R.pkg is double-clicked to begin the installation process. This places an R application in
your Applications directory. Starting R with its Aqua GUI is done by double-clicking on
this icon. R can also be run from within the terminal application or by using ESS to run R
within Emacs. The appropriate symbolic link may need to be made prior to this so that
the correct file is on the path.

Appendix A 344

A.1.4 Installing from the source code

R can be installed from the source code. First the source code is downloaded, and then
uncompressed. For a UNIX machine, the following commands are issued from the UNIX
command line. First unpack the source and change directory (using gnu tar):

tar zxvf R-x.y.z.tgz
cd R-x.y.z

Then the most basic compilation can be done with the commands

./configure
make

The configure command automatically figures out dependencies for your machine. Many
options can be set to override the defaults. They are listed if you type the command ./conf
igure—help. If the compilation is successful, then the program can be installed by the
command make install.

A.1.5 Startup files

R’s startup process allows you to load in desired commands and previous R sessions.
When R starts it looks for the file . Rprofile in the current directory and then in the

user’s home directory. If this file is found, the R commands in the file are sourced into
the new R session. This allows you to make permanent adjustments to the settings for opt
ions () or par(), load frequently used libraries, and define helpful functions that can be
used in every session.

After this, R then loads a saved image of the user workspace (if there is one) from the
file .RData. If you save your session when quitting, then R will load it back in. This
preserves any function definitions and data sets that you may have been working on.

See ? Startup for more information, including site-wide configuration files.

A.2 Extending R using additional packages

R has a number of additional packages that extend its base functionality. Some of these
are recommended and are already part of most installations; others need to be installed.
Many, but not all, of these packages reside on CRAN.

Installing a package can be done from the main GUIs, from the command line within
R, or from the shell that R will run under.

The Windows and Mac OS X GUIs have menu items that query the available
packages at CRAN and allow you to install them using your mouse. If you have the
proper administrative authority, this method is very straightforward. As many external
packages require a compiler, and most Windows installations don’t have one, the
Windows installation looks for binary versions of a package.

If a GUI option is not available, additional packages can be installed from within R.
The key functions for package management are: install. packages () to install a package;

Appendix A 345

update. packages () to update all your packages (such as when you upgrade R); and
library () to load a package.

The basic usage of install.packages() and library() is to call the function with a valid
package name. For example, if your computer is connected to the internet and you have
the necessary permissions, the following commands will install the Rcmdr package by
downloading it from CRAN and then load the package.

> install.packages(“Rcmdr”, dependencies=TRUE)
> library(Rcmdr) # load the package

In this example, the argument dependencies=TRUE is used to specify that packages that
the Rcmdr package relies on should also be installed.

If a package is not on CRAN, you may be able to install it in this manner by
specifying the extra argument contriburl= to install.packages(). For example, these
commands will install the package that accompanies this book:

> where=“http://www.math.csi.cuny.edu/UsingR”
> install.packages(“UsingR”,contriburl=where)

If these methods fail, a package can be downloaded to the local machine and installed
from there. Under Windows this last step can be initiated from the menu bar. For UNIX
installations, a package can be installed from the command line with a command like:

R CMD INSTALL aPackage_0.1.tar.gz

The actual package name would replace aPackage_0.1. tar. gz.
If you do not have administrative privileges on the machine, you can install packages

to a directory where you do have write permissions. When installing packages you can
specify this directory with the argument lib=. When loading this package with library()
you specify the directory with the argument lib. loc=. This argument is also used with
update .packages (). For example, these commands will install and load the ellipse
package into a session, keeping the files in a subdirectory of the user’s home directory
(the tilde, ~, expands to the home directory in UNIX).

> install.packages(“ellipse”,lib=“~/R/”)
> library(“ellipse”,lib.loc=“~/R/”)

A.2.1 Upgrading an existing installation

About every six months the latest and greatest version of R is released. At this point, it is
recommended that you upgrade. When you do this, you may need to reinstall your
packages or update the existing packages. The update. packages () command will allow
you to perform the upgrade.

Appendix A 346

Appendix B
Graphical user interfaces and R

R, unlike many commercial offerings, lacks a common graphical user interface (GUI).
The reasons for this are many, but primarily, the multi-platform nature of R make
development difficult, as does the fact that most “power users” of R (the likely
developers of a GUI) prefer the flexibility and power of typing-centric methods.

However, there are a number of GUI components available. We try only to cover the
GUIs for Windows and Mac OS X, and the GUI provided by the addon package RCmdr.
For details about additional GUI components, including the promising SciViews-R and
JGR projects, consult the RGui page linked to on the home page of R (http://www.r-
project.org/).

B.1 The Windows GUI

There are two ways to run R under Windows: from the shell or from within its GUI. The
Rgui . exe provides the GUI and is the one that is associated with the R icon on the
desktop. When the icon is double-clicked, the Windows GUI starts. It consists of a few
basic elements: a window with a menu bar and a container to hold windows for the
console (the command line), help pages, and figures. (This describes the default multi-
document interface (MDI). An option for a singledocument interface (SDI) may be set
under the File: : Options…menu.)

The initial RGui window looks something like Figure B.1. The window after making a
plot and consulting the help pages looks like Figure B.2.

The workings of the GUI are similar to many other Windows applications. We
selectively describe a few of them.

Figure B.1 Initial RGui window for
Windows

The menu bar changes depending on which window has the focus. The console has the
most extensive menu bar. A few useful commands are:

■ File: : source…: Opens a directory-browsing dialog to find a file to be “sourced.” This
is useful when working with files containing R code that may be edited with an
external editor.

■ File: : Load Workspace…: Will load an . Rdata file, which stores R sessions. Storage is
done at the end of a session or can be initiated by the menu item File: : Save
Workspace…

■ File: : Quit: Will quit the program after querying to save the session.
■ Edit: : copy and paste: Will paste the currently selected text into the console. This

avoids the tediousness of copying and pasting.
■ Edit: : data editor: This is a dialog for the edit () command. It is used with existing data

sets.
■ Misc: :List Objects: Will list all the objects in the current workspace. Equivalent to Is

().
■ Misc: : Stop current output: This will stop the current output. This is useful if

something is taking too long.
■ Packages: : load package: This will open a dialog to allow us to load a package by

clicking on its name. This replaces commands such as library (MASS).
■ Packages: : Install Package (s) from CRAN: This will show a list of packages on

CRAN that will install into Windows and allow us to install one by selecting it (see?
install. packages). The Packages: : Update packages from CRAN will update an
existing package (see the help page? update. packages).

■ Window: The submenu allows us to manipulate the R windows for the console, help
pages, and graphics device.

■ Help: : Console: A description of useful console shortcuts.
■ Workspace Help: : FAQ on R for Windows: File of frequently asked questions.

The plot window has its own menu. An important item is the History fea-

Appendix B 349

Figure B.2 Multi-document window
showing console, plot window, and
help page

ture, which allows us to record the graphs that are made and play them back using the PG
UP and PG DOWN keys. In addition, the plot window has a binding for left mouse
clicks, allowing us to save and print the current graphic.

B.2 The Mac OS X GUI

Users of Mac OS X can use R as a native application or as an X11 application. As of R
version 2.0.0, when running R as a native application, a Cocoa GUI is available. This
consists of a console window (Figure B.3); a menu bar; a graphical device, quartz (); and
a workspace browser. The interface is being actively developed, and may be improved
upon in the future. The screenshots are from a pre-alpha version of a new GUI design for
R 2.0.0.

The console has icons for a few common tasks, such as halting R during its execution,
sourcing a file, opening the graph window, showing the error logs, showing the history,
etc.

The menu bar contains many of the same items as the Windows menu bar. In
particular, you can load and install packages (Figure B.4), browse your workspace
(Figure B.5, change directories, source files, and access the help system.

The quartz () plot device uses anti-aliasing, which gives nice-looking plots and
images. The device also uses the native pdf format of Mac OS X graphics. Bitmap copies
of a graphic can be produced by copying the graphic into the clipboard. Consult the FAQ
for more details. The FAQ can be found under the help menu. The quartz () device can be
used interactively with identify () and locator (). Use the Esc key to break, as there is no
guarantee of a second mouse button. New quartz devices can be opened, and switching
between open devices is available using the Window menu.

Appendix B 350

Figure B.3 The R console in the
Cocoa GUI for Mac OS X

Figure B.4 Package manager for
Cocoa GUI in Mac OS X

B.3 Rcdmr

The tcltk package can be loaded into R, which allows R to use the GUI elements
provided by the tcltk widget collection. This set of widgets is available for the platforms
R supports.

The Rcmdr package by John Fox uses these bindings to provide an easy to learn and
useful interface to many common functions used in data analysis. It is designed for new
and casual users of R, like the target audience of this book.

Rcmdr is installed easily, as it resides on CRAN, though it requires many other
packages for functionality such as that provided by the car package. Installing these
packages can be done automatically with the command:

> install.packages("Rcmdr", dependencies=TRUE)

Appendix B 351

If you forget to install all the dependencies, the first thing Rcmdr will do when run is ask
if you want them to be installed.

Rcmdr is started by loading the package with the command

Figure B.5 Workspace browser for
Cocoa GUI in Mac OS X

> library(Rcmdr)

This opens the main window, as in Figure B.6, with a menu bar and a log window. If you
are using the Windows GUI, Rcmdr works better in the single-document interface (SDI).
The default setting for the GUI is to use the multiple-document interface (MDI). To make
the change is done by setting the option for SDI, not MDI, using the File: : Options menu
item.

Once running, the R session may be interacted with by means of the menu bar and the
subsequent selection of commands.

Figure B.6 Main Rcmdr window

In particular, first the user defines the active data set. This is done either with the Data:
:Data in Packages…menu item or the Data: : Active Data Set…one. Once a data set is
selected, Rcmdr ensures that the variable names become available to the other functions.

For example, creating a histogram of a univariate variable in the active data set is done
from the Graphs: : Histogram…menu (Figure B.7).

Appendix B 352

The desired variable is selected, as are some options, then OK is clicked to make the
plot. In the console part of the Rcmdr window a command like the

Figure B.7 Rcmdr dialog for a
histogram

following is issued:

> Hist(Cars93$MPG.city, scale=“density”,
breaks=‘Sturges’, col=“darkgray”)

There are interfaces to many other graphical displays of data, as well as other common
data-analysis features. For example, under the Statistics menu are dialogs to make
summaries, to perform significance tests, and to fit statistical models.

Appendix B 353

Appendix C
Teaching with R

Using R in the classroom is not unlike using other software packages, but there are some
features that are useful to know about that make things easier.

Getting students a copy of R for home use One of the great benefits of R is that it is
free and it works on many different computing platforms. As such, students can be
expected to use it for their homework without much concern about accessibility.
Installing R on a computer is usually as easy as downloading the binary file by following
the CRAN link at http://www.r-project.org/.

However, R is a big download, around 20 megabytes. It may be better to have students
burn R to CDs on campus, where a high-speed internet connection is likely available.

An alternative to installing R on a computer is running it from a CD. The Quantian
distribution (http://dirk.eddelbuettel.com/quantian.html) is a version of Debian Linux on
a single CD that includes R and a whole suite of other free software packages that are
useful for scientific computing. Quantian is used by booting from the CD-ROM. R can be
started from a terminal by the command R or from within an ESS session in XEmacs, a
text editor that allows for interaction with the R process. This is done by starting XEmacs
and then issuing the command ALT-x R.

Getting data to students Entering data can be a chore. One way to make data sets
available to students is through an R package such as the one that accompanies this book.
On CRAN, the packages car, DAAG, Devore5, Devore6, ISwR, and MPV contain many
data sets that may be of interest to students of this book.

More informally, you can put data files or functions into a single file on a web site and
then have the students source () these files in.

If the file is stored at the url http://www.somewhere.com/rdata.txt, then these
commands will source it into the R session as though it were a local file:

> f =“http://www.somewhere.com/rdata.txt”
> source(url(f))

To make a file for reading in, use the dump () command. The syntax is
dump(list=…, file=…)

The list= argument should be a vector of names for the desired objects (data sets,
functions, etc.) in the file. For example, c(“data. 1”, “function. 2”). The file= argument
should be a quoted file name. Typically, this is written to the current directory and then
moved to a web site.

Making reports A report or handout in R that includes R commands and graphics can
be made using a word processor or the system. Using a word processor to present R

materials is no different from creating other documents, except, perhaps, the inclusion of
graphics.

Many newer word processors can import encapsulated PostScript files for figures.
These are output by the dev. copy2eps () function. If your word processor imports pdf
files, these can be made using the pdf driver with a command such as

> dev.print(file=filename, device=pdf)

To save a graphic in a format suitable for inclusion in a word processor in Windows, use
the right mouse button to pop up the “Save as metafile…” dialog. The graphic can then
be included in a document by inserting it as a figure.

The text-processing system is freely available typesetting software that is well
suited for technical writing. The Sweave() function of the utils package integrates with

to produce documents that automatically insert R commands and output into a
document. One especially nice feature is the automatic inclusion of figures. For more
information on see http: //www. latex-pro j ect. org/. More information on Sweave
() is available in its help page: ?Sweave.

Some projects for teaching with R At the time of writing, there are at least two
projects under way that are producing materials for using R in a classroom setting.

The StatDocs project, by Deborah Nolan and coworkers, aims to create a framework
for presenting statistics materials using R and some add-on packages from the Omegahat
project, http://www.omegahat.org/.

The Stem and Tendril project, http://www.math.csi.cuny.edu/st, by this author and
colleagues, is producing freely available projects for statistics computer labs that can be
used at various levels in the statistics curriculum.

Appendix C 355

Appendix D
More on graphics with R

This appendix revisits many of the plotting techniques presented in the text offering more
detail and organization. In addition, functions are provided for two new graphics: a
squareplot and an enhanced scatterplot.

This appendix provides a good deal of extra information but is by no means inclusive.
More facts are available in the manual An Introduction to R that accompanies R, and in
the help pages ?plot and ?par. The organization of this appendix was inspired by some
excellent notes by R pioneer Ross Ihaka, which were found at
http://www.stat.auckland.ac.nz/~ihaka/120/.

D.1 Low- and high-level graphic functions

Consider what the command plot (x, y) does when making a scatterplot. First it sets up a
plot device if one isn’t already present. Then areas for the figure and the margins are
assigned, the limits on the x- and y-axes are calculated, the axes are drawn and labeled, a
box is drawn around the graphic, and, finally, the points are plotted.

If we issue the command plot (x,y,type="n") instead of the command plot (x, y), all
but the last step of plotting the points is done. We refer to this as setting up the plot
figure. High-level graphic functions will do this; low-level graphic functions add to the
existing figure. The plot() function allows for many arguments to adjust this process. For
example, we can plot connected line segments instead of points; we can add colors,
labels, and titles; and we can adjust the axes. More details are in the help page ?plot.
What we focus on next is how to set up a figure step-by-step so that we can gain full
control over the details. This is useful when we are designing our own graphics, or when
we are not satisfied with the defaults.

D.1.1 Setting up a plot figure

The following steps are for the creation of any graphic, not just a scatterplot.

A plot device
A graphic is drawn to a plot device. Generally speaking, a default plot device is used. If
we want, though, we can create a new device that allows us to control the type of device
and the size of the figure. How we do so varies according to our system and our
intentions. In Windows, the function windows () will create a device; on a UNIX
machine running X Windows, the function X11 () will create a device; and on Mac OS X,
the function quartz () will make a new device using the default windowing system. The
arguments width= and height= set the size of the graphic figure. An argument point size=

will set the default size of any text. Other devices are available to make various graphic
formats, such as PDF.

More than one device can be opened in this way. Each device is assigned a number.
This is returned by dev. list (). Only one device is the “active” device. To switch between
devices, use dev. set (), with the device number as the argument.

Once a device is set up, the plot .new() function tells the device to finish any current
plot and prepare for a new plot.

The margins of a figure
A plot figure has space for the main graphic, and space in the margins for drawing axes
and labels. Graphical parameters are consulted to allocate this space. We use par () to
work with the parameters.

The par() function Graphical parameters are stored internally. To access and set them
we use the par() function. All the current parameters are returned by calling par() without
arguments. To retrieve a single value, use the name as the argument. Values can be set
using the name=value style of R functions. For example, par("mai") returns information
about the parameter mai=,* which controls the plot margins, and the value of mf row= is
set with par(mfrow=c(2,2)). The help page, ?par, contains information about the
numerous options.

Many of the graphical parameters may also be set as arguments to a highlevel plot
function. This can temporarily set the value for the graphic. Using par () will set them for
the device.

Before changing the graphical parameters, we should save the current setup,

*We typeset graphical parameters with an extra=to emphasize that they are arguments to par(). This
is not typed when the value of the argument is retrieved by par ().

in case we wish to return to the original choice. We can save the values to a list op with

> op=par(no.readonly=TRUE)

(Some of the arguments are read only and can’t be changed. This command saves only
those that are not read only.) Restoring the old parameters is done with

> par(op)

When changing values inside a function,

> on.exit(par(op))

will issue the command when the function exits, so the user doesn’t have to worry about
doing so.

Several parameters can be set by par (). For now we mention those used to make
allocations in a figure for the graphic and the margins.

Appendix D 357

A device is set up with a certain size given by din=. A figure’s size is given by the
graphical parameter fin=. The figure is made up of its margins and the plot region. These
are stored under mai= and pin=.

For example,

> par("din","fin","pin","mai”)
$din # device size
[1] 6.995 6.996
$fin # figure size
[1] 6.995 6.996
$pin # plot size
[1] 6.133 5.717
$mai # margin sizes
[1] 0.7088 0.5698 0.5698 0.2919

The first three specify the sizes in inches for width and height. As margins may be
nonsymmetric, there are four values specified: the bottom, left, top, and right.

The values add up as shown by
> .5698+.2919 +6.133 # widths
[1] 6.995
> .7088+.5698 +5.717 # heights
[1] 6.996

The margins can also be specified by the number of lines of text that can be printed using
mar=. The actual size is relative to the current point size of the text. The argument plt=
can specify the plot region in terms of the device size.

These areas are usually set up for us when the plot device is. At this point, the overall
width and height are given, and R makes the necessary computations for the margins. If
we are unsatisfied with the defaults, we can override the calculated values. If the margins
or space for the main graphic are made too small, an error message will be given.

Multi-graphic figures
In a few examples in this text, more than one graphic is plotted on the same figure. For
example, when we plotted the diagnostic plots after fitting a linear model, four graphics
were returned. These can be seen one after another, or can be forced to show up all four
at once if the graphic parameter mfrow= is set to c(2,2).

The parameter mfrow= stores two values as a vector. A value of c(3,2) says to split the
figure into six equal pieces, with three rows and two columns. The default is c (1,1).
Figures are filled in row by row. Use mf col= to fill in column by column. To advance to
the next area to draw a graphic, we can use a high-level plot command or the function
plot. new ().

The f ig= graphical parameter controls the amount of the current figure the next
graphic will use. By default, this is set to c (0,1,0,1), indicating the whole figure. The first
two numbers are the x value, and the second two are y. They refer to the lower left of the
figure. For example, a value like c(0,1/2,1/2,1) will use the upper-left part of the figure.
The parameter new= should be set to TRUE to add to the existing figure with a high-level
plot command.

Appendix D 358

In the example at the end of this appendix, the layout () function is used to break the
figure into four regions of varying sizes. This function uses a matrix to set up a grid and
an order to fill in the plots. The size of the grid is controlled with the arguments widths=
and heights=. In the example, the function call is

layout(matrix(c(1,0, # which order to place graphs
3,2),
2,2,byrow=TRUE),
widths=c(3,1), # 3/4 wide for col. 1
heights=c(1,3), # 3/4 wide for row 2
respect=TRUE) # make square

The matrix specifies how the figure is filled. In this case upper left, lower right, lower
left. The value of widths= says to make the first column three times as wide as the
second; for heights= the top row is one-quarter the height of the bottom one.

When there are multiple plot figures per overall figure, there is an outer margin that is
controlled by omi=. Values are specified in inches. The arguments oma= and omd= allow
you to specify values in lines of text and fractions of a whole respectively.

Setting up the coordinate system and axes of a graphic
When creating a plot figure, the x-and y-limits are specified, allowing locations to be
specified in a Cartesian manner. This is done with plot. window(), using the arguments
xlim= and ylim=. Values contain the minimum and maximum values of the desired
range. Additionally, the parameter asp= can be set to give the aspect ratio in terms of
width/height.

Once the coordinates are chosen, axes for a figure can be added with the axis ()
function. The common arguments are

axis(side=…, at=…, labels=…)

The value of side= is specified with 1, 2, 3, or 4, with 1 being the bottom of the figure
and other values moving around clockwise. The value of at= allows us to override the
default placement of the tick marks. The labels= argument can adjust the labels on the
tick marks.

The axis () function can be used with high-level plotting functions to create custom
axes if you explicitly ask for the axes not to be drawn when first plotting. This is done by
specifying the arguments xaxt="n" and yaxt="n" to the highlevel plot function.

Adding titles and labels to a figure
The title () function adds titles and labels the axes. The main arguments are

title(main=…, sub=…, xlab=…, ylab=…)

The value of main= is written in the top margin of the figure. The value of sub= is written
in the bottom margin below the x-label, which is specified with xlab=. The y-label is
specified with ylab=.

If more control is needed, the mtext () function will add text to the margins of a figure.

Appendix D 359

Adding a box around the graphic
Most of the high-level plot functions in R surround the main graphic with a box. This can
be produced using the box () function. The argument bty= can be set to describe the type
of box to draw. The default is a four-sided box. Many graphics in this book were
produced with the value bty="l" to draw only two sides, like an “L”. Other possible
values are "o", "7", "x", "u", and "]".

The value of bty= can be set globally using par (). If this is done, then just calling box
() or a high-level plot command will draw the box the desired way.

■ Example D.1: Setting up a plot window To illustrate: if x and y are to be plotted in
a scatterplot, we can mimic the work of plot (x, y, type="n") using the following
sequence of commands:

> plot.new()
> plot.window(xlim=range(x), ylim = range(y))
> axis(1); axis(2)
> box()
> title(xlab="x",ylab="y")

D.1.2 Adding to a figure

Several functions were mentioned in the text to create or add to a figure. Examples would
be plot () and the similar function points ().

For the plotting functions in R, several parameters can be set to change the defaults.
When plotting points, some arguments refer to each point plotted, such as col=or pch=.
This type of argument can be a single number or a vector of numbers. Usually the vector
would be the same size as the data vectors we are plotting; if not, recycling will be done.

Adding points to a graphic
Both plot() and points () plot points by default. Points have several attributes that can be
changed. The plot character is changed with the argument pch=. As of R version 1.9.0,
the numbers a through 25 represent special characters to use for different styles of points.
These are shown in Figure D.1. As well, we can use one-character strings, such as letters,
or punctuation marks like “.” and “+”. To print no character, use a value of NA or a space
character.

The size of the point is controlled by the cex=argument. This is a scale factor, with 1
being the current scale. Changing cex=using par() will apply the scale factor to the entire
graphic.

The color of a point is adjusted with the col= argument. Again, trying to change this
globally using par () will result in more than just the points having the specified color.

Specifying colors in R Though the default color for objects in a graphic is black, other
colors are available. They are specified by name (e.g., “red”,“white”, or “blue”), by
number using red-green-blue values (RGB) through rgb(), or by a number referring to the
current palette. Over 600 names are available. See the output of the function colors () for
the list. The value “transparent” is used when no color is implied. This is useful for
producing graphic images that allow the background to come through.

Appendix D 360

The function gray () was used often (without comment) in the text to create gray
scales. The argument is a vector of values between 0 and 1, with 0 being black and 1
white.

Some useful functions produce palettes of colors: for example, rainbow (), heat. colors
(), terrain. colors (), topo. colors (), and cm. colors (). These functions have an argument
n= that specifies the number of colors desired from the palette.

Additionally, the brewer .pal () function in the RColorBrewer package (not part of the
base installation) will create nice-looking color palettes. Once the package is installed,
running example (brewer .pal) will display several such palettes.

R stores a current palette that allows for reference of colors by a single number. This
palette is returned and set by the function palette(). The default palette is:

> palette(“default”) # clear out any
changes
> palette()
[1]
“black” “red” “green3” “blue” “cyan” “m
agenta”
[7] “yellow” “gray”

With this palette, asking for color 7 returns yellow.
The palette may be customized by specifying a vector of colors using their names or

RGB values (or a function that returns such a vector). For example, a gray-scale palette
can be made as follows:

> palette(gray((0:10)/10))
> palette()
[1] “black” “gray10" “gray20” “#4C4C4C” “gray4
0” “#808080”
[7] “gray60” “#B2B2B2” “gray80” “#E6E6E6” “white
”

With this palette the color 7 is a shade of gray given the name gray60.

Adding lines to a graphic
The plot () and points () functions have an argument type=“1” that will connect the points
with lines instead of plotting each point separately. The lines () function is convenient for
adding lines (really connected line segments) to a graph. If paired data is given in the
vectors x and y, then lines(x, y) will connect the points with lines. Alternatively, a model
formula may be used.

For these three functions, the values of x and y are connected with lines in the order in
which they appear. If any of the values of x or y is NA, that line segment is not drawn.
This can be used to break up the line segments.

It should be noted that although these functions draw straight lines between points,
they are used to plot curves. This is done by taking the x values very close together, so
that their straightness is smoothed out. For example, these commands will plot the
function f(x)=x2 over the interval (−2, 2):

Appendix D 361

> x = seq(−2, 2, length=200) # 200 points
> y = x^2
> plot(x,y,type="1")

If we did this with length=5 when defining x, the graph would look very clunky.
The abline () function is used to draw a single line across the figure.
The characteristics of the lines drawn can be varied. The color of the line segments are

set with the col= argument. The line width is set with lwd=. Values bigger than 1 widen
the line. The line type is set with lty=. A value of 1 through 6 produces some predefined
types. These are shown in Figure D.1. If more control is sought, consult the lty= portion
of the help page ?par.

The changes can be made each time a line is drawn. Issuing the command par(lty=2)
will cause all subsequent lines on the device to be drawn with style 2 (dashed) by default.

Adding a region to a graphic
The rect () function will plot rectangles on a figure, as is done with a histogram. A
rectangle is specified by four numbers: the x- and y-coordinates of the lower-left corner
and the upper-right corner. More general regions can be drawn using the polygon ()
function. This will plot a polygon specified by its x-and y-coordinates. For polygon(),
unlike lines (), the first and last points are connected. This creates a figure containing an
area.

The col= argument specifies the interior color of the regions; the line (or border) color
is set using border=. An alternative to filling with color is filling with angled lines. These
are specified by the arguments angle= (default is 45°) and density= (larger values
produce more lines).

Adding text to a graphic
Adding text to a graphic can be done with text () or, in the special case of adding a
legend, with legend(). The main arguments for legend () are the position, which can be
specified interactively with locator (); the text to be added with legend=; and any of pch=,
col=, and lty= as desired. These are usually vectors of the same length as the number of
legend items we wish to add.

The text () function will add labels to a graph, with the option to format the text. The
positions are specified with (x,y) values (or locator ()). Text is centered at the (x,y) point,
although the at= argument allows for adjustments. The text to add is given to the labels=
argument.

Basic formatting can be done using the f ont= argument. A value of 1 will produce the
default text, 2 bold text, 3 italic text, and 4 bold-italic text.

Math expressions can be printed as well. The full details are in the help page
?plotmath. The basic idea is that R expressions are turned into mathematical expressions
and then printed. For example, expression(x==3) will print as “x=3.” (The expression()
function makes “expressions” that can subsequently be evaluated.)

■ Example D.2: Showing values for pch= and lty= The following commands
produce Figure D.1, which illustrates the various plot characters and line types.

X11(width=5,height=2,pointsize=12) # new UNIX
device

Appendix D 362

par(mar=c(0,4,1,1)) # small margins
plot.new() # new plot
plot.window(xlim=c(−.5,26.5),ylim=c(0,8), asp=1) # set
up limits
k = 0:25 # pch values to
plot
zero = 0*k # same length
as k
text(k, 8 + zero, labels=k) # add numbers
points(k,7 + zero, pch=k, cex=2) # add plot
characters
i=6:1 # which line
types
abline(h=7−i,lty=i) # where to plot
line
axis(2,at=l:8, # at= for where
labels=c(paste("lty =",i),"pch","k"), # labels for what
las=2) # las=2 gives
orientation

Figure D.1 Example of pch= and lty=
values

D.1.3 Printing or saving a figure

R prints its graphics to a device. Usually this device is the plot window we see, but it
need not be. It can also print to a file and store the output in different formats. For
example, R can store the current graphic in Adobe’s PDF format. This can be done by
printing the current screen device to a pdf device:

.. create a plot, and then…
> dev.print(file="test.pdf",device=pdf)

Adobe’s PDF format is great for sharing graphs, but it isn’t always the desired format for
inserting into documents. By changing the argument device= to png or jpeg those file
types will be saved. For some, PostScript is a convenient format. Encapsulated PostScript
can be created with the function dev. copy2eps () For Windows GUI users, the plot
window has menus for saving the graphic in png, jpeg, bmp, postscript, PDF, and
metafile formats. The Mac OS X GUI allows the user to save graphics in its native PDF
format.

Appendix D 363

D.2 Creating new graphics in R

In this section we illustrate some of the aforementioned techniques by creating graphics
for a squareplot and a scatterplot with additional information in the margins.

■ Example D.3: A squareplot alternative to barplots and pie charts
The New York Times does an excellent job with its statistical graphics. Its staff is both

careful to use graphics in an appropriate manner and creative in making new graphics to
showcase details. A case in point is a graphic the Times uses in place of a barplot, dotplot
or pie chart that we will call a squareplot.

Figure D.2 Squareplot of c (21, 7, 6)

The squareplot shows counts of categorical data. Unlike the barplot, the squareplot makes
it easy to see the exact counts. Unlike the dotplot, it is can be read without consulting the
scales. Unlike the pie chart, the squareplot’s relative areas are easy to discern.

The basic idea is to use squares of different colors to represent each count. The
squares and colors are laid out in a way that facilitates counting values and comparing
different plots. Figure D.2 shows an example, from which we can count that the
categories have counts 21, 7, and 6.

The UsingR package contains the function squareplot (), which is reproduced below.
Creating the graphic is pretty simple. A helper function to draw a square using polygon ()
is defined. Then the larger square is defined and laid out. An empty plot is made. Then a
new vector, cols, is created to match the colors with the counts. This is done with rep () to
repeat the colors. Finally, the squares are made and colored one-by-one using a for loop.
The functions floor for the integer portion of a number and %% for the remainder after
division are employed.

squareplot <− function(x,
 col=gray(seq(.5,1,length=length(
x))),
 border=NULL,
 nrows=ceiling(sqrt(sum(x))),
 ncols=ceiling(sum(x)/nrows),
 xlab=deparse(substitute(x)),
 main = NULL,
 ...

Appendix D 364

) {
create a squareplot ala the New York Times. Used as
an
alternative to a segmented barplot when the actual
count is of interest.
helper function
draw.square <- function(x,y,w=1,...) {
 ## draw a square with lower left corner at (x,y)
 polygon(x+c(0,0,w,w,0),y+c(0,w,w,0,0),...)
}
size of big square
square.size = max(nrows,ncols)
setup window with plot.new() and plot.window()
arguments to ... are passed along here
plot.new()
plot.window(xlim=c(0,square.size),ylim=c(-
square.size,0),
 ...)
title(main=main, xlab=xlab)
vector with colors
cols = rep(col,x)
for(i in 1:sum(x)) {
 x.pos = floor((i−1)/nrows) # adjust by 1
 y.pos = (i−1) %% nrows
 draw.square(x.pos,−y.pos −1,col=cols[i])
}
}

■ Example D.4: A scatterplot with histograms
The scatterplot is excellent at showing relationships between two variables. However, the
distributions of the individual variables are hard to see. If we add histograms along the
axes of the scatterplot, the individual distributions become clearer. This example comes
from the help page ? lay out. A similar graphic using boxplots is found using the
scatterplot () function in the car package.

An example is illustrated in Figure D.3. This shows the per-capita gross domestic
product (GDP) of several countries versus their CO2 emissions. Notice the outlier that
appears in the regression analysis, and the CO2 variable. It does not appear as an outlier
for per-capita GDP. It’s a simple analysis but leaves us wondering which country this is
and why.

> attach(emissions)
> names(emissions)
[1] "GDP" "perCapita" "C02"
> scatter.with.hist(perCapita,C02)

A listing of the scatter. with. hist () function is given below. First, the

Appendix D 365

Figure D.3 Per-capita GDP versus
emissions by country

old par () settings are saved. As these will be changed during the function, it's nice to
return them as we found them. Then the layout of the graph is specified with the layout ()
function.

Then the histograms are drawn. Care is taken to get a similar number of breaks and a
similar size. As well, the line par (mar=c (0, 3, 1, 1)) sets up the margins so that not too
much white space appears.

Finally, the scatterplot is drawn. The expression deparse (substitute (x)) finds the
name of the variable that we called the function with for the label. We use switch() to add
one of several trend lines: the regression line given by 1m(), the fit given by lowess (),
and the Friedman super-smoother fit given by supsmu() from the stats package. This
logic could have been implemented with if-then-else lines, but that approach is more
cluttered. The invisible () function is used to return quietly.

This function could be improved by adding an interface to the model formula notation.
The techniques to do that are discussed in Appendix E.

scatter.with.hist <
function(x,y,hist.col=gray(.95),trend.line= ="lm"
Make a scatterplot with trendline and
histograms of each distribution.
on.par <- par(no.readonly = TRUE)
on.exit(par(on.par)) # see ?par for
details
nf <- layout(matrix(c(1,0, # which order to
place graphs
 3,2),
 2,2,byrow=TRUE)
 widths=c(3,1), # 3/4 wide for col.
1
 heights=c(1,3), # 3/4 wide for row
2
 respect=TRUE) # make square

Appendix D 366

layout.show(nf)
n<-length(x)
no.breaks = max(nclass.scott(x),nclass.scott(y))
xhist <- hist(x,breaks=no.breaks, plot=FALSE)
yhist <- hist(y,breaks=no.breaks, plot=FALSE)
top <- max(c(xhist$counts, yhist$counts))
adjust margins for better look
par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, ylim=c(0, top)
 space=0,col=hist.col)
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top)
 space=0,col=hist.col, horiz=TRUE)
par(mar=c(4,4,1,1))
x.name = deparse(substitute(x))
y.name = deparse(substitute(y))
plot(x,y,xlab=x.name,ylab=y.name,...)
if(!is.null(trend.line) && lis.na(trend.line)){
 switch(trend.line,
 “lm”=abline(lm(y~x)),
 “supsmu”=lines(supsmu(x,y)),
 “lowess”=lines(lowess(x,y)),
 NULL
)
}
 invisible() # restores par
settings
}

Appendix D 367

Appendix E
Programming in R

One of R’s advantages over many other statistical software packages is that at its core is a
programming language with a consistent and relatively modern syntax. This allows us to
write functions that simplify our work and extend the functionality of R to our problems
at hand. The goal of this appendix is to introduce some of the key programming concepts
and give enough examples of simpler stuff. The curious reader can find much more
information in either An Introduction to R or R Language Definition, manuals
accompanying R, or in the books S Programming by Venables and Ripley and
Programming with Data: A Guide to the S Language by Chambers.

E.1 Editing functions

Programming can be repetitive: we write a function, test it, find errors, fix them, and
repeat until we are happy with the result. Knowing how to make this process as painless
as possible alleviates some of the tedium and lets us focus on what is important. A
recommended approach is to use text files and an external editor (such as Notepad in
Windows) to edit files. The edit() function can also manipulate functions from the
command line.

E.1.1 Using edit()

Let’s begin with the most studied of examples from computer programming: the “hello
world” function. We can define such a function on the command line with

> hello = function() {cat("hello world\n")}
> hello()
[1] "hello world"

This is a basic function that prints (using cat()) the response “hello world” no matter what
the input is. The “\n” tells R to print a new line. If we wanted to make a change to this
function we could retype the definition with our desired changes. This is facilitated by
using the arrow keys. However, using the edit() function will let us use an editor to make
the changes, thereby providing more control over the editing process. We call edit() like
this:

> hello = edit (hello) # assign results of edit()
back to hello

This command opens a text editor* to the function and allows us to edit. Make these
changes, save, and exit.

function(x) {
 cat("hello",x,"\n")
}

(No prompts are given, as we are doing this in the editor and not on the command line.)
Now our function can take an argument, such as:

> hello("kitty")
hello kitty

The function fix() is an alternative interface to edit(), which does not require us to assign
the value back.

E.2 Using functions

A function in R is defined by the following pieces:
function (arguments) body

The body term is a block of commands. If there is more than one command in the body,
they are put into a block using braces. A function declaration returns an object with class
attribute “function.” A class attribute allows R to organize objects by type. The result of a
function declaration is usually assigned to a variable or function name, although
sometimes, such as with sapply(), functions are used anonymously. In the example above,

hello = function(x) {
 cat("hello",x,"\n")
}

the keyword function is used. The argument is simply the variable denoted x, and the
body is the single command cat ("hello",x,"\n"). In this simple case, where the body is a
single command, the function could be written without the braces, as in

hello = function(x) cat("hello",x,"\n")

*The default editor varies depending on the operating system used. The editor can be changed using
the options () function, as in options(editor=“jedit”).

E.2.1 Function arguments

When we use a function, we typically pass it arguments, so that we can get different
outputs. The arguments to a function are specified as a list of variable names separated by
commas, such as

Appendix E 370

arg1, arg2, arg3

When a function is defined, default values may be specified using the name=value
syntax, as in

arg1=default1, arg2=default2, arg3=default3

Arguments need not have defaults, but defaults are generally a good idea. The defaults
can depend on other argument values, as R performs lazy evaluation. This will be
illustrated in the upcoming example. A catch-all argument, …, can be used to pass
unspecified, named arguments along to function calls made inside the body of the
function. Once a function is defined, the args () function will return the argument list.

Since there can be many arguments to a function, there needs to be a convention for
how arguments are handled when a function is called. R functions can be called with
either named arguments or positional arguments. The named arguments are matched first.
They appear in the function call as name=value. The name should match one of the
function’s arguments, or they will be passed along if a…argument is used. Named
arguments may be truncated, as long as the truncated form uniquely identifies the
argument. This will not work, though, if the argument appears in the function definition
after a…argument. The use of named arguments is encouraged.

When a function is defined, the arguments have a natural position. If a function is
called without named arguments, R will try to match the arguments in the function call by
their position. This can make for less typing, but it is harder to debug.

Finally, if a function call does not include one of the function’s arguments but a
default is given, this default value will be used. If no default is specified, an error will
occur.

We illustrate how R handles function arguments by an example.
■ Example E.1: Our histogram function (how R handles function arguments) The

default hist () function in R is a bit lacking. First, as a histogram reminds us of the
underlying density, it should look like a density. That is, it should be normalized so the
area is 1. For similar reasons, it is nice to estimate the density and add it to the graphic.
Finally, following the truehist () function of the MASS library, we use the “Scott” rule to
select the bins.

Here is a first attempt at what we want:

ourhist = function(x) {
 hist(x,breaks="Scott",probability=TRUE)
 lines(density(x))
}

We can type this in on the command line, or define a function stub and then use edit (), as
in

> ourhist = function(x) {}
> ourhist = edit(ourhist) # now edit

Try it out.
> x = rnorm(100)

Appendix E 371

> ourhist(x)

It works fine. But what if we wanted to use a different rule for breaks=? It would be nice
to be able to override our settings. One way would be to define a breaks= argument:

ourhist = function(x,breaks) {
 hist(x,breaks = breaks, probability = TRUE)
 lines(density(x))
}

A typical usage yields

> ourhist(x)
Error in hist.default(x, breaks = breaks, probability =
TRUE) :
 Argument "breaks" is missing, with no
default

Oops, we haven’t set a default value for breaks and we didn’t directly specify one, such
as ourhist (x,"Scott"). Immediately after we list the argument for the function, we can
supply a default value in the pattern name=value. Try this:

ourhist = function(x,breaks="Scott") {
 hist(x,breaks=breaks,probability=TRUE)
 lines(density(x))
}

Bothourhist(x) and ourhist (x,breaks="Sturges") will now work. The two commands
show a difference in the number of bins, the second using the Sturges rule to compute the
number instead of the default.

Still, the histogram drawn looks bland. Let’s add some color to it—the color purple.
The hist () function has a col= argument to set the color of the boxes. We can make the
color be purple by default with this modification:

ourhist = function(x,breaks="Scott",col="purple”) {
 hist(x,breaks=breaks,probability=TRUE,col=col)
 lines(density(x))
}

Trying it out gives

> ourhist(x)
> ourhist(x,"Sturges") # use different bin rule
> ourhist(x,"Sturges","green") # green before purple
> ourhist(x,"green") # Oops
Error in match.arg(tolower(breaks), c("sturges", "fd",
"freedman-diaconis", : ARG should be one of sturges,
fd,

Appendix E 372

freedman-diaconis, scott

We see that we can make changes to the defaults quite easily. The third line uses the
Sturges rule and green as the color.

However, we also see that we can make an error. Look closely at the last line. We
want to change the color to green but keep the default for the breaks rule. This didn’t
work. That is because R was expecting a breaks rule as the second argument to the
function. To override this positional matching of arguments we use named arguments.
That is,

> ourhist(x,col="green")

will work. Why? First R matches by named arguments, such as col=“green”.
Then it tries to match by partial matching of names. For example,

> ourhist(x,c="green")

will work, as no other arguments begin with the letter c. Finally R tries to match by
position.

Default values can be written to depend on arguments given during the function call.
The use of lazy evaluation of arguments allows this to happen. For example, it is
common to have graphic labels depend on the name of the variable passed into a
function. To supply a default title for the histogram can be done as follows

ourhist = function(x,breaks="Scott",col="purple",
 main=deparse(substitute(x))
) {
 hist(x,breaks=breaks,probability=TRUE,col=col,main=ma
in)
 lines(density(x))
}

Now the default value for the main title is found by applying substitute () and deparse() to
the argument x. This has the effect of making a character string out of an R expression.
The term “lazy” refers to the fact that the value for main= isn’t determined until it needs
to be—when the function is called, not when the function is first defined.

There are many other things we might want to modify about our histogram function,
but mostly these are already there in the hist function. For example, changing the x-axis
label. It would be nice to be able to pass along arguments to our function ourhist () to the
underlying hist function. R does so with the …argument. When our function contains
three periods in a row,…, in the argument and in the body of the function, all extra
arguments to our function are passed along. You may notice if you read the help page for
hist () that it too has a…in its argument list.

Again, modify the function, this time to

ourhist=function(x,breaks="Scott",col="purple",...) {
 hist(x,breaks=breaks,probability=TRUE,col=col,...)

Appendix E 373

 lines(density(x))
}

Then we can do these things

> ourhist(x,xlab="histogram of x") # change the x label
> ourhist(x,xlab="histogram of x",col="green") # change
both

E.2.2 Function body and return values

The function body is contained in braces if there is more than one command. The body
consists of a collection of commands that are executed in the order given, although
control statements can change this. The last command executed is the return value of the
function. This can be forced by the return () function. If the return value should not print
out, the invisible () function can be used for the return. This is used with many plotting
functions.

Inside a block of commands, the print () or cat () functions are used to force printout to
the console. Just evaluating the variable name will not force it to print as it does on the
command line. In the Windows GUI, the printing may be buffered. The function
flush.console () will print any buffered output.

Inside a function body, variable names are resolved by seeing if the name has been
assigned inside the body or matches a variable name. If not, then values in the
environment in which the function was called are used. If the variable name still can’t be
found an error will occur. Assignment inside a function body will not affect values
outside the function body unless it’s done with the <<– assignment operator or assign().

This next example involves both return values and conditional evaluation.
■ Example E.2: An EDA function (return values) The summary () command is

used to give textual summaries of a given data object. However, in many cases a
graphical summary is also appreciated. We write a function that returns the summary but
that also presents a graphical summary.

We name the function eda(). This first attempt will make a few plots and then return
the summary command.

eda = function(x) {
 old.par = par(no.readonly = TRUE) # See par
examples
 on.exit(par(old.par))
 par(mfrow=c(1,3)) # 3 graphs
 hist(x,breaks="Scott",probability=TRUE,col="purple")
 lines(density(x))
 boxplot(x,horizontal=TRUE) # boxplot with
points
 rug(x) # marked by
rug()
 qqnorm(x) # normal
probability plot

Appendix E 374

 return(summary(x)) # return
summary
}

Looking at the body of the eda () function we see that the par () settings are saved into
old.par. The on.exit () function executes commands when the function exits. In this case,
it returns the original settings for par (). This usage is illustrated in the help page for par
(). As this function changes the plot device by setting mf row=c (1, 3) to create three
graphs on one screen, it is nice to return to the old settings when we leave. The three
graphs are straightforward. Finally, the last line uses return () to return the value of the
summary () function. In general, the last line evaluated is returned, but specifying the
return value eliminates surprises.

Try it out a few times. For example, look at the output of eda (rnorm (100)). Functions
like this are pretty handy. It would be nice to improve it a bit. In particular, the function
as written is good only for univariate, numeric data. What about eda for bivariate data?
Categorical data? If we have categorical data, we might want to plot a barplot and return
a summary.

E.2.3 Conditional evaluation

R has some standard ways to deal with conditional evaluation. Depending on a value of
some condition, one of many things can be done.

if ()
The if () function allows us to do something based on a condition. It takes two forms:

an “if-then” form

if (condition) {
 statement(s) if condition is TRUE
}

and an “if-then-else” form

if (condition) {
 statement(s) if condition is TRUE
} else {
 statements(s) if condition is FALSE
}

The condition is a logical expression, such as x > a or x == y. For example, the following
is a really bad way of defining an absolute-value function:

abs=function(x) {
 if (x < a) {
 return(−x)
 } else {
 return(x)
 }
}

Appendix E 375

The logic should be clear. If the value of x is less than 0, the return value is −x. Otherwise
it is just x. This example will not work for a vector of numbers with more than one
element as the built-in abs () function will.

Suppose we wanted to improve our eda() function defined previously by making it
aware of different types of x. For example, if x is a factor, we want to present our
summary differently. One simple way to do this is to have a conditional statement in the
function, such as

if(is.factor(x)) {
 ## do factor summary
} else if(is.numeric(x)) {
 ## do numeric summary
} else {
 ## do a default summary
}

We could write such conditions for all the different types of data objects we have in
mind. Sometimes the switch() function can help simplify the coding.

There are problems with this example. If we want to add a new type of variable, then
the original eda() function needs to be available. This is fine for functions we write, but
what about functions written by others for the system? We wouldn’t want to modify
those. Fortunately, there are styles in R for writing functions that eliminate this concern
that are described in the section on object-oriented programming.

E.2.4 Looping

Computers, unlike humans, are very happy to do things again and again and again.
Repeating something is called looping. There are three functions for looping: for(),
while(), and repeat (). The latter is least common and will be skipped here.

for() loops
The standard f or () loop has this basic structure:

for (varname in seq) {
 statement(s)
}

The varname is the name of a variable, the seq can be any vector or list, and the
statements get executed for each value of seq. When seq is a vector, varname loops over
each value. The statements are evaluated with the given value for varname. When seq is a
list, varname refers to each successive component in the list (the values seq [[i]], not seq
[i]).

A simple example is a countdown program:

> for(i in 10:1) print(i) # say blastoff

Appendix E 376

In this example varname is the variable i, and the vector is the set of numbers 10 through
1. We didn’t use braces, as only one statement is called.

To illustrate further, let’s consider a primitive way to compute a factorial. The
definition of the factorial of a positive integer is n!=n·(n−1)·····2·1.

fact=function(x) {
 ret=1
 for(i in 1:x) {
 ret=ret*i
 }
 return(ret)
}

The loop runs over the values of the vector 1: x. At each stage the running result is
multiplied by the new value. We can verify that fact (5) returns 120. (This function is
already implemented in the f actor ial() function. Even so, it would be better written using
the prod() function to avoid the loop.)

The statements next and break (no parentheses) can be used to skip to the next value in
the loop (next) or to break out of the loop (break).

Using while()
The for () loop above is great to use when we know ahead of time what values we want to
loop over. Sometimes we don’t. We want to repeat something as long as a condition is
met. For example, as long as a number is positive, or a number is larger than some
tolerance. The function while () does just this. Its template is

while (condition) {
 statement(s)
}

Here is a simple example that counts how many tails there are before the first heads.

tosscoin = function() {
 coin = "tails" # initialize condition
 count = −1 # get counting right this way
 while(coin == "tails") {
 coin = sample(c("heads","tails"),1)
 count = count+1
 }
 cat("There were",count,"tails before the first
heads\n")
}

The usage of the functions while () and for () can often be interchanged. For example, we
can rewrite the factorial example above with the while () function as follows:

fact 1 = function(x) {
 ret = 1

Appendix E 377

 while(x > 0) {
 ret = ret*x
 x = x−1
 }
 return(ret)
}

There is no real savings here. In fact, neither function is a very good way to perform this
task.

E.3 Using files and a better editor

If you plan on doing any significant programming in R, then it is worthwhile to
familiarize yourself with using external files to store your work (rather than the default
workspace) and using a different editor to facilitate interaction between the external files
and an R process.

E.3.1 Using an external editor

The edit () function makes small changes easy, but the changes are not saved in a
convenient way for future reference. They can be saved in the workspace, but this can
become quite cumbersome. It is often better to keep functions in files in the working
directory. Many functions can be kept in a single file, or each one in its own file.
Commands can also be stored in a file for subsequent editing.

The basic idea is to edit the file and then have its contents parsed and evaluated in R
line by line. This last step is done with the function source (). This process is repeated
until you are satisfied.

For example, you can save the hello function in a file called “hello.R" using a text
editor of your choice (e.g., Notepad) and then read the contents in using the source()
function, as in

> source("hello.R")

Specifying the file name can be done conveniently with the file. choose () function. More
details on specifying a file are given in Chapter 1.

Better text editors
If you are going to be programming a lot in R, it makes sense to use an editor well suited
to the job. The default editor in Windows, Notepad, is quite primitive; the default editor
(often vi) in UNIX may be too cryptic. The editor can be changed using options (), but to
which one? Good editors should do some work for you. For writing programs in R what
is desired are features such as on-the-fly code formatting, syntax highlighting, integration
with an R process, and debugging help.

There are several choices. The most advanced and powerful is a combination of
Emacs (either XEmacs, http://www.xemacs.org/, or GNU Emacs, http://www.gnu.org/);
and ESS, (http://www.analytics.Washington.edu/statcomp/projects/ess/). Emacs is a text

Appendix E 378

editor and ESS extends the editor so that it can interface with many statistical software
packages. This setup works under Windows, Linux, and Mac OS X. This working
environment, or integrated development environment (IDE), provides an interactive shell
with TAB completion of command names and parentheses matching; a history
mechanism; and integrated help pages. Additionally, functions and script files can be
edited and evaluated in an R session with a simple command that can be typed or
controlled by the mouse. The editing has built-in indenting, which allows you to identify
quickly the block of a program being edited. The only real drawback is the complexity of
learning Emacs.

Many people prefer other tools for editing. A list of editors that integrate with R
appears on the R GUI web page at http://www.r-project.org/ under the “IDE/Script
Editors” link.

E.4 Object-oriented programming with R

Object-oriented programming (OOP) is a more advanced topic than those covered in the
rest of this book. This section is included here as the freely available materials on OOP
are not that accessible even for those with an understanding of OOP principles. The goal
is to give a brief introduction to R’s implementation(s) for those who have some previous
experience with OOP.

OOP is especially useful for large programming projects. It became popular in the
1990s and is now ubiquitous. Most languages taught (e.g., Java, C++) have an OOP
component. OOP requires an initial investment in time to structure the data and methods,
but this pays off in the long run. Often, for statistical exploration, it is programming
overkill, but it should be considered when you are programming any larger projects.

The nature of object-oriented programming in R has changed with the introduction of
the base methods package and the add-on OOP package. At the time of writing there are
four types of OOP for R: the original S3 methods; the R. oo package,
http://www.maths.1th.se/help/R/; the newer S4 methods; and the OOP package. The OOP
package extends the S4 style; the R. oo package extends the S3 style.

The notion of a class and associated methods are integral to OOP, and their
implementation will be discussed below. But first, for OOP in R, an understanding of
method dispatch is helpful.

E.4.1 Method dispatch

Method dispatch comes in when R decides which function to call. For example, when the
R print() function is invoked, say with the command print (x), what happens? If the
function invoked is a generic function, R first looks at what x (the first argument) is and
then, based on this, uses an appropriate idea of “print.” To determine what x is, R
considers its class attribute. Many R objects have a class attribute; others have an implicit
class attribute, such as data vectors. Their implicit class attribute is inherited from their
mode: for example, “character” or “numeric.” The class () function determines the class
of an object. Once the class is determined, say it is “classname,” R looks for the
appropriate function to call, depending on the type of function. As print() is an S3 generic

Appendix E 379

function, R looks first for the function print. classname. If it finds it, it uses that function.
If not, it goes again to the next value of the class of x (it can have more than one) and
tries again. Finally, if everything fails, it will use the function print. def ault (). This
process of resolution is called method dispatch.

Users of R rely on this all the time. For example, we’ve seen that many different plots
are produced by the workhorse function plot (): plot (x, y) will produce a scatterplot, plot
(y ~ x) will also, plot (y ~ f) will produce boxplots (for a factor f), and plot (lm(y~x)) will
plot four diagnostic plots. There are many other usages we didn’t show, such as plot (sin),
which will plot the sine function over [0, 1]. All use the function name plot (a “generic”
function). This generic function uses the class of the first argument to call the appropriate
idea of plot. The end result for the user is far fewer function names to remember. The end
result for the programmer is that it is much easier to add new types of data objects.

To illustrate the notion of method dispatch, we create a simple function that tells us
how “large” a data variable is.

■ Example E.3: Defining a size() function (an example of method dispatch) When
exploring the built-in data sets that R provides or that are otherwise available to us, we
may not know the size of the data set. If the data set is really large and undocumented,
then just typing the variable name can be very annoying. Fortunately, there are functions
to help us know the size of a variable. For example, length () will tell us the length of a
vector or list and dim () will tell us the dimension of an array or data frame. If we want a
single command to tell us the size, we can define one. Let’s call it size ().

We want size () to adapt itself to the various types of variables it sees—just like the
summary () function. In order for R to do this, we first need to define size () to be a
generic function as follows:

> size = function(x,…) UseMethod("size")

This says that, when encountering the function size(), use the method based on the class
of x (the first argument).

Now we need to define some methods. First we define a default method (called size.
def ault ()) and some others for different classes:

> size.default = function(x) length(x)
> size.data.frame = function(x) dim(x)
> size.list = function(x) lapply(x,size)

The default for size() is the length () of the object. This works well for vectors. For data
frames the number of rows and columns are returned. For lists we define the size to be
the dimension, or the size of each entry in the list. We could also define functions to be
dispatched for matrices and arrays if desired.

Let’s see what it does:

> size(1:5) # for integers
[1] 5
> size(letters) # for characters
[1] 26
> size(factor(letters)) # for factors

Appendix E 380

[1] 26
> size(data.frame(a=1:5,b=letters[1:5])) # for data
frames
[1] 5 2
> size(list(a=1:5,b=letters,c=list(d=1:4,e=letters))) #
for lists
$a
[1] 5
$b
[1] 26
$c
cd
[1] 4
ce
[1] 26

We see that the list example recursively uses size ().

E.4.2 S3 methods, S4 methods, and the OOP package

In the previous example, we defined methods for lots of classes. Now we give an
example of defining a class, methods for this new class, and creating a new instance of
the class. For a concrete example, we will create a “string” class using S3 methods, S4
methods, and the OOP package.

R has many built-in functions for handling strings, but their syntax can be confusing.
This example (influenced by the xtable package) defines a class for strings and gives it
some syntax similar to the String class in the Ruby programming language
(http://www.ruby-lang.org/).

This example covers the following: creating a new class, creating new instances of the
class, and defining methods for instances of the class. Inheritance, another important part
of OOP, is briefly mentioned. The code is available in the accompanying UsingR
package.

Extending the usual syntax by overloading In the upcoming example, it makes good
sense to define “slicing” and “adding” of strings. When doing these things with a data
vector, the operators [and+are used. By overloading these operators, the same natural
syntax can be used with strings.

When overloading an operator, we must take care with S4 methods. This is because
the default arguments (the signature) of the new function must match those of the current
implementation. For example, the [operator has this signature: i, j,…,drop. (See ?"[" for
details.) Any overloading of "[" must contain this same set of arguments.

S3 methods
Creating a new class using S3 style is very simple. The “class” is an attribute of an object
that can be set with the class() function, as in class(x) = "String".

We make a function, string (), to create new instances of our String class and a
function, is. String (), to inform us if an object is in our String class.

string=function(x) {

Appendix E 381

 if (!is.String(x)) {
 x = as.character(x)
 class(x) = "String"
 }
 return(x)
}
is.String=function(x) return(class(x) == "String")

(We write these functions as though they are “sourced” in from a file. The good way to
organize this would be to include all these new functions in a single file, as they are in a
file in the UsingR package.)

Now when a generic function is called on an instance of this class, the function for the
String class, if present, is used. For example, the String class should have some basic
functions, such as length (), summary (), and print ()

length.String = function(x,…) return(nchar(x))
summary.String = function(x,…)
return(table(strsplit(x,"")))
print.String = function(x,…) cat(x,"\n")

At this point we can see if it works as expected. For example:

> bart=string("I will not skateboard in the halls")
> bart
I will not skateboard in the halls
> length(bart)
[1] 34
> summary(bart)
 I a b d e h i k l n o r s t w
6 1 3 1 1 2 2 2 1 4 2 2 1 2 3 1

The summary () function splits the string into characters and then makes a table. By
modifying the summary. string () function other summaries could be given.

It would be nice to be able to access the letters in a String object as we do the elements
in a vector. First, let’s define a function slice() and then use this to define access via "[".
To do so, slice () is made a “generic” function in order for method dispatch to work, and
then defined as desired:

slice = function(x,index) UseMethod("slice")
slice.String = function(x,index){
 tmp = unlist(strsplit(x,""))[index]
 return(string(paste(tmp,sep="",collapse="")))
}

To make slice () generic, we used UseMethod(). The definition of slice () uses strsplit ()
to split the string into characters.

To make the vector notation work on the String class, we overload the square-bracket
meaning by defining a function as follows:

Appendix E 382

"[.String" = function(x,index) slice(x,index)

The quotation marks are necessary with this function definition as they prevent [from
being interpolated. The "["function is already a generic function, so we don’t need to use
the UseMethod() call.

If we knew we didn’t want to use slice () in any other context, we needn’t have made
it generic. For example, we might want to concatenate strings using the (overloaded) "+"
symbol:

concat.String = function(x,y,sep="") {
 x = string(paste(x,string(y),sep=sep))
 return(x)
}
"+.String" = function(x,y) concat.String(x,y)

We imagine using just the+notation to add strings, not concat (). This is why we didn’t
bother making concat () a generic function. Due to this, the definition of "+.String" must
use concat .String(), and not simply concat ().

To see this in action, we have

> Simpsons=string("Homer, Marge")
> Simpsons[1:5]
Homer
> Simpsons + ", " + " Bart, Lisa, Maggie"
Homer, Marge, Bart, Lisa, Maggie

S4 methods
We now create the String class using S4 methods. S4 methods are well documented in the
help pages (see ?Methods). They are, unfortunately, a little difficult to read through. We
will see in our simple example that certain aspects of S4 methods are much stricter than
S3 methods, thereby forcing good programming habits.

This example defines the class and methods incrementally. Alternatively, these can be
defined all at once.

First, we define a new class using the setClass() function. An S4 object has slots for
storing the data that need to be specified. A slot stores a component, like a list element,
allowing one to set and access the data.

For the simple String class, the one slot stores the value of the string using the class
character.

setClass("String".representation(string = "character"))

The second argument to setClass() uses the representation() function to define what type
of data will be stored in the slots. The name and class of each slot is specified, forcing the
proper type of data in that slot. Only character data, or data that can be coerced to
character data, can be stored in the string slot. The example shows only one slot being
created; more than one can be created by separating the definitions by commas.

Appendix E 383

Creating an instance of a class is done with the new () function, as illustrated in this
helper function:

string = function(x) {
 new("String",string=as.character(x))
}

The slot holding string is set with the value of as. character (x). Only slots that are
already defined for the class can be filled (defined by setClass() or through inheritance).
Otherwise an error message, “Invalid names for slots,” will be returned.

Trying this out we have
> string("I will not eat things for money")
An object of class "String"
Slot "string":
[1] "I will not eat things for money"

The string() function works, but the printout is not as desired. Instead of print (), when
the methods package is used, S4 methods use show() for their default print call. We can
make a show() function tailored for our class using setMethod(). The setMethod()
function needs a name, a class, and a function defining the method.

setMethod("show", "String",
 function(object) {
 cat(object@string,"\n")
 })

Now objects of our String class will use this method, instead of the method showDefault
(), to print. The function definition must have the proper formal arguments, or an error
will be thrown. This enforces a uniformity among methods that share a name. That isn’t
the case with S3 methods. The new syntax, object@string illustrates how we access a slot
in an object. The argument to show() is called object and is an instance of the String
class. The slot string is desired, which is accessed using the @ syntax, as in
object@string.

Now the default printing is more suited for a string.

> string("I will not waste chalk")
I will not waste chalk

The show () function is an S4 standard generic function, meaning for us that method
dispatch will work. The setMethod() function will also work with S3 methods, such as
summary (), and “primitives,” such as length(). For example, we can create such methods
for the String class as follows:

setMethod(length","String",function(x) nchar(x@string)
setMethod(summary","String",
 function(object,…) {
 return (table(strsplit(object@string,""))

Appendix E 384

 })

We need to use the argument x in length() and object in summary() to match their formal
arguments (signature). The signature of a function can be found from its help page (e.g.,
?summary), or with the function args() (e.g., args (summary)).

New methods can be created as well. For example, to create a slice () method and the
"[" syntax, we first create a generic function slice (), adapt it to the String class, and then
link "[" to this.

setGeneric("slice", function(object,index)
standardGeneric("slice"))

This sets up slice () as a generic function for which method dispatch will apply. The
definition of the function sets up the signature of the slice () function, namely an object
and an index. The definition of slice() for the String class is

setMethod("slice","String",
 function(object,index) {
 tmp =
paste(unlist(strsplit(object@string,"")[index],
 sep="",collapse="")
 return(string(tmp))
 })

To define the "[" method, we again use setMethod(). It does not need to be made generic,
but the signature must match.

setMethod("[","String".function(x,i,j,…,drop)
slice(x,i))

There is a long list of formal arguments. The "[" method works for vectors, data frames,
arrays, and now strings, so it needs to have lots of flexibility in how it is called. We have
little flexibility in how a new method is defined, though: at the minimum, we must
include all the arguments given.

We can try this out:

> pets=string("Snowball, Santa’s little helper")
> pets[−1]
nowball, Santa’s little helper
> pets[length(pets)]
r

The OOP package
For those used to programming in an OOP language, the S3 and S4 methods might be
called “object oriented,” but they don’t look object oriented. Usually, the syntax for
calling a method is object-separator-methodname, such as $object->print () in PERL or
object .print () in Ruby, C++, and Java. The separators -> and . are not well suited for R,

Appendix E 385

as -> is reserved for assignment and . is used for punctuation. Rather, the natural $ is
used.

This object-method style forces the attention on the object and not the function. In
addition, many methods can change the value of the object in place, meaning that to
change the object, instead of requiring an assignment statement such as object=object
.method(newValue), a command such as object .method(newValue) can be used. Using
S3 and S4 methods, this is not available. The add-on package OOP from
http://www.omegahat.org/ allows for such programming style. This package is still in
development and is not merged into the main R distribution. It may not even work with
newer versions of R (it missed the 1.8.x series). What follows works with R version 1.9.1
and OOP version 0.5–1.

First, we must load the library with the command library (OOP). It takes a bit of time
to load.

To define a new class using OOP, the def ineClass () function is used, as in

defineClass("String")

The “slots” are now called “fields.” To set up the fields, the def ineFields method is used
on the String class.

String$defineFields(string = "character")

We have only a single field of type character. The def ineFields () method is placed after
the separator $, and the object here is String.

The new() function is called to make a new instance of a class. There is a default call,
but we can override it by defining a method called initialize.

String$defineMethod("initialize",
 function(val){
 set.string(as.character(val))
 })

The set. string() function assigns to the string field. For each field, an assignment method
set. fieldname () is created, as well as a variable fieldname containing the values. The
initialize () method is called by the new () method. In this case, it sets the field value of
string to the value of the argument after coercion to a character.

Now we can create objects or instances of the String class using new as follows:

> bart=String$new("I will not drive the principal’s
car")
> bart
Object of class "String":
Field "string":
[1] "I will not drive the principal’s car"

Our printout needs work, but we can see that we have an object of class “String” and that
the string field is as expected.

Appendix E 386

For our String class we want the length (), summary (), and show () methods as before.

String$defineMethod("length",function()
return(nchar(string)))
String$defineMethod("summary",function() {
 return(table(strsplit(string,"")))
})
String$defineMethod("show", function() cat
(string,"\n"))

The formal arguments needed for S4 methods are not necessary here.
We can try these out now:

> barfriends=String$new("Moe, Barney, Lenny, Carl")
> length(barfriends)
[1] 1
> barfriends$length()
[1] 24
> barfriends$summary()
 , B C L M a e l n o r y
3 3 1 1 1 1 2 3 1 3 1 2 2
> barfriends
Object of class "String":
Field "string":
[1] "Moe, Barney, Lenny, Carl"
> barfriends$show()
Moe, Barney, Lenny, Carl

The function length () must be called as barfriends$length() and not as length (barf
riends). The latter dispatches the wrong function. This also causes show() to work now as
it did with S4 functions. A workaround is to define a print () method using either S4 or
S3 methods,

setMethod("print","String", function(x,…) x$show()) #S4
style

or

print.String = function(self) self$show() # S3 style

Now the show () method will be called when the object is “printed.”

> barfriends
Moe, Barney, Lenny, Carl

The same thing can be done to use the "[", "+", etc., syntax. For example, defining a
method to split the string by a pattern and use "/" for a shortcut can be done as follows:

Appendix E 387

String$defineMethod("split".function(by="") {
 unlist(strsplit(string,by))
})
setMethod("/","String",function(e1,e2) el$split(e2))

Again strsplit () does the hard work. We defined a new method, split, but didn’t have to
worry about matching the formal arguments of the previously defined split () function (an
S3 generic method). However, when we use the S4 style to use the "/" syntax, we need
our function to match the formal arguments it uses (e1,e2).

We can now “divide” our strings as follows:

> flanders=String$new("Ned, Maude, Todd, Rod")
> flanders$split() # into character by
default
 [1] "N" "e" "d" "," " " "M" "a" "u" "d" "e" "," " "
"T" "o" "d"
[16] "d" "," " " "R" "o" "d"
> flanders/" "
[1] "Ned," "Maude," "Todd," "Rod"

As mentioned, when using OOP we can modify the object in place. For example, we
might want to make the string uppercase. This can be done by defining an up case
method as follows:

String$defineMethod("upcase",function() {
 set.string(toupper(string))
})

Applying the function gives

> flanders$upcase()
> flanders
NED, MAUDE, TODD, ROD

The upcase () method uses both the string variable and the set. str ing () function, which
are created from the field names. Simple assignment to string will not work, although the
<<- assignment operator will.

Inheritance
In OOP, inheritance allows us to define fields and methods for a class and have them
available to all subclasses. Subclasses are used to extend a class by adding functionality
that is desired in the specific case, keeping the core functionality in the parent class for
other subclasses to share.

The OOP package allows for the fields and methods to be inherited in a simple
manner. For example, to create a Sentence class to extend the String class is easy. When
defining the class we need only say it “extends” the String class as follows:

defineClass("Sentence", extends = "String")

Appendix E 388

Now, instances of the Sentence class inherit all the methods of the String class.

> flanders = Sentence$new("the Flanders are Ned, Maude,
Todd, and Rod")
> flanders
the Flanders are Ned, Maude, Todd, and Rod

This shows that the print () method was inherited. We can add more methods to the
Sentence class that are specific to that class. For example, we might want to ensure that
our sentences are punctuated with a capital letter for the first letter, and a period for the
last character.

Sentence$defineMethod("punctuate",function() {
add a period, and capitalize the first letter
chars = split("")
chars[1] = toupper(chars[1])
if(chars[(length)(chars)] != ".")
 chars[(length)(chars)+1]="."
set.string(paste(chars,sep="",collapse=""))
})

We define punctuate () using def ineMethod(). The split () method uses the method
defined for the String class, whereas the length () functions are for the length of a
character vector. OOP would try to use the length () method we defined, so we need to
place the function in parentheses to use the one we want. Warning messages will remind
us if we get this wrong.

We can now punctuate our sentences:

> flanders$punctuate()
> flanders
The Flanders are Ned, Maude, Todd, and Rod.

Inheritance with S4 methods is very similar. Again, the classes that the new class extends
(the superclasses) are specified at the time a new class is made. For example:

setClass("Sentence",contains=c("String"))

The argument is contains= and not extends=.
New instances are made with new() as before:

sentence = function(x) {
 new("Sentence",string=x)
}

Methods for the new class are added in a similar manner:

setGeneric("punctuate", function(object)
standardGeneric("punctuate"))

Appendix E 389

setMethod("punctuate","Sentence",function(object) {
 ## add a period, and capitalize the first letter
 chars = split(object,"")
 chars[1] = toupper(chars[1])
 if(chars[length(chars)] != ".")
 chars[length(chars)+1] = "."
 return(sentence(paste(chars,sep="",collapse="")))
})

In this case, the object is not modified. Rather, a new sentence is returned. Again split is
used from the definition in String. Here the function length() is correctly dispatched, and
there is no need to include it in parentheses.

For more information on S4 classes, the help page ?Methods gives pointers and links
to other help pages. There is an informative article on S4 classes in Volume 3/1 (June
2003) of R News (http://www.r-project.org/). For the OOP package the help page ?def
ineClass provides useful information and links to the rest of the documentation. An out-
of-date, but still informative description by the OOP authors is contained in the Volume
1/3 (September 2001) of R News.

Problems

E.1 Write your own sample standard deviation function, std, using the sample variance
formula

E.2 Write two functions push () and pop (). The first should take a vector and an
argument and add the argument to the vector to make it the last value of the vector. The
function pop () should return the last value. How might you modify pop to return the
value and the shortened vector? How might you change pop and push when x is an empty
vector?

E.3 Write a short function to plot a simple lag plot (cf. ?lag.plot in the ts package).
That is, for a vector x of length n, make a scatterplot of x [-n] against x[−1]. Apply the
function to random data (rnorm(100)) and regular data (sin(1:100)).

E.4 Write a function to find a confidence interval based on the t-statistic for
summarized data. That is, the input should be S, n, and a confidence level; the output
should be an interval.

E.5 Newton’s method is a simple algorithm to find the zeroes of a function. For
example, to find the zeroes of f(x)=x2

−sin(x), we need to iterate the equation

until the difference between xn and xn+1 is small. In pseudo-code this would be

while(delta > .00001) {

Appendix E 390

old.x=x
x=x—(x^2—sin(x))/(2*x—cos(x))
delta=| x—old.x |
}

The answer you get depends on your starting value of x. This should be passed in as an
argument. Implement this in R and find both roots of f(x).

E.6 Type in the size () example above. Try the following:

> x=rnorm(100)
> size(x<0)

Does it work? If not, write a new method to handle this case. (Use typeof () to find the
type of x<0.)

E.7 Add a new S3 method to the String class. We want to “divide” strings by breaking
the string up into pieces based on the numerator. For example, dividing “now is the time”
by “ ” (a blank) would return a vector of words split up by the blank spaces. This can be
done with the function strsplit () as illustrated here:

> x="now is the time for all good men"
> y=" "
> unlist(strsplit(x,y)) # unlist to get a
vector
[1] "now" "is" "the" "time" "for" "all" "good" "men"

Write an S3 method so that this could be done as

> x=string("now is the time for all good men")
> x/y
[1] "now" "is" "the" "time" "for" "all" "good" "men"

E.8 Define an S3 “subtract” method for our String class that extracts all instances of the
string y from x. Such as

> x=string("now is the time for all good men")
> y=stringC" ")
> x−y # remove the blanks
nowisthetimeforallgoodmen

(You might want to use the “divide method” and then paste ().)
E.9 Write S4 methods upcase () and downcase () for the String class which interface

with toupper () and tolower ().
E.10 Write an OOP method strip() that removes unnecessary spaces in the string. For

example,” this has too many spaces “would become “this has too many spaces”.

Appendix E 391

Index
>, 5
… argument, 170, 389
:, 13
<-, 8
=, 8
?, 12
NA, 20
[[]], 120
#, 6
%in%, 20
if statement, 175
letters, 38
while loop, 175
AIC(), 309
IQR(), 51
I(), 96
TukeyHSD(), 328
UseMethod(), 400

abline(), 93
anova(), 308, 337
aov(), 317
apply(), 72, 123
apropos(), 12
attach(), 25, 116

barplot(), 33
binom.test(), 188
boxplot(), 65

first argument a list, 119
model formula, 126

box(), 377
browseEnv(), 21
bwplot(), 133

cat(), 388
cbind(), 70
chisq.test(), 252
choose(), 151
class(), 397, 399
colnames(), 71
colors(), 378

cm.colors(), 378
gray(), 378

heat.colors(), 378
rainbow(), 378
terrain.colors(), 378

topo.colors(), 378
cor(), 87
cut(), 60, 112
c(), 9

data.entry(), 12
data.frame(), 114

access, 115
list notation, 121
matrix notation, 116
size of, 115
vector notation, 121
with predict(), 94, 295

densityplot(), 132
detach(), 26
diff(), 15, 84
dimnames(), 115
dim(), 115
dot chart (), 37
dump (), 27, 372

ecdf(), 266
edit(), 169
example(), 12, 199

factor(), 38, 136
file.choose(), 28
fivemun(), 52
fix(), 169, 388
for() loop, 394
ftable (), 107, 129, 340
function(), 169

getwd(), 27, 28
glm(), 346

help.search ch(), 12
hist(), 57

identify(), 97
interaction.plot(), 338
is.na(), 20

jitter(), 90

kruskal.test(), 320

Index 393

ks.test(), 268

lapply(), 124
layout(), 376, 384
length(), 115
levels(), 38
lines(), 60, 78, 296

NA, 379
col=, 379
lty=, 379
lwd=, 379

list(), 114
lm(), 92, 280

data=, 95
subset=, 95, 280
extractor function, 282

AIC(), 309
anova(), 308
predict(), 294
residuals(), 282
summary(), 293

locator(), 97
loess(), 101
ls(), 21

mad(), 55
margin.table(), 72
mean(), 44

na.rm=, 44
trim=, 46

median(), 44

new(), 401
nls(), 352

objects(), 21
on.exit(), 392
oneway.test(), 316
order(), 120

pairs(), 109
palette(), 378
par(), 374

fig=, 155
mfrow=c(1,3), 392

plot.window(), 376
plot(), 60, 82

cex=, 43, 86, 378
col=, 378
lty=, 86

Index 394

pch=, 86, 378
type=, 60, 86
xlab=, 43
usage

boxplots, 127
density plots, 60
model formula, 95
scatterplot, 82

polygon(), 380
prop, test(), 187, 220

alt=, 220
p=, 220

qqline(), 80
qqnorm(), 80
qqplot(), 80
quantile(), 50

range(), 48
rbind(), 70, 261
read.csv(), 114
read.table(), 28, 114
recordPlot(), 78
replayPlot(), 78
rep(), 14, 318, 319, 349
rm(), 21
rownames(), 71
rug(), 60, 155

sample(), 143, 147, 182, 250
sapply(), 124, 177
scale(), 52, 125, 209
scan(), 27
scatter. smooth(), 101
sd(), 49
seq(), 14
setClass(), 401
setwd(), 28
Shapiro.test(), 272
show(), 401
smooth.spline(), 101
source(), 27, 173, 396
split(), 129
stack (), 129, 317, 318
stem(), 42
stepAIC(), 309, 348
stripchart(), 42
subset (), 119, 304

select=, 119
subset=, 119, 348

summary(), 52, 293, 347

Index 395

supsmu(), 101
switch(), 384

t.test(), 193, 223

paired=TRUE, 242
table(), 32
text(), 65
title(), 59
t(), 75

unlist(), 140
unstack(), 129
update(), 304
url(), 29

var.test(), 248
var(), 49

which(), 18
while(), 174, 395
wilcox.test(), 208
with(), 25

xtabs(), 127, 261, 340
xyplot(), 133
command line

+, 7
;, 6

density(), 60
help(), 11

adjusted R2, 292
alternative hypothesis, 214
ANOVA, 313
assignment, 7

Bernoulli random variable, 150
binary variable, 343
binomial random variable, 150
bootstrap sample, 176
boxplot, 64
built-in data sets, 24

c.d.f., 146
central limit theorem, 161
class, 398
class attribute, 136, 388, 397
coefficient of determination, 292
coefficient of variation, 55

Index 396

command line, 411
>, 5

confidence ellipse, 300
confidence interval, 184, 185

t-based, 190
TukeyHSD(), 328
difference of means, 201
for proportion, 184
nonparametric, 207
regression coefficients, 292

contingency tables, 106
CRAN, 23
critical values, 215
cumulative distribution function, 266

data frame, 113
data recycling, 11, 122
data sets in UsingR

BushApproval, 199
MLBAttend, 330
MLBattend, 40, 130, 283, 311
OBP, 54, 58, 226
age.universe, 181
alaska.pipeline, 299, 300
alltime.movies, 65
babies, 109, 117, 206, 226, 232, 247, 275, 301, 326, 334, 347
babyboom, 67, 273
batting, 90, 103
baycheck, 312
best.times, 299
breakdown, 104
bright.stars, 256
brightness, 68, 195, 275
bumpers, 66
bycatch, 176
cabinet, 55, 211
cancer, 113, 114, 129
carsafety, 112, 135, 322, 331
central.park.cloud, 32
central.park, 35, 39
cf b, 46, 63, 67, 124, 212, 335
coins, 75
deflection, 298, 300, 311
diamond, 103
dvdsales, 76, 125
emissions, 99, 287
ewr, 108, 115, 118, 123, 125, 329
exec.pay, 51, 55, 68, 232
father.son, 159
fat, 89, 102, 311
female, inc, 135, 322

Index 397

firstchi, 66
five.yr.temperature, 101
florida, 76, 97
galileo, 304, 310
galton, 89, 90, 248, 284, 299
grades, 71
grip, 342
hall.fame, 67, 124, 322, 357
healthy, 357
homedata, 82, 89, 92, 195, 298
kid.weights, 42, 85, 95, 134, 135, 195, 334
last.tie, 62
lawsuits, 67, 68, 178
mandms, 30, 255
math, 66
maydow, 84
midsize, 358
mw.ages, 104
nba.draft, 148
normtemp, 66, 82, 89, 125, 195, 226, 247, 275, 335
npdb, 40, 55, 130, 331
nyc.2002, 199
nym.2002, 30, 54, 67, 89, 334
oral.lesion, 265
pi2000, 54, 55, 66, 68, 255
primes, 29
reaction.time, 80
reddrum, 358
salmon.rate, 231
samhda, 112, 221, 253, 261
scrabble, 256
stud.recs, 81, 195, 226, 269, 270, 272, 275, 302, 309
student.expenses, 105
tastesgreat, 356
too.young, 103
twins, 81, 89
u2, 125, 211
urchin.growth, 354
yellowfin, 353

data vector, 9, 138
degrees of freedom, 290
density, 145
density estimate, 60
distribution of a random variable, 141
dot chart, 37

empirical distribution, 266
error sum of squares, 314
error term, 90
ESS, 360, 371, 396
external packages, 23, 362

Index 398

extra sum of squares, 307

five-number summary, 64
for loop, 167
for loops, 165
frequency polygon, 59

generalized linear model, 346
generic function, 95, 126, 397

H-spread, 53

i.i.d., 146
identically distributed, 146
independence

independent events, 143
independent random variables, 258
sequence of random variables, 146

independent, 258
influential observation, 99
inter-quartile range, 51

lag plot, 55
law of large numbers, 160
least-trimmed squares, 100
level of confidence, 185
link function, 345
log-odds ratio, 345
logical expressions, 18
logical operators, 19
logistic regression, 345
logistic-regression, 343
long-tailed distribution, 62

margin of error, 185
marginal t-tests, 289, 307
marginal distribution, 72
matrix, 70

access entries, 116
create with dim(), 140

mean sum of squares, 290
method of least squares, 91, 302
mode of a distribution, 61
model formula, 92, 127, 132

*, 338, 339
+, 278
-, 278
:, 338
^, 339
I(), 278

Index 399

simple linear regression, 92
multinomial distribution, 250

nested models, 307, 337
nonlinear models, 343
nonparametric, 207, 228
normal quantile plot, 79
null hypothesis, 213

observational study, 3
outlier, 63, 99

p-value, 214

t-test, 223
one-way ANOVA, 316
sign test, 229
test of proportions, 219

p.d.f., 146
partial F-test, 308
Pearson correlation coefficient, 292
Pearson’s chi-squared statistic, 251
percentiles, 50
pie chart, 36
pivotal quantity, 197
plot device, 367, 374

X11(), 374
quartz(), 374
windows(), 374

population mean, 144
population standard deviation, 144
prediction interval, 295
predictor variable, 90

quantile-quantile plot, 79
quantiles

pth quantile, 50
quartiles, 50
quintiles, 50

random sample, 146
random variable, 141
range, 48
rank-sum statistic, 210
ranked data, 88
regression coefficients, 90
rejection region, 215
residual, 91,280
residual sum of squares, 280
resistant measure, 44
response variable, 91

Index 400

robust statistic, 193

sample, 146
sample mean, 43
sample median, 44
sample standard deviation, 49
sample variance, 49, 56
sampling distribution, 148
scatterplot, 82
scatterplot matrix, 109
short-tailed distribution, 62
significance level, 214
significance test, 214

t-test, 223
sign test, 229
test of proportion, 219
chi-square test, 252
Kolmogorov-Smirnov test, 267
partial F-test, 308
rank-sum test, 245
Shapiro-Wilk test, 271
signed-rank test, 230
two-sample t-test, 238
two-sample test of proportion, 234

simple linear regression model, 90, 277
skewed distribution, 62
skewed left, 62
skewed right, 62
slicing, 17
slots, 401
Spearman rank correlation, 88
spike plot, 143
standard error, 185, 233
standard normal, 153
standardized residuals, 285
startup file, 132, 361
statistical inference, 2, 141
statistically significant, 214
stem-and-leaf plot, 41
strip chart, 42
summation notation, 47
symmetric distribution, 61

tails of a distribution, 62
test statistic, 214

χ2 test statistic, 251
t-test, 222
Kolmogorov-Smirnov, 267
proportion, 218
sign test, 228
signed-rank test, 230

Index 401

transform, 95
treatment coding, 326
treatment sum of squares, 315
trimmed mean, 46
type-I error, 215
type-II error, 215

unimodal distribution, 61

weighted average, 48
working directory, 28

z-score, 52

Index 402

	Book Cover
	Half-Title
	Title
	Copyright
	Content
	Preface
	1. Data
	2. Univariate Data
	3. Bivariate data
	4. Multivariate Data
	5. Describing Populations
	6. Simulation
	7. Confidence Intervals
	8. Significance Tests
	9. Goodness of Fit
	10. Linear Regression
	11. Analysis of Variance
	12. Two Extensions of the Linear Model
	Appendix A Getting, Installing, and Running R
	Appendix B Graphical User Interfaces and R
	Appendix C Teaching with R
	Appendix D More on Graphics with R
	Appendix E Programming in R
	Index

