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Preface

This book is intended as a guide to data analysis with the R system for sta-
tistical computing. R is an environment incorporating an implementation of
the S programming language, which is powerful, flexible and has excellent
graphical facilities (R Development Core Team, 2005). In the Handbook we
aim to give relatively brief and straightforward descriptions of how to conduct
a range of statistical analyses using R. Each chapter deals with the analysis
appropriate for one or several data sets. A brief account of the relevant statisti-
cal background is included in each chapter along with appropriate references,
but our prime focus is on how to use R and how to interpret results. We
hope the book will provide students and researchers in many disciplines with
a self-contained means of using R to analyse their data. R is an open-source
project developed by dozens of volunteers for more than ten years now and is
available from the Internet under the General Public Licence. R has become
the lingua franca of statistical computing. Increasingly, implementations of
new statistical methodology first appear as R add-on packages. In some com-
munities, such as in bioinformatics, R already is the primary workhorse for
statistical analyses. Because the sources of the R system are open and avail-
able to everyone without restrictions and because of its powerful language and
graphical capabilities, R has started to become the main computing engine for
reproducible statistical research (Leisch, 2002a,b, 2003, Leisch and Rossini,
2003, Gentleman, 2005). For a reproducible piece of research, the original
observations, all data preprocessing steps, the statistical analysis as well as
the scientific report form a unity and all need to be available for inspection,
reproduction and modification by the readers. Reproducibility is a natural re-
quirement for textbooks such as the ‘Handbook of Statistical Analyses Using
R’ and therefore this book is fully reproducible using an R version greater or
equal to 2.4.0. All analyses and results, including figures and tables, can be
reproduced by the reader without having to retype a single line of R code. The
data sets presented in this book are collected in a dedicated add-on package
called HSAUR accompanying this book. The package can be installed from
the Comprehensive R Archive Network (CRAN) via

R> install.packages("HSAUR")

and its functionality is attached by

R> library("HSAUR")

The relevant parts of each chapter are available as a vignette, basically a
document including both the R sources and the rendered output of every



analysis contained in the book. For example, the first chapter can be inspected
by
R> vignette("Ch_introduction_to_R", package = "HSAUR")

and the R sources are available for reproducing our analyses by
R> edit(vignette("Ch_introduction_to_R", package = "HSAUR"))

An overview on all chapter vignettes included in the package can be obtained
from
R> vignette(package = "HSAUR")

We welcome comments on the R package HSAUR, and where we think these
add to or improve our analysis of a data set we will incorporate them into
the package and, hopefully at a later stage, into a revised or second edition
of the book. Plots and tables of results obtained from R are all labelled as
‘Figures’ in the text. For the graphical material, the corresponding figure also
contains the ‘essence’ of the R code used to produce the figure, although this
code may differ a little from that given in the HSAUR package, since the lat-
ter may include some features, for example thicker line widths, designed to
make a basic plot more suitable for publication. We would like to thank the R
Development Core Team for the R system, and authors of contributed add-on
packages, particularly Uwe Ligges and Vince Carey for helpful advice on scat-
terplot3d and gee. Kurt Hornik, Ludwig A. Hothorn, Fritz Leisch and Rafael
Weißbach provided good advice with some statistical and technical problems.
We are also very grateful to Achim Zeileis for reading the entire manuscript,
pointing out inconsistencies or even bugs and for making many suggestions
which have led to improvements. Lastly we would like to thank the CRC Press
staff, in particular Rob Calver, for their support during the preparation of the
book. Any errors in the book are, of course, the joint responsibility of the two
authors.

Brian S. Everitt and Torsten Hothorn
London and Erlangen, December 2005
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CHAPTER 1

An Introduction to R

1.1 What Is R?

The R system for statistical computing is an environment for data analysis and
graphics. The root of R is the S language, developed by John Chambers and
colleagues (Becker et al., 1988, Chambers and Hastie, 1992, Chambers, 1998)
at Bell Laboratories (formerly AT&T, now owned by Lucent Technologies)
starting in the 1960s. The S language was designed and developed as a pro-
gramming language for data analysis tasks but in fact it is a full-featured pro-
gramming language in its current implementations. The development of the R
system for statistical computing is heavily influenced by the open source idea:
The base distribution of R and a large number of user contributed extensions
are available under the terms of the Free Software Foundation’s GNU General
Public License in source code form. This licence has two major implications
for the data analyst working with R. The complete source code is available
and thus the practitioner can investigate the details of the implementation of
a special method, can make changes and can distribute modifications to col-
leagues. As a side-effect, the R system for statistical computing is available to
everyone. All scientists, especially including those working in developing coun-
tries, have access to state-of-the-art tools for statistical data analysis without
additional costs. With the help of the R system for statistical computing, re-
search really becomes reproducible when both the data and the results of all
data analysis steps reported in a paper are available to the readers through
an R transcript file. R is most widely used for teaching undergraduate and
graduate statistics classes at universities all over the world because students
can freely use the statistical computing tools. The base distribution of R is
maintained by a small group of statisticians, the R Development Core Team.
A huge amount of additional functionality is implemented in add-on packages
authored and maintained by a large group of volunteers. The main source of
information about the R system is the world wide web with the official home
page of the R project being

http://www.R-project.org

All resources are available from this page: the R system itself, a collection
of add-on packages, manuals, documentation and more. The intention of this
chapter is to give a rather informal introduction to basic concepts and data
manipulation techniques for the R novice. Instead of a rigid treatment of
the technical background, the most common tasks are illustrated by practical

1
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2 AN INTRODUCTION TO R

examples and it is our hope that this will enable readers to get started without
too many problems.

1.2 Installing R

The R system for statistical computing consists of two major parts: the base
system and a collection of user contributed add-on packages. The R language is
implemented in the base system. Implementations of statistical and graphical
procedures are separated from the base system and are organised in the form
of packages. A package is a collection of functions, examples and documen-
tation. The functionality of a package is often focused on a special statistical
methodology. Both the base system and packages are distributed via the Com-
prehensive R Archive Network (CRAN) accessible under

http://CRAN.R-project.org

1.2.1 The Base System and the First Steps

The base system is available in source form and in precompiled form for various
Unix systems, Windows platforms and Mac OS X. For the data analyst, it
is sufficient to download the precompiled binary distribution and install it
locally. Windows users follow the link

http://CRAN.R-project.org/bin/windows/base/release.htm

download the corresponding file (currently named rw2040.exe), execute it
locally and follow the instructions given by the installer.

Depending on the operating system, R can be started either
by typing ‘R’ on the shell (Unix systems) or by clicking on the
R symbol (as shown left) created by the installer (Windows).
R comes without any frills and on start up shows simply a
short introductory message including the version number and
a prompt ‘>’:

R : Copyright 2006 The R Foundation for Statistical Computing
Version 2.4.0 (2006-10-03), ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

>

http://CRAN.R-project.org
http://CRAN.R-project.org/bin/windows/base/release.htm
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One can change the appearance of the prompt by
> options(prompt = "R> ")

and we will use the prompt R> for the display of the code examples through-
out this book. Essentially, the R system evaluates commands typed on the R
prompt and returns the results of the computations. The end of a command
is indicated by the return key. Virtually all introductory texts on R start with
an example using R as pocket calculator, and so do we:
R> x <- sqrt(25) + 2

This simple statement asks the R interpreter to calculate
√

25 and then to add
2. The result of the operation is assigned to an R object with variable name x.
The assignment operator <- binds the value of its right hand side to a variable
name on the left hand side. The value of the object x can be inspected simply
by typing
R> x

[1] 7

which, implicitly, calls the print method:
R> print(x)

[1] 7

1.2.2 Packages

The base distribution already comes with some high-priority add-on packages,
namely

KernSmooth MASS boot class
cluster foreign lattice mgcv
nlme nnet rpart spatial
survival base datasets grDevices
graphics grid methods splines
stats stats4 tcltk tools
utils

The packages listed here implement standard statistical functionality, for ex-
ample linear models, classical tests, a huge collection of high-level plotting
functions or tools for survival analysis; many of these will be described and
used in later chapters. Packages not included in the base distribution can be in-
stalled directly from the R prompt. At the time of writing this chapter, 858 user
contributed packages covering almost all fields of statistical methodology were
available. Given that an Internet connection is available, a package is installed
by supplying the name of the package to the function install.packages. If,
for example, add-on functionality for robust estimation of covariance matrices
via sandwich estimators is required (for example in Chapter 11), the sandwich
package (Zeileis, 2004) can be downloaded and installed via
R> install.packages("sandwich")
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The package functionality is available after attaching the package by

R> library("sandwich")

A comprehensive list of available packages can be obtained from

http://CRAN.R-project.org/src/contrib/PACKAGES.html

Note that on Windows operating systems, precompiled versions of packages
are downloaded and installed. In contrast, packages are compiled locally before
they are installed on Unix systems.

1.3 Help and Documentation

Roughly, three different forms of documentation for the R system for statis-
tical computing may be distinguished: online help that comes with the base
distribution or packages, electronic manuals and publications work in the form
of books etc. The help system is a collection of manual pages describing each
user-visible function and data set that comes with R. A manual page is shown
in a pager or web browser when the name of the function we would like to get
help for is supplied to the help function

R> help("mean")

or, for short,

R> ?mean

Each manual page consists of a general description, the argument list of the
documented function with a description of each single argument, information
about the return value of the function and, optionally, references, cross-links
and, in most cases, executable examples. The function help.search is helpful
for searching within manual pages. An overview on documented topics in an
add-on package is given, for example for the sandwich package, by

R> help(package = "sandwich")

Often a package comes along with an additional document describing the pack-
age functionality and giving examples. Such a document is called a vignette
(Leisch, 2003, Gentleman, 2005). The sandwich package vignette is opened
using

R> vignette("sandwich")

More extensive documentation is available electronically from the collection
of manuals at

http://CRAN.R-project.org/manuals.html

For the beginner, at least the first and the second document of the following
four manuals (R Development Core Team, 2005a,b,c,d) are mandatory:

An Introduction to R: A more formal introduction to data analysis with
R than this chapter.

R Data Import/Export: A very useful description of how to read and write
various external data formats.

http://CRAN.R-project.org/src/contrib/PACKAGES.html
http://CRAN.R-project.org/manuals.html
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R Installation and Administration: Hints for installing R on special plat-
forms.

Writing R Extensions: The authoritative source on how to write R pro-
grams and packages.

Both printed and online publications are available, the most important ones
are ‘Modern Applied Statistics with S’ (Venables and Ripley, 2002), ‘Intro-
ductory Statistics with R’ (Dalgaard, 2002), ‘R Graphics’ (Murrell, 2005) and
the R Newsletter, freely available from

http://CRAN.R-project.org/doc/Rnews/

In case the electronically available documentation and the answers to fre-
quently asked questions (FAQ), available from

http://CRAN.R-project.org/faqs.html

have been consulted but a problem or question remains unsolved, the r-help
email list is the right place to get answers to well-thought-out questions. It is
helpful to read the posting guide

http://www.R-project.org/posting-guide.html

before starting to ask.

1.4 Data Objects in R

The data handling and manipulation techniques explained in this chapter will
be illustrated by means of a data set of 2000 world leading companies, the
Forbes 2000 list for the year 2004 collected by ‘Forbes Magazine’. This list is
originally available from

http://www.forbes.com

and, as an R data object, it is part of the HSAUR package (Source: From
Forbes.com, New York, New York, 2004. With permission.). In a first step, we
make the data available for computations within R. The data function searches
for data objects of the specified name ("Forbes2000") in the package specified
via the package argument and, if the search was successful, attaches the data
object to the global environment:

R> data("Forbes2000", package = "HSAUR")
R> ls()

[1] "Forbes2000" "a" "x"

The output of the ls function lists the names of all objects currently stored in
the global environment, and, as the result of the previous command, a variable
named Forbes2000 is available for further manipulation. The variable x arises
from the pocket calculator example in Subsection 1.2.1. As one can imagine,
printing a list of 2000 companies via

R> print(Forbes2000)

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/faqs.html
http://www.R-project.org/posting-guide.html
http://www.forbes.com
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rank name country category sales
1 1 Citigroup United States Banking 94.71
2 2 General Electric United States Conglomerates 134.19
3 3 American Intl Group United States Insurance 76.66
profits assets marketvalue

1 17.85 1264.03 255.30
2 15.59 626.93 328.54
3 6.46 647.66 194.87

...

will not be particularly helpful in gathering some initial information about
the data; it is more useful to look at a description of their structure found by
using the following command

R> str(Forbes2000)

'data.frame': 2000 obs. of 8 variables:
$ rank : int 1 2 3 4 5 ...
$ name : chr "Citigroup" "General Electric" ...
$ country : Factor w/ 61 levels "Africa","Australia",..: 60 60 60 60 56 ...
$ category : Factor w/ 27 levels "Aerospace & defense",..: 2 6 16 19 19 ...
$ sales : num 94.7 134.2 ...
$ profits : num 17.9 15.6 ...
$ assets : num 1264 627 ...
$ marketvalue: num 255 329 ...

The output of the str function tells us that Forbes2000 is an object of class
data.frame, the most important data structure for handling tabular statistical
data in R. As expected, information about 2000 observations, i.e., companies,
are stored in this object. For each observation, the following eight variables
are available:

rank: the ranking of the company,

name: the name of the company,

country: the country the company is situated in,

category: a category describing the products the company produces,

sales: the amount of sales of the company in billion US dollars,

profits: the profit of the company in billion US dollars,

assets: the assets of the company in billion US dollars,

marketvalue: the market value of the company in billion US dollars.

A similar but more detailed description is available from the help page for the
Forbes2000 object:

R> help("Forbes2000")

or

R> ?Forbes2000
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All information provided by str can be obtained by specialised functions as
well and we will now have a closer look at the most important of these. The
R language is an object-oriented programming language, so every object is an
instance of a class. The name of the class of an object can be determined by
R> class(Forbes2000)

[1] "data.frame"

Objects of class data.frame represent data the traditional table oriented way.
Each row is associated with one single observation and each column corre-
sponds to one variable. The dimensions of such a table can be extracted using
the dim function
R> dim(Forbes2000)

[1] 2000 8

Alternatively, the numbers of rows and columns can be found using
R> nrow(Forbes2000)

[1] 2000

R> ncol(Forbes2000)

[1] 8

The results of both statements show that Forbes2000 has 2000 rows, i.e.,
observations, the companies in our case, with eight variables describing the
observations. The variable names are accessible from
R> names(Forbes2000)

[1] "rank" "name" "country" "category"
[5] "sales" "profits" "assets" "marketvalue"

The values of single variables can be extracted from the Forbes2000 object
by their names, for example the ranking of the companies
R> class(Forbes2000[, "rank"])

[1] "integer"

is stored as an integer variable. Brackets [] always indicate a subset of a larger
object, in our case a single variable extracted from the whole table. Because
data.frames have two dimensions, observations and variables, the comma is
required in order to specify that we want a subset of the second dimension,
i.e., the variables. The rankings for all 2000 companies are represented in a
vector structure the length of which is given by
R> length(Forbes2000[, "rank"])

[1] 2000

A vector is the elementary structure for data handling in R and is a set of
simple elements, all being objects of the same class. For example, a simple
vector of the numbers one to three can be constructed by one of the following
commands
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R> 1:3

[1] 1 2 3

R> c(1, 2, 3)

[1] 1 2 3

R> seq(from = 1, to = 3, by = 1)

[1] 1 2 3

The unique names of all 2000 companies are stored in a character vector
R> class(Forbes2000[, "name"])

[1] "character"

R> length(Forbes2000[, "name"])

[1] 2000

and the first element of this vector is
R> Forbes2000[, "name"][1]

[1] "Citigroup"

Because the companies are ranked, Citigroup is the world’s largest company
according to the Forbes 2000 list. Further details on vectors and subsetting
are given in Section 1.6. Nominal measurements are represented by factor
variables in R, such as the category of the company’s business segment
R> class(Forbes2000[, "category"])

[1] "factor"

Objects of class factor and character basically differ in the way their values
are stored internally. Each element of a vector of class character is stored as a
character variable whereas an integer variable indicating the level of a factor
is saved for factor objects. In our case, there are
R> nlevels(Forbes2000[, "category"])

[1] 27

different levels, i.e., business categories, which can be extracted by
R> levels(Forbes2000[, "category"])

[1] "Aerospace & defense"
[2] "Banking"
[3] "Business services & supplies"

...

As a simple summary statistic, the frequencies of the levels of such a factor
variable can be found from
R> table(Forbes2000[, "category"])

Aerospace & defense Banking
19 313

Business services & supplies
70
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...

The sales, assets, profits and market value variables are of type numeric, the
natural data type for continuous or discrete measurements, for example
R> class(Forbes2000[, "sales"])

[1] "numeric"

and simple summary statistics such as the mean, median and range can be
found from
R> median(Forbes2000[, "sales"])

[1] 4.365

R> mean(Forbes2000[, "sales"])

[1] 9.69701

R> range(Forbes2000[, "sales"])

[1] 0.01 256.33

The summary method can be applied to a numeric vector to give a set of useful
summary statistics namely the minimum, maximum, mean, median and the
25% and 75% quartiles; for example
R> summary(Forbes2000[, "sales"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.010 2.018 4.365 9.697 9.548 256.300

1.5 Data Import and Export

In the previous section, the data from the Forbes 2000 list of the world’s largest
companies were loaded into R from the HSAUR package but we will now ex-
plore practically more relevant ways to import data into the R system. The
most frequent data formats the data analyst is confronted with are comma sep-
arated files, Excel spreadsheets, files in SPSS format and a variety of SQL data
base engines. Querying data bases is a non-trivial task and requires additional
knowledge about querying languages and we therefore refer to the ‘R Data Im-
port/Export’ manual – see Section 1.3. We assume that a comma separated
file containing the Forbes 2000 list is available as Forbes2000.csv (such a
file is part of the HSAUR source package in directory HSAUR/inst/rawdata).
When the fields are separated by commas and each row begins with a name
(a text format typically created by Excel), we can read in the data as follows
using the read.table function
R> csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE,
+ sep = ",", row.names = 1)

The argument header = TRUE indicates that the entries in the first line of the
text file "Forbes2000.csv" should be interpreted as variable names. Columns
are separated by a comma (sep = ","), users of continental versions of Excel
should take care of the character symbol coding for decimal points (by default
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dec = "."). Finally, the first column should be interpreted as row names but
not as a variable (row.names = 1). Alternatively, the function read.csv can
be used to read comma separated files. The function read.table by default
guesses the class of each variable from the specified file. In our case, character
variables are stored as factors
R> class(csvForbes2000[, "name"])

[1] "factor"

which is only suboptimal since the names of the companies are unique. How-
ever, we can supply the types for each variable to the colClasses argument
R> csvForbes2000 <- read.table("Forbes2000.csv", header = TRUE,
+ sep = ",", row.names = 1, colClasses = c("character",
+ "integer", "character", "factor", "factor",
+ "numeric", "numeric", "numeric", "numeric"))
R> class(csvForbes2000[, "name"])

[1] "character"

and check if this object is identical with our previous Forbes 2000 list object
R> all.equal(csvForbes2000, Forbes2000)

[1] TRUE

The argument colClasses expects a character vector of length equal to the
number of columns in the file. Such a vector can be supplied by the c function
that combines the objects given in the parameter list into a vector
R> classes <- c("character", "integer", "character",
+ "factor", "factor", "numeric", "numeric", "numeric",
+ "numeric")
R> length(classes)

[1] 9

R> class(classes)

[1] "character"

An R interface to the open data base connectivity standard (ODBC) is avail-
able in package RODBC and its functionality can be used to assess Excel and
Access files directly:
R> library("RODBC")
R> cnct <- odbcConnectExcel("Forbes2000.xls")
R> sqlQuery(cnct, "select * from \"Forbes2000$\"")

The function odbcConnectExcel opens a connection to the specified Excel or
Access file which can be used to send SQL queries to the data base engine and
retrieve the results of the query. Files in SPSS format are read in a way similar
to reading comma separated files, using the function read.spss from package
foreign (which comes with the base distribution). Exporting data from R is
now rather straightforward. A comma separated file readable by Excel can be
constructed from a data.frame object via
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R> write.table(Forbes2000, file = "Forbes2000.csv",
+ sep = ",", col.names = NA)

The function write.csv is one alternative and the functionality implemented
in the RODBC package can be used to write data directly into Excel spread-
sheets as well. Alternatively, when data should be saved for later processing
in R only, R objects of arbitrary kind can be stored into an external binary
file via
R> save(Forbes2000, file = "Forbes2000.rda")

where the extension .rda is standard. We can get the file names of all files
with extension .rda from the working directory
R> list.files(pattern = ".rda")

[1] "Forbes2000.rda"

and we can load the contents of the file into R by
R> load("Forbes2000.rda")

1.6 Basic Data Manipulation

The examples shown in the previous section have illustrated the importance of
data.frames for storing and handling tabular data in R. Internally, a data.frame
is a list of vectors of a common length n, the number of rows of the table. Each
of those vectors represents the measurements of one variable and we have seen
that we can access such a variable by its name, for example the names of the
companies
R> companies <- Forbes2000[, "name"]

Of course, the companies vector is of class character and of length 2000. A
subset of the elements of the vector companies can be extracted using the []
subset operator. For example, the largest of the 2000 companies listed in the
Forbes 2000 list is
R> companies[1]

[1] "Citigroup"

and the top three companies can be extracted utilising an integer vector of
the numbers one to three:
R> 1:3

[1] 1 2 3

R> companies[1:3]

[1] "Citigroup" "General Electric"
[3] "American Intl Group"

In contrast to indexing with positive integers, negative indexing returns all
elements which are not part of the index vector given in brackets. For example,
all companies except those with numbers four to two-thousand, i.e., the top
three companies, are again
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R> companies[-(4:2000)]

[1] "Citigroup" "General Electric"
[3] "American Intl Group"

The complete information about the top three companies can be printed in
a similar way. Because data.frames have a concept of rows and columns, we
need to separate the subsets corresponding to rows and columns by a comma.
The statement
R> Forbes2000[1:3, c("name", "sales", "profits", "assets")]

name sales profits assets
1 Citigroup 94.71 17.85 1264.03
2 General Electric 134.19 15.59 626.93
3 American Intl Group 76.66 6.46 647.66

extracts the variables name, sales, profits and assets for the three largest
companies. Alternatively, a single variable can be extracted from a data.frame
by
R> companies <- Forbes2000$name

which is equivalent to the previously shown statement
R> companies <- Forbes2000[, "name"]

We might be interested in extracting the largest companies with respect to an
alternative ordering. The three top selling companies can be computed along
the following lines. First, we need to compute the ordering of the companies’
sales
R> order_sales <- order(Forbes2000$sales)

which returns the indices of the ordered elements of the numeric vector sales.
Consequently the three companies with the lowest sales are
R> companies[order_sales[1:3]]

[1] "Custodia Holding" "Central European Media"
[3] "Minara Resources"

The indices of the three top sellers are the elements 1998, 1999 and 2000 of
the integer vector order_sales
R> Forbes2000[order_sales[c(2000, 1999, 1998)], c("name",
+ "sales", "profits", "assets")]

name sales profits assets
10 Wal-Mart Stores 256.33 9.05 104.91
5 BP 232.57 10.27 177.57
4 ExxonMobil 222.88 20.96 166.99

Another way of selecting vector elements is the use of a logical vector being
TRUE when the corresponding element is to be selected and FALSE otherwise.
The companies with assets of more than 1000 billion US dollars are
R> Forbes2000[Forbes2000$assets > 1000, c("name", "sales",
+ "profits", "assets")]
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name sales profits assets
1 Citigroup 94.71 17.85 1264.03
9 Fannie Mae 53.13 6.48 1019.17
403 Mizuho Financial 24.40 -20.11 1115.90

where the expression Forbes2000$assets > 1000 indicates a logical vector
of length 2000 with
R> table(Forbes2000$assets > 1000)

FALSE TRUE
1997 3

elements being either FALSE or TRUE. In fact, for some of the companies the
measurement of the profits variable are missing. In R, missing values are
treated by a special symbol, NA, indicating that this measurement is not avail-
able. The observations with profit information missing can be obtained via
R> na_profits <- is.na(Forbes2000$profits)
R> table(na_profits)

na_profits
FALSE TRUE
1995 5

R> Forbes2000[na_profits, c("name", "sales", "profits",
+ "assets")]

name sales profits assets
772 AMP 5.40 NA 42.94
1085 HHG 5.68 NA 51.65
1091 NTL 3.50 NA 10.59
1425 US Airways Group 5.50 NA 8.58
1909 Laidlaw International 4.48 NA 3.98

where the function is.na returns a logical vector being TRUE when the corre-
sponding element of the supplied vector is NA. A more comfortable approach
is available when we want to remove all observations with at least one miss-
ing value from a data.frame object. The function complete.cases takes a
data.frame and returns a logical vector being TRUE when the corresponding
observation does not contain any missing value:
R> table(complete.cases(Forbes2000))

FALSE TRUE
5 1995

Subsetting data.frames driven by logical expressions may induce a lot of typ-
ing which can be avoided. The subset function takes a data.frame as first
argument and a logical expression as second argument. For example, we can
select a subset of the Forbes 2000 list consisting of all companies situated in
the United Kingdom by
R> UKcomp <- subset(Forbes2000, country == "United Kingdom")
R> dim(UKcomp)
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[1] 137 8

i.e., 137 of the 2000 companies are from the UK. Note that it is not neces-
sary to extract the variable country from the data.frame Forbes2000 when
formulating the logical expression.

1.7 Simple Summary Statistics

Two functions are helpful for getting an overview about R objects: str and
summary, where str is more detailed about data types and summary gives a
collection of sensible summary statistics. For example, applying the summary
method to the Forbes2000 data set,
R> summary(Forbes2000)

results in the following output
rank name country

Min. : 1.0 Length:2000 United States :751
1st Qu.: 500.8 Class :character Japan :316
Median :1000.5 Mode :character United Kingdom:137
Mean :1000.5 Germany : 65
3rd Qu.:1500.2 France : 63
Max. :2000.0 Canada : 56

(Other) :612
category sales

Banking : 313 Min. : 0.010
Diversified financials: 158 1st Qu.: 2.018
Insurance : 112 Median : 4.365
Utilities : 110 Mean : 9.697
Materials : 97 3rd Qu.: 9.547
Oil & gas operations : 90 Max. :256.330
(Other) :1120

profits assets marketvalue
Min. :-25.8300 Min. : 0.270 Min. : 0.02
1st Qu.: 0.0800 1st Qu.: 4.025 1st Qu.: 2.72
Median : 0.2000 Median : 9.345 Median : 5.15
Mean : 0.3811 Mean : 34.042 Mean : 11.88
3rd Qu.: 0.4400 3rd Qu.: 22.793 3rd Qu.: 10.60
Max. : 20.9600 Max. :1264.030 Max. :328.54
NA's : 5.0000

From this output we can immediately see that most of the companies are
situated in the US and that most of the companies are working in the banking
sector as well as that negative profits, or losses, up to 26 billion US dollars
occur. Internally, summary is a so-called generic function with methods for
a multitude of classes, i.e., summary can be applied to objects of different
classes and will report sensible results. Here, we supply a data.frame object to
summary where it is natural to apply summary to each of the variables in this
data.frame. Because a data.frame is a list with each variable being an element
of that list, the same effect can be achieved by
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R> lapply(Forbes2000, summary)

The members of the apply family help to solve recurring tasks for each element
of a data.frame, matrix, list or for each level of a factor. It might be interesting
to compare the profits in each of the 27 categories. To do so, we first compute
the median profit for each category from
R> mprofits <- tapply(Forbes2000$profits, Forbes2000$category,
+ median, na.rm = TRUE)

a command that should be read as follows. For each level of the factor cat-
egory, determine the corresponding elements of the numeric vector profits
and supply them to the median function with additional argument na.rm =
TRUE. The latter one is necessary because profits contains missing values
which would lead to a non-sensible result of the median function
R> median(Forbes2000$profits)

[1] NA

The three categories with highest median profit are computed from the vector
of sorted median profits
R> rev(sort(mprofits))[1:3]

Oil & gas operations Drugs & biotechnology
0.35 0.35

Household & personal products
0.31

where rev rearranges the vector of median profits sorted from smallest to
largest. Of course, we can replace the median function with mean or what-
ever is appropriate in the call to tapply. In our situation, mean is not a good
choice, because the distributions of profits or sales are naturally skewed. Sim-
ple graphical tools for the inspection of distributions are introduced in the
next section.

1.7.1 Simple Graphics

The degree of skewness of a distribution can be investigated by constructing
histograms using the hist function. (More sophisticated alternatives such as
smooth density estimates will be considered in Chapter 7.) For example, the
code for producing Figure 1.1 first divides the plot region into two equally
spaced rows (the layout function) and then plots the histograms of the raw
market values in the upper part using the hist function. The lower part
of the figure depicts the histogram for the log transformed market values
which appear to be more symmetric. Bivariate relationships of two continuous
variables are usually depicted as scatterplots. In R, regression relationships are
specified by so-called model formulae which, in a simple bivariate case, may
look like
R> fm <- marketvalue ~ sales
R> class(fm)



16 AN INTRODUCTION TO R

R> layout(matrix(1:2, nrow = 2))
R> hist(Forbes2000$marketvalue)
R> hist(log(Forbes2000$marketvalue))
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Figure 1.1 Histograms of the market value and the logarithm of the market value
for the companies contained in the Forbes 2000 list.

[1] "formula"

with the dependent variable on the left hand side and the independent vari-
able on the right hand side. The tilde separates left and right hand side. Such
a model formula can be passed to a model function (for example to the linear
model function as explained in Chapter 5). The plot generic function imple-
ments a formula method as well. Because the distributions of both market
value and sales are skewed we choose to depict their logarithms. A raw scat-
terplot of 2000 data points (Figure 1.2) is rather uninformative due to areas
with very high density. This problem can be avoided by choosing a transparent
color for the dots (currently only possible with the PDF graphics device) as
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R> plot(log(marketvalue) ~ log(sales), data = Forbes2000,
+ pch = ".")
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Figure 1.2 Raw scatterplot of the logarithms of market value and sales.

shown in Figure 1.3. If the independent variable is a factor, a boxplot repre-
sentation is a natural choice. For four selected countries, the distributions of
the logarithms of the market value may be visually compared in Figure 1.4.
Here, the width of the boxes are proportional to the square root of the number
of companies for each country and extremely large or small market values are
depicted by single points.

1.8 Organising an Analysis

Although it is possible to perform an analysis typing all commands directly
on the R prompt it is much more comfortable to maintain a separate text file
collecting all steps necessary to perform a certain data analysis task. Such
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Figure 1.3 Scatterplot with transparent shading of points of the logarithms of
market value and sales.

an R transcript file, for example analysis.R created with your favourite text
editor, can be sourced into R using the source command
R> source("analysis.R", echo = TRUE)

When all steps of a data analysis, i.e., data preprocessing, transformations,
simple summary statistics and plots, model building and inference as well
as reporting, are collected in such an R transcript file, the analysis can be
reproduced at any time, maybe with modified data as it frequently happens
in our consulting practice.

1.9 Summary

Reading data into R is possible in many different ways, including direct con-
nections to data base engines. Tabular data are handled by data.frames in R,
and the usual data manipulation techniques such as sorting, ordering or sub-
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R> boxplot(log(marketvalue) ~ country, data = subset(Forbes2000,
+ country %in% c("United Kingdom", "Germany",
+ "India", "Turkey")), ylab = "log(marketvalue)",
+ varwidth = TRUE)
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Figure 1.4 Boxplots of the logarithms of the market value for four selected coun-
tries, the width of the boxes is proportional to the square-roots of the
number of companies.

setting can be performed by simple R statements. An overview on data stored
in a data.frame is given mainly by two functions: summary and str. Simple
graphics such as histograms and scatterplots can be constructed by applying
the appropriate R functions (hist and plot) and we shall give many more
examples of these functions and those that produce more interesting graphics
in later chapters.
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Exercises

Ex. 1.1 Calculate the median profit for the companies in the United States
and the median profit for the companies in the UK, France and Germany.

Ex. 1.2 Find all German companies with negative profit.
Ex. 1.3 Which business category are most of the companies situated at the

Bermuda island working in?
Ex. 1.4 For the 50 companies in the Forbes data set with the highest profits,

plot sales against assets (or some suitable transformation of each variable),
labelling each point with the appropriate country name which may need
to be abbreviated (using abbreviate) to avoid making the plot look too
‘messy’.

Ex. 1.5 Find the average value of sales for the companies in each country
in the Forbes data set, and find the number of companies in each country
with profits above 5 billion US dollars.
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CHAPTER 2

Simple Inference: Guessing Lengths,
Wave Energy, Water Hardness, Piston

Rings, and Rearrests of Juveniles

2.1 Introduction

2.2 Statistical Tests

2.3 Analysis Using R

2.3.1 Estimating the Width of a Room

The data shown in Table ?? are available as roomwidth data.frame from the
HSAUR package and can be attached by using

R> data("roomwidth", package = "HSAUR")

If we convert the estimates of the room width in metres into feet by multiplying
each by 3.28 then we would like to test the hypothesis that the mean of the
population of ‘metre’ estimates is equal to the mean of the population of
‘feet’ estimates. We shall do this first by using an independent samples t-test,
but first it is good practice to, informally at least, check the normality and
equal variance assumptions. Here we can use a combination of numerical and
graphical approaches. The first step should be to convert the metre estimates
into feet, i.e., by a factor

R> convert <- ifelse(roomwidth$unit == "feet", 1, 3.28)

which equals one for all feet measurements and 3.28 for the measurements in
metres. Now, we get the usual summary statistics and standard deviations of
each set of estimates using

R> tapply(roomwidth$width * convert, roomwidth$unit,
+ summary)

$feet
Min. 1st Qu. Median Mean 3rd Qu. Max.
24.0 36.0 42.0 43.7 48.0 94.0

$metres
Min. 1st Qu. Median Mean 3rd Qu. Max.
26.24 36.08 49.20 52.55 55.76 131.20

R> tapply(roomwidth$width * convert, roomwidth$unit,
+ sd)

3
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feet metres
12.49742 23.43444

where tapply applies summary, or sd, to the converted widths for both groups
of measurements given by roomwidth$unit. A boxplot of each set of estimates
might be useful and is depicted in Figure 2.1. The layout function (line 1 in
Figure 2.1) divides the plotting area in three parts. The boxplot function
produces a boxplot in the upper part and the two qqnorm statements in lines
8 and 11 set up the normal probability plots that can be used to assess the
normality assumption of the t-test. The boxplots indicate that both sets
of estimates contain a number of outliers and also that the estimates made
in metres are skewed and more variable than those made in feet, a point un-
derlined by the numerical summary statistics above. Both normal probability
plots depart from linearity, suggesting that the distributions of both sets of
estimates are not normal. The presence of outliers, the apparently different
variances and the evidence of non-normality all suggest caution in applying
the t-test, but for the moment we shall apply the usual version of the test
using the t.test function in R. The two-sample test problem is specified by
a formula, here by
I(width * convert) ~ unit

where the response, width, on the left hand side needs to be converted first
and, because the star has a special meaning in formulae as will be explained
in Chapter 4, the conversion needs to be embedded by I. The factor unit on
the right hand side specifies the two groups to be compared.

2.3.2 Wave Energy Device Mooring

The data from Table ?? are available as data.frame waves

R> data("waves", package = "HSAUR")

and requires the use of a matched pairs t-test to answer the question of inter-
est. This test assumes that the differences between the matched observations
have a normal distribution so we can begin by checking this assumption by
constructing a boxplot and a normal probability plot – see Figure 2.5.

2.3.3 Mortality and Water Hardness

There is a wide range of analyses we could apply to the data in Table ??
available from
R> data("water", package = "HSAUR")

But to begin we will construct a scatterplot of the data enhanced somewhat by
the addition of information about the marginal distributions of water hardness
(calcium concentration) and mortality, and by adding the estimated linear
regression fit (see Chapter 5) for mortality on hardness. The plot and the
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1 R> layout(matrix(c(1, 2, 1, 3), nrow = 2, ncol = 2,
2 + byrow = FALSE))
3 R> boxplot(I(width * convert) ~ unit, data = roomwidth,
4 + ylab = "Estimated width (feet)", varwidth = TRUE,
5 + names = c("Estimates in feet", "Estimates in metres (converted to feet)"))
6 R> feet <- roomwidth$unit == "feet"
7 R> qqnorm(roomwidth$width[feet], ylab = "Estimated width (feet)")
8 R> qqline(roomwidth$width[feet])
9 R> qqnorm(roomwidth$width[!feet], ylab = "Estimated width (metres)")

10 R> qqline(roomwidth$width[!feet])
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Figure 2.1 Boxplots of estimates of width of room in feet and metres (after con-
version to feet) and normal probability plots of estimates of room
width made in feet and in metres.
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R> t.test(I(width * convert) ~ unit, data = roomwidth,
+ var.equal = TRUE)

Two Sample t-test

data: I(width * convert) by unit
t = -2.6147, df = 111, p-value = 0.01017
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-15.572734 -2.145052
sample estimates:
mean in group feet mean in group metres

43.69565 52.55455

Figure 2.2 R output of the independent samples t-test for the roomwidth data.

R> t.test(I(width * convert) ~ unit, data = roomwidth,
+ var.equal = FALSE)

Welch Two Sample t-test

data: I(width * convert) by unit
t = -2.3071, df = 58.788, p-value = 0.02459
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-16.54308 -1.17471
sample estimates:
mean in group feet mean in group metres

43.69565 52.55455

Figure 2.3 R output of the independent samples Welch test for the roomwidth

data.

required R code is given along with Figure 2.8. In line 1 of Figure 2.8, we
divide the plotting region into four areas of different size. The scatterplot
(line 3) uses a plotting symbol depending on the location of the city (by the
pch argument), a legend for the location is added in line 6. We add a least
squares fit (see Chapter 5) to the scatterplot and, finally, depict the marginal
distributions by means of a boxplot and a histogram. The scatterplot shows
that as hardness increases mortality decreases, and the histogram for the water
hardness shows it has a rather skewed distribution.

2.3.4 Piston-ring Failures

Rather than looking at the simple differences of observed and expected
values for each cell which would be unsatisfactory since a difference of fixed
size is clearly more important for smaller samples, it is preferable to consider a
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R> wilcox.test(I(width * convert) ~ unit, data = roomwidth,
+ conf.int = TRUE)

Wilcoxon rank sum test with continuity correction

data: I(width * convert) by unit
W = 1145, p-value = 0.02815
alternative hypothesis: true location shift is not equal to 0
95 percent confidence interval:
-9.3599953 -0.8000423
sample estimates:
difference in location

-5.279955

Figure 2.4 R output of the Wilcoxon rank sum test for the roomwidth data.

standardised residual given by dividing the observed minus expected difference
by the square root of the appropriate expected value. The X2 statistic for
assessing independence is simply the sum, over all the cells in the table, of
the squares of these terms. We can find these values extracting the residuals
element of the object returned by the chisq.test function
R> chisq.test(pistonrings)$residuals

leg
compressor North Centre South

C1 0.6036154 1.6728267 -1.7802243
C2 0.1429031 0.2975200 -0.3471197
C3 -0.3251427 -0.4522620 0.6202463
C4 -0.4157886 -1.4666936 1.4635235

A graphical representation of these residuals is called association plot and is
available via the assoc function from package vcd (Meyer et al., 2006) applied
to the contingency table of the two categorical variables. Figure 2.11 depicts
the residuals for the piston ring data. The deviations from independence are
largest for C1 and C4 compressors in the centre and south leg.

2.3.5 Rearrests of Juveniles

The data in Table ?? are available as table object via
R> data("rearrests", package = "HSAUR")
R> rearrests

Juvenile court
Adult court Rearrest No rearrest
Rearrest 158 515
No rearrest 290 1134

and in rearrests the counts in the four cells refer to the matched pairs of
subjects; for example, in 158 pairs both members of the pair were rearrested.
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R> mooringdiff <- waves$method1 - waves$method2
R> layout(matrix(1:2, ncol = 2))
R> boxplot(mooringdiff, ylab = "Differences (Newton metres)",
+ main = "Boxplot")
R> abline(h = 0, lty = 2)
R> qqnorm(mooringdiff, ylab = "Differences (Newton metres)")
R> qqline(mooringdiff)
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Figure 2.5 Boxplot and normal probability plot for differences between the two
mooring methods.

Here we need to use McNemar’s test to assess whether rearrest is associated
with type of court where the juvenile was tried. We can use the R function
mcnemar.test. The test statistic shown in Figure 2.12 is 62.888 with a single
degree of freedom – the associated p-value is extremely small and there is
strong evidence that type of court and the probability of rearrest are related.
It appears that trial at a juvenile court is less likely to result in rearrest (see
Exercise 2.4). An exact version of McNemar’s test can be obtained by testing
whether b and c are equal using a binomial test (see Figure 2.13).
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R> t.test(mooringdiff)

One Sample t-test

data: mooringdiff
t = 0.9019, df = 17, p-value = 0.3797
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.08258476 0.20591810
sample estimates:
mean of x
0.06166667

Figure 2.6 R output of the paired t-test for the waves data.

R> wilcox.test(mooringdiff)

Wilcoxon signed rank test with continuity correction

data: mooringdiff
V = 109, p-value = 0.3165
alternative hypothesis: true location is not equal to 0

Figure 2.7 R output of the Wilcoxon signed rank test for the waves data.
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1 R> nf <- layout(matrix(c(2, 0, 1, 3), 2, 2, byrow = TRUE),
2 + c(2, 1), c(1, 2), TRUE)
3 R> psymb <- as.numeric(water$location)
4 R> plot(mortality ~ hardness, data = water, pch = psymb)
5 R> abline(lm(mortality ~ hardness, data = water))
6 R> legend("topright", legend = levels(water$location),
7 + pch = c(1, 2), bty = "n")
8 R> hist(water$hardness)
9 R> boxplot(water$mortality)
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Figure 2.8 Enhanced scatterplot of water hardness and mortality, showing both
the joint and the marginal distributions and, in addition, the location
of the city by different plotting symbols.
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R> cor.test(~mortality + hardness, data = water)

Pearson's product-moment correlation

data: mortality and hardness
t = -6.6555, df = 59, p-value = 1.033e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.7783208 -0.4826129
sample estimates:

cor
-0.6548486

Figure 2.9 R output of Pearsons’ correlation coefficient for the water data.

R> data("pistonrings", package = "HSAUR")
R> chisq.test(pistonrings)

Pearson's Chi-squared test

data: pistonrings
X-squared = 11.7223, df = 6, p-value = 0.06846

Figure 2.10 R output of the chi-squared test for the pistonrings data.
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R> library("vcd")
R> assoc(pistonrings)
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Figure 2.11 Association plot of the residuals for the pistonrings data.

R> mcnemar.test(rearrests, correct = FALSE)

McNemar's Chi-squared test

data: rearrests
McNemar's chi-squared = 62.8882, df = 1, p-value =
2.188e-15

Figure 2.12 R output of McNemar’s test for the rearrests data.
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R> binom.test(rearrests[2], n = sum(rearrests[c(2,
+ 3)]))

Exact binomial test

data: rearrests[2] and sum(rearrests[c(2, 3)])
number of successes = 290, number of trials = 805,
p-value = 1.918e-15
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.3270278 0.3944969
sample estimates:
probability of success

0.3602484

Figure 2.13 R output of an exact version of McNemar’s test for the rearrests

data computed via a binomal test.
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CHAPTER 3

Conditional Inference: Guessing
Lengths, Suicides, Gastrointestinal

Damage, and Newborn Infants

3.1 Introduction

3.2 Conditional Test Procedures

3.3 Analysis Using R

3.3.1 Estimating the Width of a Room Revised

The unconditional analysis of the room width estimated by two groups of
students in Chapter ?? lead to the conclusion that the estimates in metres are
slightly larger than the estimates in feet. Here, we reanalyse these data in a
conditional framework. First, we convert metres into feet and store the vector
of observations in a variable y:

R> data("roomwidth", package = "HSAUR")
R> convert <- ifelse(roomwidth$unit == "feet", 1, 3.28)
R> feet <- roomwidth$unit == "feet"
R> metre <- !feet
R> y <- roomwidth$width * convert

The test statistic is simply the difference in means

R> T <- mean(y[feet]) - mean(y[metre])
R> T

[1] -8.858893

In order to approximate the conditional distribution of the test statistic T
we compute 9999 test statistics for shuffled y values. A permutation of the y
vector can be obtained from the sample function.

R> meandiffs <- double(9999)
R> for (i in 1:length(meandiffs)) {
+ sy <- sample(y)
+ meandiffs[i] <- mean(sy[feet]) - mean(sy[metre])
+ }

The distribution of the test statistic T under the null hypothesis of indepen-
dence of room width estimates and groups is depicted in Figure 3.1. Now, the
value of the test statistic T for the original unshuffled data can be compared

3
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R> hist(meandiffs)
R> abline(v = T, lty = 2)
R> abline(v = -T, lty = 2)

Histogram of meandiffs
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Figure 3.1 Approximated conditional distribution of the difference of mean
roomwidth estimates in the feet and metres group under the null hy-
pothesis. The vertical lines show the negative and positive absolute
value of the test statistic T obtained from the original data.

with the distribution of T under the null hypothesis (the vertical lines in Fig-
ure 3.1). The p-value, i.e., the proportion of test statistics T larger than 8.859
or smaller than -8.859 is
R> greater <- abs(meandiffs) > abs(T)
R> mean(greater)

[1] 0.0080008

with a confidence interval of
R> binom.test(sum(greater), length(greater))$conf.int
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[1] 0.006349087 0.009947933
attr(,"conf.level")
[1] 0.95

Note that the approximated conditional p-value is roughly the same as the
p-value reported by the t-test in Chapter 2.

R> library("coin")
R> independence_test(y ~ unit, data = roomwidth, distribution = "exact")

Exact General Independence Test

data: y by groups feet, metres
Z = -2.5491, p-value = 0.008492
alternative hypothesis: two.sided

Figure 3.2 R output of the exact permutation test applied to the roomwidth data.

R> wilcox_test(y ~ unit, data = roomwidth, distribution = "exact")

Exact Wilcoxon Mann-Whitney Rank Sum Test

data: y by groups feet, metres
Z = -2.1981, p-value = 0.02763
alternative hypothesis: true mu is not equal to 0

Figure 3.3 R output of the exact conditional Wilcoxon rank sum test applied to
the roomwidth data.

3.3.2 Crowds and Threatened Suicide

3.3.3 Gastrointestinal Damages

Here we are interested in the comparison of two groups of patients, where one
group received a placebo and the other one Misoprostol. In the trials shown
here, the response variable is measured on an ordered scale – see Table ??.
Data from four clinical studies are available and thus the observations are
naturally grouped together. From the data.frame Lanza we can construct a
three-way table as follows:
R> data("Lanza", package = "HSAUR")
R> xtabs(~treatment + classification + study, data = Lanza)

, , study = I
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R> data("suicides", package = "HSAUR")
R> fisher.test(suicides)

Fisher's Exact Test for Count Data

data: suicides
p-value = 0.0805
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.7306872 91.0288231

sample estimates:
odds ratio
6.302622

Figure 3.4 R output of Fisher’s exact test for the suicides data.

classification
treatment 1 2 3 4 5
Misoprostol 21 2 4 2 0
Placebo 2 2 4 9 13

, , study = II

classification
treatment 1 2 3 4 5
Misoprostol 20 4 6 0 0
Placebo 8 4 9 4 5

, , study = III

classification
treatment 1 2 3 4 5
Misoprostol 20 4 3 1 2
Placebo 0 2 5 5 17

, , study = IV

classification
treatment 1 2 3 4 5
Misoprostol 1 4 5 0 0
Placebo 0 0 0 4 6

For the first study, the null hypothesis of independence of treatment and
gastrointestinal damage, i.e., of no treatment effect of Misoprostol, is tested
by

R> library("coin")
R> cmh_test(classification ~ treatment, data = Lanza,
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+ scores = list(classification = c(0, 1, 6, 17,
+ 30)), subset = Lanza$study == "I")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by groups Misoprostol, Placebo
chi-squared = 28.8478, df = 1, p-value = 7.83e-08

and, by default, the conditional distribution is approximated by the corre-
sponding limiting distribution. The p-value indicates a strong treatment effect.
For the second study, the asymptotic p-value is a little bit larger
R> cmh_test(classification ~ treatment, data = Lanza,
+ scores = list(classification = c(0, 1, 6, 17,
+ 30)), subset = Lanza$study == "II")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by groups Misoprostol, Placebo
chi-squared = 12.0641, df = 1, p-value = 0.000514

and we make sure that the implied decision is correct by calculating a confi-
dence interval for the exact p-value
R> p <- cmh_test(classification ~ treatment, data = Lanza,
+ scores = list(classification = c(0, 1, 6, 17,
+ 30)), subset = Lanza$study == "II", distribution = approximate(B = 19999))
R> pvalue(p)

[1] 5.00025e-05
99 percent confidence interval:
2.506396e-07 3.714653e-04

The third and fourth study indicate a strong treatment effect as well
R> cmh_test(classification ~ treatment, data = Lanza,
+ scores = list(classification = c(0, 1, 6, 17,
+ 30)), subset = Lanza$study == "III")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by groups Misoprostol, Placebo
chi-squared = 28.1587, df = 1, p-value = 1.118e-07

R> cmh_test(classification ~ treatment, data = Lanza,
+ scores = list(classification = c(0, 1, 6, 17,
+ 30)), subset = Lanza$study == "IV")

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by groups Misoprostol, Placebo
chi-squared = 15.7414, df = 1, p-value = 7.262e-05

At the end, a separate analysis for each study is unsatisfactory. Because the
design of the four studies is the same, we can use study as a block variable
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and perform a global linear-association test investigating the treatment effect
of Misoprostol in all four studies. The block variable can be incorporated into
the formula by the | symbol.
R> cmh_test(classification ~ treatment | study, data = Lanza,
+ scores = list(classification = c(0, 1, 6, 17,
+ 30)))

Asymptotic Linear-by-Linear Association Test

data: classification (ordered) by
groups Misoprostol, Placebo
stratified by study

chi-squared = 83.6188, df = 1, p-value < 2.2e-16

Based on this result, a strong treatment effect can be established.

3.3.4 Teratogenesis

In this example, the medical doctor (MD) and the research assistant (RA)
assessed the number of anomalies (0, 1, 2 or 3) for each of 395 babies:
R> anomalies <- as.table(matrix(c(235, 23, 3, 0, 41,
+ 35, 8, 0, 20, 11, 11, 1, 2, 1, 3, 1), ncol = 4,
+ dimnames = list(MD = 0:3, RA = 0:3)))
R> anomalies

RA
MD 0 1 2 3
0 235 41 20 2
1 23 35 11 1
2 3 8 11 3
3 0 0 1 1

We are interested in testing whether the number of anomalies assessed by the
medical doctor differs structurally from the number reported by the research
assistant. Because we compare paired observations, i.e., one pair of measure-
ments for each newborn, a test of marginal homogeneity (a generalisation of
McNemar’s test, see Chapter 2) needs to be applied:
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R> mh_test(anomalies)

Asymptotic Marginal-Homogeneity Test

data: response by
groups MD, RA
stratified by block

chi-squared = 21.2266, df = 3, p-value = 9.446e-05

The p-value indicates a deviation from the null hypothesis. However, the levels
of the response are not treated as ordered. Similar to the analysis of the
gastrointestinal damage data above, we can take this information into account
by the definition of an appropriate score. Here, the number of anomalies is a
natural choice:
R> mh_test(anomalies, scores = list(c(0, 1, 2, 3)))

Asymptotic Marginal-Homogeneity Test for Ordered Data

data: response (ordered) by
groups MD, RA
stratified by block

chi-squared = 21.0199, df = 1, p-value = 4.545e-06

In our case, both versions coincide and one can conclude that the assessment of
the number of anomalies differs between the medical doctor and the research
assistant.



CHAPTER 4

Analysis of Variance: Weight Gain,
Foster Feeding in Rats, Water

Hardness and Male Egyptian Skulls

4.1 Introduction

4.2 Analysis of Variance

4.3 Analysis Using R

4.3.1 Weight Gain in Rats

Before applying analysis of variance to the data in Table ?? we should try to
summarise the main features of the data by calculating means and standard
deviations and by producing some hopefully informative graphs. The data is
available in the data.frame weightgain. The following R code produces the
required summary statistics
R> data("weightgain", package = "HSAUR")
R> tapply(weightgain$weightgain, list(weightgain$source,
+ weightgain$type), mean)

High Low
Beef 100.0 79.2
Cereal 85.9 83.9

R> tapply(weightgain$weightgain, list(weightgain$source,
+ weightgain$type), sd)

High Low
Beef 15.13642 13.88684
Cereal 15.02184 15.70881

To apply analysis of variance to the data we can use the aov function in R
and then the summary method to give us the usual analysis of variance table.
The model formula specifies a two-way layout with interaction terms, where
the first factor is source, and the second factor is type.
R> wg_aov <- aov(weightgain ~ source * type, data = weightgain)

The estimates of the intercept and the main and interaction effects can be
extracted from the model fit by
R> coef(wg_aov)

(Intercept) sourceCereal typeLow
100.0 -14.1 -20.8

3
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R> plot.design(weightgain)
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Figure 4.1 Plot of mean weight gain for each level of the two factors.

sourceCereal:typeLow
18.8

Note that the model was fitted with the restrictions γ1 = 0 (corresponding to
Beef) and β1 = 0 (corresponding to High) because treatment contrasts were
used as default as can be seen from
R> options("contrasts")

$contrasts
unordered ordered

"contr.treatment" "contr.poly"

Thus, the coefficient for source of −14.1 can be interpreted as an estimate of
the difference γ2 − γ1. Alternatively, we can use the restriction

∑
i γi = 0 by

R> coef(aov(weightgain ~ source + type + source:type,
+ data = weightgain, contrasts = list(source = contr.sum)))
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R> summary(wg_aov)

Df Sum Sq Mean Sq F value Pr(>F)
source 1 220.9 220.9 0.9879 0.32688
type 1 1299.6 1299.6 5.8123 0.02114 *
source:type 1 883.6 883.6 3.9518 0.05447 .
Residuals 36 8049.4 223.6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Figure 4.2 R output of the ANOVA fit for the weightgain data.

(Intercept) source1 typeLow
92.95 7.05 -11.40

source1:typeLow
-9.40

4.3.2 Foster Feeding of Rats of Different Genotype

As in the previous subsection we will begin the analysis of the foster feeding
data in Table ?? with a plot of the mean litter weight for the different geno-
types of mother and litter (see Figure 4.4). The data are in the data.frame
foster

R> data("foster", package = "HSAUR")

We can derive the two analyses of variance tables for the foster feeding example
by applying the R code
R> summary(aov(weight ~ litgen * motgen, data = foster))

to give
Df Sum Sq Mean Sq F value Pr(>F)

litgen 3 60.16 20.05 0.3697 0.775221
motgen 3 775.08 258.36 4.7632 0.005736 **
litgen:motgen 9 824.07 91.56 1.6881 0.120053
Residuals 45 2440.82 54.24
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

and then the code
R> summary(aov(weight ~ motgen * litgen, data = foster))

to give
Df Sum Sq Mean Sq F value Pr(>F)

motgen 3 771.61 257.20 4.7419 0.005869 **
litgen 3 63.63 21.21 0.3911 0.760004
motgen:litgen 9 824.07 91.56 1.6881 0.120053
Residuals 45 2440.82 54.24
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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R> interaction.plot(weightgain$type, weightgain$source,
+ weightgain$weightgain)
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Figure 4.3 Interaction plot of type × source.

There are (small) differences in the sum of squares for the two main effects
and, consequently, in the associated F -tests and p-values. This would not be
true if in the previous example in Subsection 4.3.1 we had used the code

R> summary(aov(weightgain ~ type * source, data = weightgain))

instead of the code which produced Figure 4.2 (readers should confirm that
this is the case). We can investigate the effect of genotype B on litter weight in
more detail by the use of multiple comparison procedures (see Everitt, 1996).
Such procedures allow a comparison of all pairs of levels of a factor whilst
maintaining the nominal significance level at its selected value and producing
adjusted confidence intervals for mean differences. One such procedure is called
Tukey honest significant differences suggested by Tukey (1953), see Hochberg
and Tamhane (1987) also. Here, we are interested in simultaneous confidence
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R> plot.design(foster)
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Figure 4.4 Plot of mean litter weight for each level of the two factors for the
foster data.

intervals for the weight differences between all four genotypes of the mother.
First, an ANOVA model is fitted

R> foster_aov <- aov(weight ~ litgen * motgen, data = foster)

which serves as the basis of the multiple comparisons, here with allpair differ-
ences by

R> foster_hsd <- TukeyHSD(foster_aov, "motgen")
R> foster_hsd

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = weight ~ litgen * motgen, data = foster)
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R> plot(foster_hsd)
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Figure 4.5 Graphical presentation of multiple comparison results for the foster

feeding data.

$motgen
diff lwr upr p adj

B-A 3.330369 -3.859729 10.5204672 0.6078581
I-A -1.895574 -8.841869 5.0507207 0.8853702
J-A -6.566168 -13.627285 0.4949498 0.0767540
I-B -5.225943 -12.416041 1.9641552 0.2266493
J-B -9.896537 -17.197624 -2.5954489 0.0040509
J-I -4.670593 -11.731711 2.3905240 0.3035490

A convenient plot method exists for this object and we can get a graphical
representation of the multiple confidence intervals as shown in Figure 4.5. It
appears that there is only evidence for a difference in the B and J genotypes.
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4.3.3 Water Hardness and Mortality

The water hardness and mortality data for 61 large towns in England and
Wales (see Table 2.3) was analysed in Chapter 2 and here we will extend the
analysis by an assessment of the differences of both hardness and mortality
in the North or South. The hypothesis that the two-dimensional mean-vector
of water hardness and mortality is the same for cities in the North and the
South can be tested by Hotelling-Lawley test in a multivariate analysis of
variance framework. The R function manova can be used to fit such a model
and the corresponding summary method performs the test specified by the
test argument
R> data("water", package = "HSAUR")
R> summary(manova(cbind(hardness, mortality) ~ location,
+ data = water), test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df Pr(>F)
location 1 0.9002 26.1062 2 58 8.217e-09
Residuals 59

location ***
Residuals
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The cbind statement in the left hand side of the formula indicates that a
multivariate response variable is to be modelled. The p-value associated with
the Hotelling-Lawley statistic is very small and there is strong evidence that
the mean vectors of the two variables are not the same in the two regions.
Looking at the sample means
R> tapply(water$hardness, water$location, mean)

North South
30.40000 69.76923

R> tapply(water$mortality, water$location, mean)

North South
1633.600 1376.808

we see large differences in the two regions both in water hardness and mortal-
ity, where low mortality is associated with hard water in the South and high
mortality with soft water in the North (see Figure ?? also).

4.3.4 Male Egyptian Skulls

We can begin by looking at a table of mean values for the four measure-
ments within each of the five epochs. The measurements are available in the
data.frame skulls and we can compute the means over all epochs by
R> data("skulls", package = "HSAUR")
R> means <- aggregate(skulls[, c("mb", "bh", "bl",
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R> pairs(means[, -1], panel = function(x, y) {
+ text(x, y, abbreviate(levels(skulls$epoch)))
+ })
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Figure 4.6 Scatterplot matrix of epoch means for Egyptian skulls data.

+ "nh")], list(epoch = skulls$epoch), mean)
R> means

epoch mb bh bl nh
1 c4000BC 131.3667 133.6000 99.16667 50.53333
2 c3300BC 132.3667 132.7000 99.06667 50.23333
3 c1850BC 134.4667 133.8000 96.03333 50.56667
4 c200BC 135.5000 132.3000 94.53333 51.96667
5 cAD150 136.1667 130.3333 93.50000 51.36667

It may also be useful to look at these means graphically and this could be done
in a variety of ways. Here we construct a scatterplot matrix of the means using
the code attached to Figure 4.6. There appear to be quite large differences
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between the epoch means, at least on some of the four measurements. We can
now test for a difference more formally by using MANOVA with the following
R code to apply each of the four possible test criteria mentioned earlier;
R> skulls_manova <- manova(cbind(mb, bh, bl, nh) ~
+ epoch, data = skulls)
R> summary(skulls_manova, test = "Pillai")

Df Pillai approx F num Df den Df Pr(>F)
epoch 4 0.3533 3.5120 16 580 4.675e-06 ***
Residuals 145
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(skulls_manova, test = "Wilks")

Df Wilks approx F num Df den Df Pr(>F)
epoch 4.00 0.6636 3.9009 16.00 434.45 7.01e-07 ***
Residuals 145.00
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(skulls_manova, test = "Hotelling-Lawley")

Df Hotelling-Lawley approx F num Df den Df
epoch 4 0.4818 4.2310 16 562
Residuals 145

Pr(>F)
epoch 8.278e-08 ***
Residuals
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(skulls_manova, test = "Roy")

Df Roy approx F num Df den Df Pr(>F)
epoch 4 0.4251 15.4097 4 145 1.588e-10 ***
Residuals 145
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The p-value associated with each four test criteria is very small and there is
strong evidence that the skull measurements differ between the five epochs. We
might now move on to investigate which epochs differ and on which variables.
We can look at the univariate F -tests for each of the four variables by using
the code
R> summary.aov(manova(cbind(mb, bh, bl, nh) ~ epoch,
+ data = skulls))

Response mb :
Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 502.83 125.71 5.9546 0.0001826 ***
Residuals 145 3061.07 21.11
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response bh :
Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 229.9 57.5 2.4474 0.04897 *
Residuals 145 3405.3 23.5
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response bl :
Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 803.3 200.8 8.3057 4.636e-06 ***
Residuals 145 3506.0 24.2
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response nh :
Df Sum Sq Mean Sq F value Pr(>F)

epoch 4 61.20 15.30 1.507 0.2032
Residuals 145 1472.13 10.15

We see that the results for the maximum breadths (mb) and basialiveolar length
(bl) are highly significant, with those for the other two variables, in particular
for nasal heights (nh), suggesting little evidence of a difference. To look at the
pairwise multivariate tests (any of the four test criteria are equivalent in the
case of a one-way layout with two levels only) we can use the summary method
and manova function as follows:
R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
+ subset = epoch %in% c("c4000BC", "c3300BC")))

Df Pillai approx F num Df den Df Pr(>F)
epoch 1 0.02767 0.39135 4 55 0.814
Residuals 58

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
+ subset = epoch %in% c("c4000BC", "c1850BC")))

Df Pillai approx F num Df den Df Pr(>F)
epoch 1 0.1876 3.1744 4 55 0.02035 *
Residuals 58
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
+ subset = epoch %in% c("c4000BC", "c200BC")))

Df Pillai approx F num Df den Df Pr(>F)
epoch 1 0.3030 5.9766 4 55 0.0004564 ***
Residuals 58
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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R> summary(manova(cbind(mb, bh, bl, nh) ~ epoch, data = skulls,
+ subset = epoch %in% c("c4000BC", "cAD150")))

Df Pillai approx F num Df den Df Pr(>F)
epoch 1 0.3618 7.7956 4 55 4.736e-05 ***
Residuals 58
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To keep the overall significance level for the set of all pairwise multivariate
tests under some control (and still maintain a reasonable power), Stevens
(2001) recommends setting the nominal level α = 0.15 and carrying out each
test at the α/m level where m s the number of tests performed. The results
of the four pairwise tests suggest that as the epochs become further separated
in time the four skull measurements become increasingly distinct.
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CHAPTER 5

Multiple Linear Regression: Cloud
Seeding

5.1 Introduction

5.2 Multiple Linear Regression

5.3 Analysis Using R

Both the boxplots (Figure 5.1) and the scatterplots (Figure 5.2) show some
evidence of outliers. The row names of the extreme observations in the clouds
data.frame can be identified via
R> rownames(clouds)[clouds$rainfall %in% c(bxpseeding$out,
+ bxpecho$out)]

[1] "1" "15"

where bxpseeding and bxpecho are variables created by boxplot in Fig-
ure 5.1. For the time being we shall not remove these observations but bear
in mind during the modelling process that they may cause problems.

5.3.1 Fitting a Linear Model

In this example it is sensible to assume that the effect that some of the other
explanatory variables is modified by seeding and therefore consider a model
that allows interaction terms for seeding with each of the covariates except
time. This model can be described by the formula
R> clouds_formula <- rainfall ~ seeding * (sne + cloudcover +
+ prewetness + echomotion) + time

and the design matrix X? can be computed via
R> Xstar <- model.matrix(clouds_formula, data = clouds)

By default, treatment contrasts have been applied to the dummy codings of
the factors seeding and echomotion as can be seen from the inspection of
the contrasts attribute of the model matrix
R> attr(Xstar, "contrasts")

$seeding
[1] "contr.treatment"

$echomotion
[1] "contr.treatment"

3
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R> data("clouds", package = "HSAUR")
R> layout(matrix(1:2, nrow = 2))
R> bxpseeding <- boxplot(rainfall ~ seeding, data = clouds,
+ ylab = "Rainfall", xlab = "Seeding")
R> bxpecho <- boxplot(rainfall ~ echomotion, data = clouds,
+ ylab = "Rainfall", xlab = "Echo Motion")
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Figure 5.1 Boxplots of rainfall.



ANALYSIS USING R 5
R> layout(matrix(1:4, nrow = 2))
R> plot(rainfall ~ time, data = clouds)
R> plot(rainfall ~ sne, data = clouds, xlab = "S-NE criterion")
R> plot(rainfall ~ cloudcover, data = clouds)
R> plot(rainfall ~ prewetness, data = clouds)
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Figure 5.2 Scatterplots of rainfall against the continuous covariables.

The default contrasts can be changed via the contrasts.arg argument to
model.matrix or the contrasts argument to the fitting function, for example
lm or aov as shown in Chapter 4. However, such internals are hidden and
performed by high-level model fitting functions such as lm which will be used
to fit the linear model defined by the formula clouds_formula:

R> clouds_lm <- lm(clouds_formula, data = clouds)
R> class(clouds_lm)

[1] "lm"
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The results of the model fitting is an object of class lm for which a summary
method showing the conventional regression analysis output is available. The
output in Figure 5.3 shows the estimates β̂? with corresponding standard
errors and t-statistics as well as the F -statistic with associated p-value.

R> summary(clouds_lm)

Call:
lm(formula = clouds_formula, data = clouds)

Residuals:
Min 1Q Median 3Q Max

-2.5259 -1.1486 -0.2704 1.0401 4.3913

Coefficients:
Estimate Std. Error t value

(Intercept) -0.34624 2.78773 -0.124
seedingyes 15.68293 4.44627 3.527
sne 0.38786 0.21786 1.780
cloudcover 0.41981 0.84453 0.497
prewetness 4.10834 3.60101 1.141
echomotionstationary 3.15281 1.93253 1.631
time -0.04497 0.02505 -1.795
seedingyes:sne -0.48625 0.24106 -2.017
seedingyes:cloudcover -3.19719 1.26707 -2.523
seedingyes:prewetness -2.55707 4.48090 -0.571
seedingyes:echomotionstationary -0.56222 2.64430 -0.213

Pr(>|t|)
(Intercept) 0.90306
seedingyes 0.00372 **
sne 0.09839 .
cloudcover 0.62742
prewetness 0.27450
echomotionstationary 0.12677
time 0.09590 .
seedingyes:sne 0.06482 .
seedingyes:cloudcover 0.02545 *
seedingyes:prewetness 0.57796
seedingyes:echomotionstationary 0.83492
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.205 on 13 degrees of freedom
Multiple R-Squared: 0.7158, Adjusted R-squared: 0.4972
F-statistic: 3.274 on 10 and 13 DF, p-value: 0.02431

Figure 5.3 R output of the linear model fit for the clouds data.
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Many methods are available for extracting components of the fitted model.
The estimates β̂? can be assessed via
R> betastar <- coef(clouds_lm)
R> betastar

(Intercept)
-0.34624093
seedingyes
15.68293481

sne
0.38786207
cloudcover
0.41981393
prewetness
4.10834188

echomotionstationary
3.15281358

time
-0.04497427

seedingyes:sne
-0.48625492

seedingyes:cloudcover
-3.19719006

seedingyes:prewetness
-2.55706696

seedingyes:echomotionstationary
-0.56221845

and the corresponding covariance matrix Cov(β̂?) is available from the vcov
method
R> Vbetastar <- vcov(clouds_lm)

where the square roots of the diagonal elements are the standard errors as
shown in Figure 5.3
R> sqrt(diag(Vbetastar))

(Intercept)
2.78773403
seedingyes
4.44626606

sne
0.21785501
cloudcover
0.84452994
prewetness
3.60100694

echomotionstationary
1.93252592

time
0.02505286
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seedingyes:sne
0.24106012

seedingyes:cloudcover
1.26707204

seedingyes:prewetness
4.48089584

seedingyes:echomotionstationary
2.64429975

5.3.2 Regression Diagnostics

In order to investigate the quality of the model fit, we need access to the
residuals and the fitted values. The residuals can be found by the residuals
method and the fitted values of the response from the fitted (or predict)
method
R> clouds_resid <- residuals(clouds_lm)
R> clouds_fitted <- fitted(clouds_lm)

Now the residuals and the fitted values can be used to construct diagnostic
plots; for example the residual plot in Figure 5.5 where each observation is
labelled by its number. Observations 1 and 15 give rather large residual values
and the data should perhaps be reanalysed after these two observations are
removed. The normal probability plot of the residuals shown in Figure 5.6
shows a reasonable agreement between theoretical and sample quantiles, how-
ever, observations 1 and 15 are extreme again. An index plot of the Cook’s
distances for each observation (and many other plots including those con-
structed above from using the basic functions) can be found from applying
the plot method to the object that results from the application of the lm
function. Figure 5.7 suggests that observations 2 and 18 have undue influence
on the estimated regression coefficients, but the two outliers identified previ-
ously do not. Again it may be useful to look at the results after these two
observations have been removed (see Exercise 5.2).
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R> psymb <- as.numeric(clouds$seeding)
R> plot(rainfall ~ cloudcover, data = clouds, pch = psymb)
R> abline(lm(rainfall ~ cloudcover, data = clouds,
+ subset = seeding == "no"))
R> abline(lm(rainfall ~ cloudcover, data = clouds,
+ subset = seeding == "yes"), lty = 2)
R> legend("topright", legend = c("No seeding", "Seeding"),
+ pch = 1:2, lty = 1:2, bty = "n")

●

●

●

●

●

●

●

●

●

●
●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
2

4
6

8
10

12

cloudcover

ra
in

fa
ll

● No seeding
Seeding

Figure 5.4 Regression relationship between cloud coverage and rainfall with and
without seeding.
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R> plot(clouds_fitted, clouds_resid, xlab = "Fitted values",
+ ylab = "Residuals", ylim = max(abs(clouds_resid)) *
+ c(-1, 1), type = "n")
R> abline(h = 0, lty = 2)
R> text(clouds_fitted, clouds_resid, labels = rownames(clouds))
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Figure 5.5 Plot of residuals against fitted values for clouds seeding data.
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R> qqnorm(clouds_resid, ylab = "Residuals")
R> qqline(clouds_resid)
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Figure 5.6 Normal probability plot of residuals from cloud seeding model
clouds_lm.
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R> plot(clouds_lm)
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Figure 5.7 Index plot of Cook’s distances for cloud seeding data.



CHAPTER 6

Logistic Regression and Generalised
Linear Models: Blood Screening,

Women’s Role in Society,
and Colonic Polyps

6.1 Introduction

6.2 Logistic Regression and Generalised Linear Models

6.3 Analysis Using R

6.3.1 ESR and Plasma Proteins

We can now fit a logistic regression model to the data using the glm func-
tion. We start with a model that includes only a single explanatory variable,
fibrinogen. The code to fit the model is

R> plasma_glm_1 <- glm(ESR ~ fibrinogen, data = plasma,
+ family = binomial())

The formula implicitly defines a parameter for the global mean (the intercept
term) as discussed in Chapters ?? and ??. The distribution of the response
is defined by the family argument, a binomial distribution in our case. (The
default link function when the binomial family is requested is the logistic
function.) From the results in Figure 6.2 we see that the regression
coefficient for fibrinogen is significant at the 5% level. An increase of one unit
in this variable increases the log-odds in favour of an ESR value greater than
20 by an estimated 1.83 with 95% confidence interval

R> confint(plasma_glm_1, parm = "fibrinogen")

2.5 % 97.5 %
0.3389465 3.9988602

These values are more helpful if converted to the corresponding values for the
odds themselves by exponentiating the estimate

R> exp(coef(plasma_glm_1)["fibrinogen"])

fibrinogen
6.215715

and the confidence interval

R> exp(confint(plasma_glm_1, parm = "fibrinogen"))

3
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R> data("plasma", package = "HSAUR")
R> layout(matrix(1:2, ncol = 2))
R> cdplot(ESR ~ fibrinogen, data = plasma)
R> cdplot(ESR ~ globulin, data = plasma)
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Figure 6.1 Conditional density plots of the erythrocyte sedimentation rate (ESR)
given fibrinogen and globulin.

2.5 % 97.5 %
1.403468 54.535954

The confidence interval is very wide because there are few observations overall
and very few where the ESR value is greater than 20. Nevertheless it seems
likely that increased values of fibrinogen lead to a greater probability of an
ESR value greater than 20. We can now fit a logistic regression model that
includes both explanatory variables using the code
R> plasma_glm_2 <- glm(ESR ~ fibrinogen + globulin,
+ data = plasma, family = binomial())

and the output of the summary method is shown in Figure 6.3. The
coefficient for gamma globulin is not significantly different from zero. Sub-
tracting the residual deviance of the second model from the corresponding
value for the first model we get a value of 1.87. Tested using a χ2-distribution
with a single degree of freedom this is not significant at the 5% level and so
we conclude that gamma globulin is not associated with ESR level. In R, the
task of comparing the two nested models can be performed using the anova
function
R> anova(plasma_glm_1, plasma_glm_2, test = "Chisq")
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R> summary(plasma_glm_1)

Call:
glm(formula = ESR ~ fibrinogen, family = binomial(), data = plasma)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9298 -0.5399 -0.4382 -0.3356 2.4794

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.8451 2.7703 -2.471 0.0135 *
fibrinogen 1.8271 0.9009 2.028 0.0425 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom
Residual deviance: 24.840 on 30 degrees of freedom
AIC: 28.840

Number of Fisher Scoring iterations: 5

Figure 6.2 R output of the summary method for the logistic regression model fitted
to the plasma data.

Analysis of Deviance Table

Model 1: ESR ~ fibrinogen
Model 2: ESR ~ fibrinogen + globulin
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 30 24.8404
2 29 22.9711 1 1.8692 0.1716

Nevertheless we shall use the predicted values from the second model and plot
them against the values of both explanatory variables using a bubble plot to
illustrate the use of the symbols function. The estimated conditional proba-
bility of a ESR value larger 20 for all observations can be computed, following
formula (??), by

R> prob <- predict(plasma_glm_1, type = "response")

and now we can assign a larger circle to observations with larger probability
as shown in Figure 6.4. The plot clearly shows the increasing probability of
an ESR value above 20 (larger circles) as the values of fibrinogen, and to a
lesser extent, gamma globulin, increase.
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R> summary(plasma_glm_2)

Call:
glm(formula = ESR ~ fibrinogen + globulin, family = binomial(),

data = plasma)

Deviance Residuals:
Min 1Q Median 3Q Max

-0.9683 -0.6122 -0.3458 -0.2116 2.2636

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.7921 5.7963 -2.207 0.0273 *
fibrinogen 1.9104 0.9710 1.967 0.0491 *
globulin 0.1558 0.1195 1.303 0.1925
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 30.885 on 31 degrees of freedom
Residual deviance: 22.971 on 29 degrees of freedom
AIC: 28.971

Number of Fisher Scoring iterations: 5

Figure 6.3 R output of the summary method for the logistic regression model fitted
to the plasma data.

6.3.2 Women’s Role in Society

Originally the data in Table ?? would have been in a completely equivalent
form to the data in Table ?? data, but here the individual observations have
been grouped into counts of numbers of agreements and disagreements for
the two explanatory variables, sex and education. To fit a logistic regression
model to such grouped data using the glm function we need to specify the
number of agreements and disagreements as a two-column matrix on the left
hand side of the model formula. We first fit a model that includes the two
explanatory variables using the code
R> data("womensrole", package = "HSAUR")
R> womensrole_glm_1 <- glm(cbind(agree, disagree) ~
+ sex + education, data = womensrole, family = binomial())

From the summary output in Figure 6.5 it appears that education has a highly
significant part to play in predicting whether a respondent will agree with the
statement read to them, but the respondent’s sex is apparently unimportant.
As years of education increase the probability of agreeing with the statement
declines. We now are going to construct a plot comparing the observed pro-
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R> plot(globulin ~ fibrinogen, data = plasma, xlim = c(2,
+ 6), ylim = c(25, 50), pch = ".")
R> symbols(plasma$fibrinogen, plasma$globulin, circles = prob,
+ add = TRUE)
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Figure 6.4 Bubble plot of fitted values for a logistic regression model fitted to the
ESR data.

portions of agreeing with those fitted by our fitted model. Because we will
reuse this plot for another fitted object later on, we define a function which
plots years of education against some fitted probabilities, e.g.,

R> role.fitted1 <- predict(womensrole_glm_1, type = "response")

and labels each observation with the person’s sex:

R> myplot <- function(role.fitted) {
+ f <- womensrole$sex == "Female"
+ plot(womensrole$education, role.fitted, type = "n",
+ ylab = "Probability of agreeing", xlab = "Education",
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R> summary(womensrole_glm_1)

Call:
glm(formula = cbind(agree, disagree) ~ sex + education, family = binomial(),

data = womensrole)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.72544 -0.86302 -0.06525 0.84340 3.13315

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.50937 0.18389 13.646 <2e-16 ***
sexFemale -0.01145 0.08415 -0.136 0.892
education -0.27062 0.01541 -17.560 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom
Residual deviance: 64.007 on 38 degrees of freedom
AIC: 208.07

Number of Fisher Scoring iterations: 4

Figure 6.5 R output of the summary method for the logistic regression model fitted
to the womensrole data.

+ ylim = c(0, 1))
+ lines(womensrole$education[!f], role.fitted[!f],
+ lty = 1)
+ lines(womensrole$education[f], role.fitted[f],
+ lty = 2)
+ lgtxt <- c("Fitted (Males)", "Fitted (Females)")
+ legend("topright", lgtxt, lty = 1:2, bty = "n")
+ y <- womensrole$agree/(womensrole$agree + womensrole$disagree)
+ text(womensrole$education, y, ifelse(f, "\\VE",
+ "\\MA"), family = "HersheySerif", cex = 1.25)
+ }

The two curves for males and females in Figure 6.6 are almost the same
reflecting the non-significant value of the regression coefficient for sex in wom-
ensrole_glm_1. But the observed values plotted on Figure 6.6 suggest that
there might be an interaction of education and sex, a possibility that can be
investigated by applying a further logistic regression model using
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R> myplot(role.fitted1)
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Figure 6.6 Fitted (from womensrole_glm_1) and observed probabilities of agree-
ing for the womensrole data.

R> womensrole_glm_2 <- glm(cbind(agree, disagree) ~
+ sex * education, data = womensrole, family = binomial())

The sex and education interaction term is seen to be highly significant, as
can be seen from the summary output in Figure 6.7. We can obtain
a plot of deviance residuals plotted against fitted values using the following
code above Figure 6.9. The residuals fall into a horizontal band between −2
and 2. This pattern does not suggest a poor fit for any particular observation
or subset of observations.
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R> summary(womensrole_glm_2)

Call:
glm(formula = cbind(agree, disagree) ~ sex * education, family = binomial(),

data = womensrole)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.39097 -0.88062 0.01532 0.72783 2.45262

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.09820 0.23550 8.910 < 2e-16 ***
sexFemale 0.90474 0.36007 2.513 0.01198 *
education -0.23403 0.02019 -11.592 < 2e-16 ***
sexFemale:education -0.08138 0.03109 -2.617 0.00886 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 451.722 on 40 degrees of freedom
Residual deviance: 57.103 on 37 degrees of freedom
AIC: 203.16

Number of Fisher Scoring iterations: 4

Figure 6.7 R output of the summary method for the logistic regression model fitted
to the womensrole data.

6.3.3 Colonic Polyps

The data on colonic polyps in Table ?? involves count data. We could try to
model this using multiple regression but there are two problems. The first is
that a response that is a count can only take positive values, and secondly
such a variable is unlikely to have a normal distribution. Instead we will apply
a GLM with a log link function, ensuring that fitted values are positive, and
a Poisson error distribution, i.e.,

P(y) =
e−λλy

y!
.

This type of GLM is often known as Poisson regression. We can apply the
model using

R> data("polyps", package = "HSAUR")
R> polyps_glm_1 <- glm(number ~ treat + age, data = polyps,
+ family = poisson())
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R> role.fitted2 <- predict(womensrole_glm_2, type = "response")
R> myplot(role.fitted2)
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Figure 6.8 Fitted (from womensrole_glm_2) and observed probabilities of agree-
ing for the womensrole data.

(The default link function when the Poisson family is requested is the log
function.) We can deal with overdispersion by using a procedure known as
quasi-likelihood, which allows the estimation of model parameters without fully
knowing the error distribution of the response variable. McCullagh and Nelder
(1989) give full details of the quasi-likelihood approach. In many respects it
simply allows for the estimation of φ from the data rather than defining it
to be unity for the binomial and Poisson distributions. We can apply quasi-
likelihood estimation to the colonic polyps data using the following R code

R> polyps_glm_2 <- glm(number ~ treat + age, data = polyps,
+ family = quasipoisson())
R> summary(polyps_glm_2)



12 LOGISTIC REGRESSION AND GENERALISED LINEAR MODELS
R> res <- residuals(womensrole_glm_2, type = "deviance")
R> plot(predict(womensrole_glm_2), res, xlab = "Fitted values",
+ ylab = "Residuals", ylim = max(abs(res)) * c(-1,
+ 1))
R> abline(h = 0, lty = 2)
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Figure 6.9 Plot of deviance residuals from logistic regression model fitted to the
womensrole data.

Call:
glm(formula = number ~ treat + age, family = quasipoisson(),

data = polyps)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.2212 -3.0536 -0.1802 1.4459 5.8301

Coefficients:
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R> summary(polyps_glm_1)

Call:
glm(formula = number ~ treat + age, family = poisson(), data = polyps)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.2212 -3.0536 -0.1802 1.4459 5.8301

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.529024 0.146872 30.84 < 2e-16 ***
treatdrug -1.359083 0.117643 -11.55 < 2e-16 ***
age -0.038830 0.005955 -6.52 7.02e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.54 on 17 degrees of freedom
AIC: 273.88

Number of Fisher Scoring iterations: 5

Figure 6.10 R output of the summary method for the Poisson regression model
fitted to the polyps data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.52902 0.48106 9.415 3.72e-08 ***
treatdrug -1.35908 0.38533 -3.527 0.00259 **
age -0.03883 0.01951 -1.991 0.06284 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 10.72805)

Null deviance: 378.66 on 19 degrees of freedom
Residual deviance: 179.54 on 17 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

The regression coefficients for both explanatory variables remain significant
but their estimated standard errors are now much greater than the values
given in Figure 6.10. A possible reason for overdispersion in these data is that
polyps do not occur independently of one another, but instead may ‘cluster’
together.
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CHAPTER 7

Density Estimation: Erupting Geysers
and Star Clusters

7.1 Introduction

7.2 Density Estimation

7.3 Analysis Using R

7.3.1 A Parametric Density Estimate for the Old Faithful Data

R> logL <- function(param, x) {
+ d1 <- dnorm(x, mean = param[2], sd = param[3])
+ d2 <- dnorm(x, mean = param[4], sd = param[5])
+ -sum(log(param[1] * d1 + (1 - param[1]) * d2))
+ }
R> startparam <- c(p = 0.5, mu1 = 50, sd1 = 3, mu2 = 80,
+ sd2 = 3)
R> opp <- optim(startparam, logL, x = faithful$waiting,
+ method = "L-BFGS-B", lower = c(0.01, rep(1,
+ 4)), upper = c(0.99, rep(200, 4)))
R> opp

$par
p mu1 sd1 mu2 sd2

0.360891 54.612122 5.872379 80.093415 5.867289

$value
[1] 1034.002

$counts
function gradient

55 55

$convergence
[1] 0

Of course, optimising the appropriate likelihood ‘by hand’ is not very conve-
nient. In fact, (at least) two packages offer high-level functionality for esti-
mating mixture models. The first one is package mclust (Fraley et al., 2006)
implementing the methodology described in Fraley and Raftery (2002). Here,

3



4 DENSITY ESTIMATION
1 R> data("faithful", package = "datasets")
2 R> x <- faithful$waiting
3 R> layout(matrix(1:3, ncol = 3))
4 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
5 + probability = TRUE, main = "Gaussian kernel",
6 + border = "gray")
7 R> lines(density(x, width = 12), lwd = 2)
8 R> rug(x)
9 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",

10 + probability = TRUE, main = "Rectangular kernel",
11 + border = "gray")
12 R> lines(density(x, width = 12, window = "rectangular"),
13 + lwd = 2)
14 R> rug(x)
15 R> hist(x, xlab = "Waiting times (in min.)", ylab = "Frequency",
16 + probability = TRUE, main = "Triangular kernel",
17 + border = "gray")
18 R> lines(density(x, width = 12, window = "triangular"),
19 + lwd = 2)
20 R> rug(x)
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Figure 7.1 Density estimates of the geyser eruption data imposed on a histogram
of the data.
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R> library("KernSmooth")
R> data("CYGOB1", package = "HSAUR")
R> CYGOB1d <- bkde2D(CYGOB1, bandwidth = sapply(CYGOB1,
+ dpik))
R> contour(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,
+ xlab = "log surface temperature", ylab = "log light intensity")

log surface temperature

lo
g 

lig
ht

 in
te

ns
ity

3.4 3.6 3.8 4.0 4.2 4.4 4.6

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

Figure 7.2 A contour plot of the bivariate density estimate of the CYGOB1 data,
i.e., a two-dimensional graphical display for a three-dimensional
problem.
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R> persp(x = CYGOB1d$x1, y = CYGOB1d$x2, z = CYGOB1d$fhat,
+ xlab = "log surface temperature", ylab = "log light intensity",
+ zlab = "estimated density", theta = -35, axes = TRUE,
+ box = TRUE)

log surface temperature

log light intensity

estim
ated density

Figure 7.3 The bivariate density estimate of the CYGOB1 data, here shown in a
three-dimensional fashion using the persp function.

a Bayesian information criterion (BIC) is applied to choose the form of the
mixture model:

R> library("mclust")
R> mc <- Mclust(faithful$waiting)
R> mc

best model: E with 2 components

and the estimated means are

R> mc$parameters$mean
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1 2
54.61911 80.09384

with estimated standard deviation (found to be equal within both groups)
R> sqrt(mc$parameters$variance$sigmasq)

[1] 5.86848

The proportion is p̂ = 0.36. The second package is called flexmix whose func-
tionality is described by Leisch (2004). A mixture of two normals can be fitted
using
R> library("flexmix")
R> fl <- flexmix(waiting ~ 1, data = faithful, k = 2)

with p̂ = 0.36 and estimated parameters
R> parameters(fl, component = 1)

$coef
(Intercept)

54.6287

$sigma
[1] 5.895234

R> parameters(fl, component = 2)

$coef
(Intercept)

80.09858

$sigma
[1] 5.871749

We can get standard errors for the five parameter estimates by using a boot-
strap approach (see Efron and Tibshirani, 1993). The original data are slightly
perturbed by drawing n out of n observations with replacement and those ar-
tificial replications of the original data are called bootstrap samples. Now, we
can fit the mixture for each bootstrap sample and assess the variability of
the estimates, for example using confidence intervals. Some suitable R code
based on the Mclust function follows. First, we define a function that, for a
bootstrap sample indx, fits a two-component mixture model and returns p̂
and the estimated means (note that we need to make sure that we always get
an estimate of p, not 1− p):
R> library("boot")
R> fit <- function(x, indx) {
+ a <- Mclust(x[indx], minG = 2, maxG = 2)$parameters
+ if (a$pro[1] < 0.5)
+ return(c(p = a$pro[1], mu1 = a$mean[1],
+ mu2 = a$mean[2]))
+ return(c(p = 1 - a$pro[1], mu1 = a$mean[2],
+ mu2 = a$mean[1]))
+ }
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R> opar <- as.list(opp$par)
R> rx <- seq(from = 40, to = 110, by = 0.1)
R> d1 <- dnorm(rx, mean = opar$mu1, sd = opar$sd1)
R> d2 <- dnorm(rx, mean = opar$mu2, sd = opar$sd2)
R> f <- opar$p * d1 + (1 - opar$p) * d2
R> hist(x, probability = TRUE, xlab = "Waiting times (in min.)",
+ border = "gray", xlim = range(rx), ylim = c(0,
+ 0.06), main = "")
R> lines(rx, f, lwd = 2)
R> lines(rx, dnorm(rx, mean = mean(x), sd = sd(x)),
+ lty = 2, lwd = 2)
R> legend(50, 0.06, legend = c("Fitted two-component mixture density",
+ "Fitted single normal density"), lty = 1:2,
+ bty = "n")
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Figure 7.4 Fitted normal density and two-component normal mixture for geyser
eruption data.



ANALYSIS USING R 9

The function fit can now be fed into the boot function (Canty and Ripley,
2006) for bootstrapping (here 1000 bootstrap samples are drawn)
R> bootpara <- boot(faithful$waiting, fit, R = 1000)

We assess the variability of our estimates p̂ by means of adjusted bootstrap
percentile (BCa) confidence intervals, which for p̂ can be obtained from
R> boot.ci(bootpara, type = "bca", index = 1)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 1)

Intervals :
Level BCa
95% ( 0.3041, 0.4233 )
Calculations and Intervals on Original Scale

We see that there is a reasonable variability in the mixture model, however,
the means in the two components are rather stable, as can be seen from
R> boot.ci(bootpara, type = "bca", index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 2)

Intervals :
Level BCa
95% (53.42, 56.07 )
Calculations and Intervals on Original Scale

for µ̂1 and for µ̂2 from
R> boot.ci(bootpara, type = "bca", index = 3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 1000 bootstrap replicates

CALL :
boot.ci(boot.out = bootpara, type = "bca", index = 3)

Intervals :
Level BCa
95% (79.05, 81.01 )
Calculations and Intervals on Original Scale

Finally, we show a graphical representation of both the bootstrap distribu-
tion of the mean estimates and the corresponding confidence intervals. For
convenience, we define a function for plotting, namely
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R> layout(matrix(1:2, ncol = 2))
R> bootplot(bootpara, 2, main = expression(mu[1]))
R> bootplot(bootpara, 3, main = expression(mu[2]))
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Figure 7.5 Bootstrap distribution and confidence intervals for the mean estimates
of a two-component mixture for the geyser data.

R> bootplot <- function(b, index, main = "") {
+ dens <- density(b$t[, index])
+ ci <- boot.ci(b, type = "bca", index = index)$bca[4:5]
+ est <- b$t0[index]
+ plot(dens, main = main)
+ y <- max(dens$y)/10
+ segments(ci[1], y, ci[2], y, lty = 2)
+ points(ci[1], y, pch = "(")
+ points(ci[2], y, pch = ")")
+ points(est, y, pch = 19)
+ }

The element t of an object created by boot contains the bootstrap replications
of our estimates, i.e., the values computed by fit for each of the 1000 boot-
strap samples of the geyser data. First, we plot a simple density estimate and
then construct a line representing the confidence interval. We apply this func-
tion to the bootstrap distributions of our estimates µ̂1 and µ̂2 in Figure 7.5.
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CHAPTER 8

Recursive Partitioning: Large
Companies and Glaucoma Diagnosis

8.1 Introduction

8.2 Recursive Partitioning

8.3 Analysis Using R

8.3.1 Forbes 2000 Data

For some observations the profit is missing and we first remove those compa-
nies from the list

R> data("Forbes2000", package = "HSAUR")
R> Forbes2000 <- subset(Forbes2000, !is.na(profits))

The rpart function from rpart can be used to grow a regression tree. The
response variable and the covariates are defined by a model formula in the
same way as for lm, say. By default, a large initial tree is grown.

R> library("rpart")
R> forbes_rpart <- rpart(profits ~ assets + marketvalue +
+ sales, data = Forbes2000)

A print method for rpart objects is available, however, a graphical represen-
tation shown in Figure 8.1 is more convenient. Observations which satisfy the
condition shown for each node go to the left and observations which don’t are
element of the right branch in each node. The numbers plotted in the leaves
are the mean profit for those observations satisfying the conditions stated
above. For example, the highest profit is observed for companies with a mar-
ket value greater than 89.33 billion US dollars and with more than 91.92 US
dollars sales. To determine if the tree is appropriate or if some of the branches
need to be subjected to pruning we can use the cptable element of the rpart
object:

R> print(forbes_rpart$cptable)

CP nsplit rel error xerror xstd
1 0.23748446 0 1.0000000 1.0010339 0.1946331
2 0.04600397 1 0.7625155 0.8397144 0.2174245
3 0.04258786 2 0.7165116 0.8066685 0.2166339
4 0.02030891 3 0.6739237 0.7625940 0.2089684
5 0.01854336 4 0.6536148 0.7842574 0.2093683
6 0.01102304 5 0.6350714 0.7925891 0.2106088

3
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R> plot(forbes_rpart, uniform = TRUE, margin = 0.1,
+ branch = 0.5, compress = TRUE)
R> text(forbes_rpart)

|marketvalue< 89.33

marketvalue< 32.72

assets>=329

marketvalue< 7.895

sales>=54.84

sales< 42.94

sales< 91.92

−3.366

0.07812 0.5045

−0.5994

1.872 4.633

5.211 11.82

Figure 8.1 Large initial tree for Forbes 2000 data.

7 0.01076006 6 0.6240484 0.7931405 0.2128048
8 0.01000000 7 0.6132883 0.7902771 0.2128037

R> opt <- which.min(forbes_rpart$cptable[, "xerror"])

The xerror column contains of estimates of cross-validated prediction error
for different numbers of splits (nsplit). The best tree has three splits. Now
we can prune back the large initial tree using

R> cp <- forbes_rpart$cptable[opt, "CP"]
R> forbes_prune <- prune(forbes_rpart, cp = cp)

The result is shown in Figure 8.2. This tree is much smaller. From the sample
sizes and boxplots shown for each leaf we see that the majority of companies
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is grouped together. However, a large market value, more that 32.72 billion
US dollars, seems to be a good indicator of large profits.

8.3.2 Glaucoma Diagnosis

R> data("GlaucomaM", package = "ipred")
R> glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM,
+ control = rpart.control(xval = 100))
R> glaucoma_rpart$cptable

CP nsplit rel error xerror xstd
1 0.65306122 0 1.0000000 1.5306122 0.06054391
2 0.07142857 1 0.3469388 0.3877551 0.05647630
3 0.01360544 2 0.2755102 0.3775510 0.05590431
4 0.01000000 5 0.2346939 0.4489796 0.05960655

R> opt <- which.min(glaucoma_rpart$cptable[, "xerror"])
R> cp <- glaucoma_rpart$cptable[opt, "CP"]
R> glaucoma_prune <- prune(glaucoma_rpart, cp = cp)

As we discussed earlier, the choice of the appropriate sized tree is not a triv-
ial problem. For the glaucoma data, the above choice of three leaves is very
unstable across multiple runs of cross-validation. As an illustration of this
problem we repeat the very same analysis as shown above and record the
optimal number of splits as suggested by the cross-validation runs.
R> nsplitopt <- vector(mode = "integer", length = 25)
R> for (i in 1:length(nsplitopt)) {
+ cp <- rpart(Class ~ ., data = GlaucomaM)$cptable
+ nsplitopt[i] <- cp[which.min(cp[, "xerror"]),
+ "nsplit"]
+ }
R> table(nsplitopt)

nsplitopt
1 2 5
14 7 4

Although for 14 runs of cross-validation a simple tree with one split only is
suggested, larger trees would have been favored in 11 of the cases. This short
analysis shows that we should not trust the tree in Figure 8.3 too much. One
way out of this dilemma is the aggregation of multiple trees via bagging. In R,
the bagging idea can be implemented by three or four lines of code. Case count
or weight vectors representing the bootstrap samples can be drawn from the
multinominal distribution with parameters n and p1 = 1/n, . . . , pn = 1/n via
the rmultinom function. For each weight vector, one large tree is constructed
without pruning and the rpart objects are stored in a list, here called trees:
R> trees <- vector(mode = "list", length = 25)
R> n <- nrow(GlaucomaM)
R> bootsamples <- rmultinom(length(trees), n, rep(1,
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R> layout(matrix(1:2, nc = 1))
R> plot(forbes_prune, uniform = TRUE, margin = 0.1,
+ branch = 0.5, compress = TRUE)
R> text(forbes_prune)
R> rn <- rownames(forbes_prune$frame)
R> lev <- rn[sort(unique(forbes_prune$where))]
R> where <- factor(rn[forbes_prune$where], levels = lev)
R> n <- tapply(Forbes2000$profits, where, length)
R> boxplot(Forbes2000$profits ~ where, varwidth = TRUE,
+ ylim = range(Forbes2000$profit) * 1.3, pars = list(axes = FALSE),
+ ylab = "Profits in US dollars")
R> abline(h = 0, lty = 3)
R> axis(2)
R> text(1:length(n), max(Forbes2000$profit) * 1.2,
+ paste("n = ", n))

|marketvalue< 89.33

marketvalue< 32.72

assets>=329

sales< 91.92

−3.366 0.1964

1.728 5.211 11.82
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Figure 8.2 Pruned regression tree for Forbes 2000 data with the distribution of
the profit in each leaf depicted by a boxplot.
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R> layout(matrix(1:2, nc = 1))
R> plot(glaucoma_prune, uniform = TRUE, margin = 0.1,
+ branch = 0.5, compress = TRUE)
R> text(glaucoma_prune, use.n = TRUE)
R> rn <- rownames(glaucoma_prune$frame)
R> lev <- rn[sort(unique(glaucoma_prune$where))]
R> where <- factor(rn[glaucoma_prune$where], levels = lev)
R> mosaicplot(table(where, GlaucomaM$Class), main = "",
+ xlab = "", las = 1)

|
varg< 0.209

mhcg>=0.1695
glaucoma

70/6

glaucoma
7/0

normal  
21/92

2 6 7

glaucoma

normal

Figure 8.3 Pruned classification tree of the glaucoma data with class distribution
in the leaves depicted by a mosaicplot.
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+ n)/n)
R> mod <- rpart(Class ~ ., data = GlaucomaM, control = rpart.control(xval = 0))
R> for (i in 1:length(trees)) trees[[i]] <- update(mod,
+ weights = bootsamples[, i])

The update function re-evaluates the call of mod, however, with the weights
being altered, i.e., fits a tree to a bootstrap sample specified by the weights.
It is interesting to have a look at the structures of the multiple trees. For
example, the variable selected for splitting in the root of the tree is not unique
as can be seen by
R> table(sapply(trees, function(x) as.character(x$frame$var[1])))

phcg varg vari vars
1 14 9 1

Although varg is selected most of the time, other variables such as vari oc-
cur as well – a further indication that the tree in Figure 8.3 is questionable
and that hard decisions are not appropriate for the glaucoma data. In order
to make use of the ensemble of trees in the list trees we estimate the con-
ditional probability of suffering from glaucoma given the covariates for each
observation in the original data set by
R> classprob <- matrix(0, nrow = n, ncol = length(trees))
R> for (i in 1:length(trees)) {
+ classprob[, i] <- predict(trees[[i]], newdata = GlaucomaM)[,
+ 2]
+ classprob[bootsamples[, i] > 0, i] <- NA
+ }

Thus, for each observation we get 25 estimates. However, each observation has
been used for growing one of the trees with probability 0.632 and thus was not
used with probability 0.368. Consequently, the estimate from a tree where an
observation was not used for growing is better for judging the quality of the
predictions and we label the other estimates with NA. Now, we can average the
estimates and we vote for glaucoma when the average of the estimates of the
conditional glaucoma probability exceeds 0.5. The comparison between the
observed and the predicted classes does not suffer from overfitting since the
predictions are computed from those trees for which each single observation
was not used for growing.
R> avg <- rowMeans(classprob, na.rm = TRUE)
R> predictions <- factor(avg > 0.5, labels = levels(GlaucomaM$Class))
R> predtab <- table(predictions, GlaucomaM$Class)
R> predtab

predictions glaucoma normal
glaucoma 78 15
normal 20 83

Thus, an honest estimate of the probability of a glaucoma prediction when
the patient is actually suffering from glaucoma is
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R> round(predtab[1, 1]/colSums(predtab)[1] * 100)

glaucoma
80

per cent. For
R> round(predtab[2, 2]/colSums(predtab)[2] * 100)

normal
85

per cent of normal eyes, the ensemble does not predict a glaucomateous dam-
age. The bagging procedure is a special case of a more general approach called
random forest (Breiman, 2001). The package randomForest (Breiman et al.,
2006) can be used to compute such ensembles via
R> library("randomForest")
R> rf <- randomForest(Class ~ ., data = GlaucomaM)

and we obtain out-of-bag estimates for the prediction error via
R> table(predict(rf), GlaucomaM$Class)

glaucoma normal
glaucoma 81 11
normal 17 87

For the glaucoma data, such a conditional inference tree can be computed
using the ctree function
R> library("party")
R> glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM)

and a graphical representation is depicted in Figure 8.5 showing both the
cutpoints and the p-values of the associated independence tests for each node.
The first split is performed using a cutpoint defined with respect to the volume
of the optic nerve above some reference plane, but in the inferior part of the
eye only (vari).
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R> library("lattice")
R> gdata <- data.frame(avg = rep(avg, 2), class = rep(as.numeric(GlaucomaM$Class),
+ 2), obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]),
+ var = factor(c(rep("varg", nrow(GlaucomaM)),
+ rep("vari", nrow(GlaucomaM)))))
R> panelf <- function(x, y) {
+ panel.xyplot(x, y, pch = gdata$class)
+ panel.abline(h = 0.5, lty = 2)
+ }
R> print(xyplot(avg ~ obs | var, data = gdata, panel = panelf,
+ scales = "free", xlab = "", ylab = "Estimated Class Probability Glaucoma"))
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Figure 8.4 Glaucoma data: Estimated class probabilities depending on two im-
portant variables. The 0.5 cut-off for the estimated glaucoma proba-
bility is depicted as horizontal line. Glaucomateous eyes are plotted
as circles and normal eyes are triangles.
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R> plot(glaucoma_ctree)
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Figure 8.5 Glaucoma data: Conditional inference tree with the distribution of
glaucomateous eyes shown for each terminal leaf.
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CHAPTER 9

Survival Analysis:
Glioma Treatment and Breast Cancer

Survival

9.1 Introduction

9.2 Survival Analysis

9.3 Analysis Using R

9.3.1 Glioma Radioimmunotherapy

Figure 9.1 leads to the impression that patients treated with the novel ra-
dioimmunotherapy survive longer, regardless of the tumor type. In order to
assess if this informal finding is reliable, we may perform a log-rank test via

R> survdiff(Surv(time, event) ~ group, data = g3)

Call:
survdiff(formula = Surv(time, event) ~ group, data = g3)

N Observed Expected (O-E)^2/E (O-E)^2/V
group=Control 6 4 1.49 4.23 6.06
group=RIT 11 2 4.51 1.40 6.06

Chisq= 6.1 on 1 degrees of freedom, p= 0.0138

which indicates that the survival times are indeed different in both groups.
However, the number of patients is rather limited and so it might be danger-
ous to rely on asymptotic tests. As shown in Chapter 3, conditioning on the
data and computing the distribution of the test statistics without additional
assumptions is one alternative. The function surv_test from package coin
(Hothorn et al., 2006b,a) can be used to compute an exact conditional test
answering the question whether the survival times differ for grade III patients:

R> library("coin")
R> surv_test(Surv(time, event) ~ group, data = g3,
+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by groups Control, RIT
Z = 2.1711, p-value = 0.02877
alternative hypothesis: two.sided

3



4 SURVIVAL ANALYSIS
R> data("glioma", package = "coin")
R> library("survival")
R> layout(matrix(1:2, ncol = 2))
R> g3 <- subset(glioma, histology == "Grade3")
R> plot(survfit(Surv(time, event) ~ group, data = g3),
+ main = "Grade III Glioma", lty = c(2, 1), ylab = "Probability",
+ xlab = "Survival Time in Month", legend.bty = "n",
+ legend.text = c("Control", "Treated"))
R> g4 <- subset(glioma, histology == "GBM")
R> plot(survfit(Surv(time, event) ~ group, data = g4),
+ main = "Grade IV Glioma", ylab = "Probability",
+ lty = c(2, 1), xlab = "Survival Time in Month",
+ xlim = c(0, max(glioma$time) * 1.05))
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Figure 9.1 Survival times comparing treated and control patients.

which, in this case, confirms the above results. The same exercise can be
performed for patients with grade IV glioma
R> surv_test(Surv(time, event) ~ group, data = g4,
+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by groups Control, RIT
Z = 3.2215, p-value = 0.0001588
alternative hypothesis: two.sided

which shows a difference as well. However, it might be more appropriate to
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answer the question whether the novel therapy is superior for both groups of
tumors simultaneously. This can be implemented by stratifying, or blocking,
with respect tumor grading:

R> surv_test(Surv(time, event) ~ group | histology,
+ data = glioma, distribution = approximate(B = 10000))

Approximative Logrank Test

data: Surv(time, event) by
groups Control, RIT
stratified by histology

Z = 3.6704, p-value = 1e-04
alternative hypothesis: two.sided

Here, we need to approximate the exact conditional distribution since the exact
distribution is hard to compute. The result supports the initial impression
implied by Figure 9.1

9.3.2 Breast Cancer Survival

Before fitting a Cox model to the GBSG2 data, we again derive a Kaplan-Meier
estimate of the survival function of the data, here stratified with respect to
whether a patient received a hormonal therapy or not (see Figure 9.2). Fitting
a Cox model follows roughly the same rules are shown for linear models in
Chapters 4, 5 or 6 with the exception that the response variable is again coded
as a Surv object. For the GBSG2 data, the model is fitted via

R> GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2)

and the results as given by the summary method are given in Figure 9.3. Since
we are especially interested in the relative risk for patients who underwent
a hormonal therapy, we can compute an estimate of the relative risk and a
corresponding confidence interval via

R> ci <- confint(GBSG2_coxph)
R> exp(cbind(coef(GBSG2_coxph), ci))["horThyes", ]

2.5 % 97.5 %
0.7073155 0.5492178 0.9109233

This result implies that patients treated with a hormonal therapy had a lower
risk and thus survived longer compared to women who were not treated this
way. Model checking and model selection for proportional hazards
models are complicated by the fact that easy to use residuals, such as those
discussed in Chapter 5 for linear regression model are not available, but several
possibilities do exist. A check of the proportional hazards assumption can be
done by looking at the parameter estimates β1, . . . , βq over time. We can safely
assume proportional hazards when the estimates don’t vary much over time.
The null hypothesis of constant regression coefficients can be tested, both
globally as well as for each covariate, by using the cox.zph function
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R> data("GBSG2", package = "ipred")
R> plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2),
+ lty = 1:2, mark.time = FALSE, ylab = "Probability",
+ xlab = "Survival Time in Days")
R> legend(250, 0.2, legend = c("yes", "no"), lty = c(2,
+ 1), title = "Hormonal Therapy", bty = "n")
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Figure 9.2 Kaplan-Meier estimates for breast cancer patients who either received
a hormonal therapy or not.

R> GBSG2_zph <- cox.zph(GBSG2_coxph)
R> GBSG2_zph

rho chisq p
horThyes -2.54e-02 1.96e-01 0.65778
age 9.40e-02 2.96e+00 0.08552
menostatPost -1.19e-05 3.75e-08 0.99985
tsize -2.50e-02 1.88e-01 0.66436
tgrade.L -1.30e-01 4.85e+00 0.02772
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R> summary(GBSG2_coxph)

Call:
coxph(formula = Surv(time, cens) ~ ., data = GBSG2)

n= 686
coef exp(coef) se(coef) z p

horThyes -0.346278 0.707 0.129075 -2.683 7.3e-03
age -0.009459 0.991 0.009301 -1.017 3.1e-01
menostatPost 0.258445 1.295 0.183476 1.409 1.6e-01
tsize 0.007796 1.008 0.003939 1.979 4.8e-02
tgrade.L 0.551299 1.736 0.189844 2.904 3.7e-03
tgrade.Q -0.201091 0.818 0.121965 -1.649 9.9e-02
pnodes 0.048789 1.050 0.007447 6.551 5.7e-11
progrec -0.002217 0.998 0.000574 -3.866 1.1e-04
estrec 0.000197 1.000 0.000450 0.438 6.6e-01

exp(coef) exp(-coef) lower .95 upper .95
horThyes 0.707 1.414 0.549 0.911
age 0.991 1.010 0.973 1.009
menostatPost 1.295 0.772 0.904 1.855
tsize 1.008 0.992 1.000 1.016
tgrade.L 1.736 0.576 1.196 2.518
tgrade.Q 0.818 1.223 0.644 1.039
pnodes 1.050 0.952 1.035 1.065
progrec 0.998 1.002 0.997 0.999
estrec 1.000 1.000 0.999 1.001

Rsquare= 0.142 (max possible= 0.995 )
Likelihood ratio test= 105 on 9 df, p=0
Wald test = 115 on 9 df, p=0
Score (logrank) test = 121 on 9 df, p=0

Figure 9.3 R output of the summary method for GBSG2_coxph.

tgrade.Q 3.22e-03 3.14e-03 0.95530
pnodes 5.84e-02 5.98e-01 0.43941
progrec 5.65e-02 1.20e+00 0.27351
estrec 5.46e-02 1.03e+00 0.30967
GLOBAL NA 2.27e+01 0.00695

There seems to be some evidence of time-varying effects, especially for age
and tumor grading. A graphical representation of the estimated regression co-
efficient over time is shown in Figure 9.4. We refer to Therneau and Gramb-
sch (2000) for a detailed theoretical description of these topics. The tree-
structured regression models applied to continuous and binary responses in
Chapter 8 are applicable to censored responses in survival analysis as well.
Such a simple prognostic model with only a few terminal nodes might be
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R> plot(GBSG2_zph, var = "age")
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Figure 9.4 Estimated regression coefficient for age depending on time for the
GBSG2 data.

helpful for relating the risk to certain subgroups of patients. Both rpart and
the ctree function from package party can be applied to the GBSG2 data,
where the conditional trees of the latter selects cutpoints based on log-rank
statistics;
R> GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

and the plot method applied to this tree produces the graphical representation
in Figure 9.6. The number of positive lymph nodes (pnodes) is the most
important variable in the tree, this corresponds to the p-value associated with
this variable in Cox’s regression, see Figure 9.3. Women with not more than
three positive lymph nodes who have undergone a hormonal therapy seem to
have the best prognosis whereas a large number of positive lymph nodes and
a small value of the progesterone receptor indicates a bad prognosis.
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R> layout(matrix(1:3, ncol = 3))
R> res <- residuals(GBSG2_coxph)
R> plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5),
+ pch = ".", ylab = "Martingale Residuals")
R> abline(h = 0, lty = 3)
R> plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5,
+ 1.5), pch = ".", ylab = "")
R> abline(h = 0, lty = 3)
R> plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5,
+ 1.5), pch = ".", ylab = "")
R> abline(h = 0, lty = 3)
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Figure 9.5 Martingale residuals for the GBSG2 data.
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R> plot(GBSG2_ctree)
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Figure 9.6 GBSG2 data: Conditonal inference tree with the survival function, es-
timated by Kaplan-Meier, shown for every subgroup of patients iden-
tified by the tree.
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CHAPTER 10

Analysing Longitudinal Data I:
Computerised Delivery of Cognitive

Behavioural Therapy–Beat the Blues

10.1 Introduction

10.2 Analysing Longitudinal Data

10.3 Analysis Using R

We shall fit both random intercept and random intercept and slope models
to the data including the baseline BDI values (pre.bdi), treatment group,
drug and length as fixed effect covariates. Linear mixed effects models are
fitted in R by using the lmer function contained in the lme4 package (Bates
and Sarkar, 2006, Pinheiro and Bates, 2000, Bates, 2005), but an essential
first step is to rearrange the data from the ‘wide form’ in which they appear
in the BtheB data frame into the ‘long form’ in which each separate repeated
measurement and associated covariate values appear as a separate row in a
data.frame. This rearrangement can be made using the following code:
R> data("BtheB", package = "HSAUR")
R> BtheB$subject <- factor(rownames(BtheB))
R> nobs <- nrow(BtheB)
R> BtheB_long <- reshape(BtheB, idvar = "subject",
+ varying = c("bdi.2m", "bdi.4m", "bdi.6m", "bdi.8m"),
+ direction = "long")
R> BtheB_long$time <- rep(c(2, 4, 6, 8), rep(nobs,
+ 4))

such that the data are now in the form (here shown for the first three subjects)
R> subset(BtheB_long, subject %in% c("1", "2", "3"))

drug length treatment bdi.pre subject time bdi
1.2m No >6m TAU 29 1 2 2
2.2m Yes >6m BtheB 32 2 2 16
3.2m Yes <6m TAU 25 3 2 20
1.4m No >6m TAU 29 1 4 2
2.4m Yes >6m BtheB 32 2 4 24
3.4m Yes <6m TAU 25 3 4 NA
1.6m No >6m TAU 29 1 6 NA
2.6m Yes >6m BtheB 32 2 6 17
3.6m Yes <6m TAU 25 3 6 NA

3
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R> data("BtheB", package = "HSAUR")
R> layout(matrix(1:2, nrow = 1))
R> ylim <- range(BtheB[, grep("bdi", names(BtheB))],
+ na.rm = TRUE)
R> boxplot(subset(BtheB, treatment == "TAU")[, grep("bdi",
+ names(BtheB))], main = "Treated as usual", ylab = "BDI",
+ xlab = "Time (in months)", names = c(0, 2, 4,
+ 6, 8), ylim = ylim)
R> boxplot(subset(BtheB, treatment == "BtheB")[, grep("bdi",
+ names(BtheB))], main = "Beat the Blues", ylab = "BDI",
+ xlab = "Time (in months)", names = c(0, 2, 4,
+ 6, 8), ylim = ylim)
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Figure 10.1 Boxplots for the repeated measures by treatment group for the BtheB
data.

1.8m No >6m TAU 29 1 8 NA
2.8m Yes >6m BtheB 32 2 8 20
3.8m Yes <6m TAU 25 3 8 NA

The resulting data.frame BtheB_long contains a number of missing values
and in applying the lmer function these will be dropped. But notice it is only
the missing values that are removed, not participants that have at least one
missing value. All the available data is used in the model fitting process. The
lmer function is used in a similar way to the lm function met in Chapter ??
with the addition of a random term to identify the source of the repeated
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measurements, here subject. We can fit the two models (??) and (??) and
test which is most appropriate using
R> library("lme4")
R> BtheB_lmer1 <- lmer(bdi ~ bdi.pre + time + treatment +
+ drug + length + (1 | subject), data = BtheB_long,
+ method = "ML", na.action = na.omit)
R> BtheB_lmer2 <- lmer(bdi ~ bdi.pre + time + treatment +
+ drug + length + (time | subject), data = BtheB_long,
+ method = "ML", na.action = na.omit)
R> anova(BtheB_lmer1, BtheB_lmer2)

Data: BtheB_long
Models:
BtheB_lmer1: bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject)
BtheB_lmer2: bdi ~ bdi.pre + time + treatment + drug + length + (time | subject)

Df AIC BIC logLik Chisq Chi Df
BtheB_lmer1 7 1884.62 1910.07 -935.31
BtheB_lmer2 9 1887.81 1920.52 -934.90 0.8161 2

Pr(>Chisq)
BtheB_lmer1
BtheB_lmer2 0.665
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R> summary(BtheB_lmer1)

Linear mixed-effects model fit by maximum likelihood
Formula: bdi ~ bdi.pre + time + treatment + drug + length + (1 | subject)

Data: BtheB_long
AIC BIC logLik MLdeviance REMLdeviance
1885 1910 -935.3 1871 1866

Random effects:
Groups Name Variance Std.Dev.
subject (Intercept) 48.304 6.9501
Residual 25.128 5.0127
number of obs: 280, groups: subject, 97

Fixed effects:
Estimate Std. Error t value

(Intercept) 5.94366 2.24922 2.643
bdi.pre 0.63819 0.07759 8.225
time -0.71702 0.14606 -4.909
treatmentBtheB -2.37308 1.66375 -1.426
drugYes -2.79784 1.72000 -1.627
length>6m 0.25635 1.63219 0.157

Correlation of Fixed Effects:
(Intr) bdi.pr time trtmBB drugYs

bdi.pre -0.678
time -0.264 0.023
tretmntBthB -0.389 0.121 0.022
drugYes -0.071 -0.237 -0.025 -0.323
length>6m -0.238 -0.242 -0.043 0.002 0.158

Figure 10.2 R output of the linear mixed-effects model fit for the BtheB data.
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CHAPTER 11

Analysing Longitudinal Data II –
Generalised Estimation Equations:
Treating Respiratory Illness and

Epileptic Seizures

11.1 Introduction

11.2 Generalised Estimating Equations

11.3 Analysis Using R

11.3.1 Beat the Blues Revisited

To use the gee function, package gee (Carey et al., 2006) has to be installed
and attached:

R> library("gee")

The gee function is used in a similar way to the lme function met in Chapter
10, with the addition of the features of the glm function that specify the
appropriate error distribution for the response and the implied link function,
and an argument to specify the structure of the working correlation matrix.
Here we will fit an independence structure and then an exchangeable structure.
The R code for fitting generalised estimation equations to the BtheB_long
data (as constructed in Chapter 10, with idenity working correlation matrix
is as follows (note that the gee function assumes the rows of the data.frame
BtheB_long to be ordered with respect to subjects)

R> osub <- order(as.integer(BtheB_long$subject))
R> BtheB_long <- BtheB_long[osub, ]
R> btb_gee <- gee(bdi ~ bdi.pre + treatment + length +
+ drug, data = BtheB_long, id = subject, family = gaussian,
+ corstr = "independence")

and with exchangeable correlation matrix

R> btb_gee1 <- gee(bdi ~ bdi.pre + treatment + length +
+ drug, data = BtheB_long, id = subject, family = gaussian,
+ corstr = "exchangeable")

The summary method can be used to inspect the fitted models; the results are
shown in Figures 11.1 and 11.2

3
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11.3.2 Respiratory Illness

The baseline status, i.e., the status for month == 0, will enter the models as
an explanatory variable and thus we have to rearrange the data.frame res-
piratory in order to create a new variable baseline:
R> data("respiratory", package = "HSAUR")
R> resp <- subset(respiratory, month > "0")
R> resp$baseline <- rep(subset(respiratory, month ==
+ "0")$status, rep(4, 111))
R> resp$nstat <- as.numeric(resp$status == "good")

The new variable nstat is simply a dummy coding for a poor respiratory
status. Now we can use the data resp to fit a logistic regression model and
GEE models with an independent and an exchangeable correlation structure
as follows;
R> resp_glm <- glm(status ~ centre + treatment + sex +
+ baseline + age, data = resp, family = "binomial")
R> resp_gee1 <- gee(nstat ~ centre + treatment + sex +
+ baseline + age, data = resp, family = "binomial",
+ id = subject, corstr = "independence", scale.fix = TRUE,
+ scale.value = 1)
R> resp_gee2 <- gee(nstat ~ centre + treatment + sex +
+ baseline + age, data = resp, family = "binomial",
+ id = subject, corstr = "exchangeable", scale.fix = TRUE,
+ scale.value = 1)
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R> summary(btb_gee)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Identity
Variance to Mean Relation: Gaussian
Correlation Structure: Independent

Call:
gee(formula = bdi ~ bdi.pre + treatment + length + drug, id = subject,

data = BtheB_long, family = gaussian, corstr = "independence")

Summary of Residuals:
Min 1Q Median 3Q Max

-21.6497810 -5.8485100 0.1131663 5.5838383 28.1871039

Coefficients:
Estimate Naive S.E. Naive z Robust S.E.

(Intercept) 3.5686314 1.4833349 2.405816 2.26947617
bdi.pre 0.5818494 0.0563904 10.318235 0.09156455
treatmentBtheB -3.2372285 1.1295569 -2.865928 1.77459534
length>6m 1.4577182 1.1380277 1.280916 1.48255866
drugYes -3.7412982 1.1766321 -3.179667 1.78271179

Robust z
(Intercept) 1.5724472
bdi.pre 6.3545274
treatmentBtheB -1.8242066
length>6m 0.9832449
drugYes -2.0986557

Estimated Scale Parameter: 79.25813
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

Figure 11.1 R output of the summary method for the btb_gee model.
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R> summary(btb_gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Identity
Variance to Mean Relation: Gaussian
Correlation Structure: Exchangeable

Call:
gee(formula = bdi ~ bdi.pre + treatment + length + drug, id = subject,

data = BtheB_long, family = gaussian, corstr = "exchangeable")

Summary of Residuals:
Min 1Q Median 3Q Max

-23.955980 -6.643864 -1.109741 4.257688 25.452310

Coefficients:
Estimate Naive S.E. Naive z Robust S.E.

(Intercept) 3.0231602 2.30390185 1.31219140 2.23204410
bdi.pre 0.6479276 0.08228567 7.87412417 0.08351405
treatmentBtheB -2.1692863 1.76642861 -1.22806339 1.73614385
length>6m -0.1112910 1.73091679 -0.06429596 1.55092705
drugYes -2.9995608 1.82569913 -1.64296559 1.73155411

Robust z
(Intercept) 1.3544357
bdi.pre 7.7583066
treatmentBtheB -1.2494854
length>6m -0.0717577
drugYes -1.7322940

Estimated Scale Parameter: 81.7349
Number of Iterations: 5

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.6757951 0.6757951 0.6757951
[2,] 0.6757951 1.0000000 0.6757951 0.6757951
[3,] 0.6757951 0.6757951 1.0000000 0.6757951
[4,] 0.6757951 0.6757951 0.6757951 1.0000000

Figure 11.2 R output of the summary method for the btb_gee1 model.
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R> summary(resp_glm)

Call:
glm(formula = status ~ centre + treatment + sex + baseline +

age, family = "binomial", data = resp)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.3146 -0.8551 0.4336 0.8953 1.9246

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.900171 0.337653 -2.666 0.00768 **
centre2 0.671601 0.239567 2.803 0.00506 **
treatmenttreatment 1.299216 0.236841 5.486 4.12e-08 ***
sexmale 0.119244 0.294671 0.405 0.68572
baselinegood 1.882029 0.241290 7.800 6.20e-15 ***
age -0.018166 0.008864 -2.049 0.04043 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 608.93 on 443 degrees of freedom
Residual deviance: 483.22 on 438 degrees of freedom
AIC: 495.22

Number of Fisher Scoring iterations: 4

Figure 11.3 R output of the summary method for the resp_glm model.
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R> summary(resp_gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Independent

Call:
gee(formula = nstat ~ centre + treatment + sex + baseline + age,

id = subject, data = resp, family = "binomial", corstr = "independence",
scale.fix = TRUE, scale.value = 1)

Summary of Residuals:
Min 1Q Median 3Q Max

-0.93134415 -0.30623174 0.08973552 0.33018952 0.84307712

Coefficients:
Estimate Naive S.E. Naive z

(Intercept) -0.90017133 0.337653052 -2.665965
centre2 0.67160098 0.239566599 2.803400
treatmenttreatment 1.29921589 0.236841017 5.485603
sexmale 0.11924365 0.294671045 0.404667
baselinegood 1.88202860 0.241290221 7.799854
age -0.01816588 0.008864403 -2.049306

Robust S.E. Robust z
(Intercept) 0.46032700 -1.9555041
centre2 0.35681913 1.8821889
treatmenttreatment 0.35077797 3.7038127
sexmale 0.44320235 0.2690501
baselinegood 0.35005152 5.3764332
age 0.01300426 -1.3969169

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

Figure 11.4 R output of the summary method for the resp_gee1 model.
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R> summary(resp_gee2)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logit
Variance to Mean Relation: Binomial
Correlation Structure: Exchangeable

Call:
gee(formula = nstat ~ centre + treatment + sex + baseline + age,

id = subject, data = resp, family = "binomial", corstr = "exchangeable",
scale.fix = TRUE, scale.value = 1)

Summary of Residuals:
Min 1Q Median 3Q Max

-0.93134415 -0.30623174 0.08973552 0.33018952 0.84307712

Coefficients:
Estimate Naive S.E. Naive z

(Intercept) -0.90017133 0.47846344 -1.8813796
centre2 0.67160098 0.33947230 1.9783676
treatmenttreatment 1.29921589 0.33561008 3.8712064
sexmale 0.11924365 0.41755678 0.2855747
baselinegood 1.88202860 0.34191472 5.5043802
age -0.01816588 0.01256110 -1.4462014

Robust S.E. Robust z
(Intercept) 0.46032700 -1.9555041
centre2 0.35681913 1.8821889
treatmenttreatment 0.35077797 3.7038127
sexmale 0.44320235 0.2690501
baselinegood 0.35005152 5.3764332
age 0.01300426 -1.3969169

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.3359883 0.3359883 0.3359883
[2,] 0.3359883 1.0000000 0.3359883 0.3359883
[3,] 0.3359883 0.3359883 1.0000000 0.3359883
[4,] 0.3359883 0.3359883 0.3359883 1.0000000

Figure 11.5 R output of the summary method for the resp_gee2 model.
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The estimated treatment effect taken from the exchangeable structure GEE
model is 1.299 which, using the robust standard errors, has an associated 95%
confidence interval
R> se <- summary(resp_gee2)$coefficients["treatmenttreatment",
+ "Robust S.E."]
R> coef(resp_gee2)["treatmenttreatment"] + c(-1, 1) *
+ se * qnorm(0.975)

[1] 0.6117037 1.9867281

These values reflect effects on the log-odds scale. Interpretation becomes sim-
pler if we exponentiate the values to get the effects in terms of odds. This
gives a treatment effect of 3.666 and a 95% confidence interval of
R> exp(coef(resp_gee2)["treatmenttreatment"] + c(-1,
+ 1) * se * qnorm(0.975))

[1] 1.843570 7.291637

The odds of achieving a ‘good’ respiratory status with the active treatment is
between about twice and seven times the corresponding odds for the placebo.

11.3.3 Epilepsy

Moving on to the count data in epilepsy from Table ??, we begin by calcu-
lating the means and variances of the number of seizures for all treatment /
period interactions
R> data("epilepsy", package = "HSAUR")
R> itp <- interaction(epilepsy$treatment, epilepsy$period)
R> tapply(epilepsy$seizure.rate, itp, mean)

placebo.1 Progabide.1 placebo.2 Progabide.2 placebo.3
9.357143 8.580645 8.285714 8.419355 8.785714

Progabide.3 placebo.4 Progabide.4
8.129032 7.964286 6.709677

R> tapply(epilepsy$seizure.rate, itp, var)

placebo.1 Progabide.1 placebo.2 Progabide.2 placebo.3
102.75661 332.71828 66.65608 140.65161 215.28571

Progabide.3 placebo.4 Progabide.4
193.04946 58.18386 126.87957

Some of the variances are considerably larger than the corresponding means,
which for a Poisson variable may suggest that overdispersion may be a prob-
lem, see Chapter ??. We can now fit a Poisson regression model to the data
assuming independence using the glm function. We also use the GEE approach
to fit an independence structure, followed by an exchangeable structure using
the following R code:
R> per <- rep(log(2), nrow(epilepsy))
R> epilepsy$period <- as.numeric(epilepsy$period)
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R> layout(matrix(1:2, nrow = 1))
R> ylim <- range(epilepsy$seizure.rate)
R> placebo <- subset(epilepsy, treatment == "placebo")
R> progabide <- subset(epilepsy, treatment == "Progabide")
R> boxplot(seizure.rate ~ period, data = placebo, ylab = "Number of seizures",
+ xlab = "Period", ylim = ylim, main = "Placebo")
R> boxplot(seizure.rate ~ period, data = progabide,
+ main = "Progabide", ylab = "Number of seizures",
+ xlab = "Period", ylim = ylim)
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Figure 11.6 Boxplots of numbers of seizures in each two-week period post ran-
domisation for placebo and active treatments.

R> epilepsy_glm <- glm(seizure.rate ~ base + age +
+ treatment + offset(per), data = epilepsy, family = "poisson")
R> epilepsy_gee1 <- gee(seizure.rate ~ base + age +
+ treatment + offset(per), data = epilepsy, family = "poisson",
+ id = subject, corstr = "independence", scale.fix = TRUE,
+ scale.value = 1)
R> epilepsy_gee2 <- gee(seizure.rate ~ base + age +
+ treatment + offset(per), data = epilepsy, family = "poisson",
+ id = subject, corstr = "exchangeable", scale.fix = TRUE,
+ scale.value = 1)
R> epilepsy_gee3 <- gee(seizure.rate ~ base + age +
+ treatment + offset(per), data = epilepsy, family = "poisson",
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R> layout(matrix(1:2, nrow = 1))
R> ylim <- range(log(epilepsy$seizure.rate + 1))
R> boxplot(log(seizure.rate + 1) ~ period, data = placebo,
+ main = "Placebo", ylab = "Log number of seizures",
+ xlab = "Period", ylim = ylim)
R> boxplot(log(seizure.rate + 1) ~ period, data = progabide,
+ main = "Progabide", ylab = "Log number of seizures",
+ xlab = "Period", ylim = ylim)
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Figure 11.7 Boxplots of log of numbers of seizures in each two-week period post
randomisation for placebo and active treatments.

+ id = subject, corstr = "exchangeable", scale.fix = FALSE,
+ scale.value = 1)

As usual we inspect the fitted models using the summary method, the results
are given in Figures 11.8, 11.9, 11.10, and 11.11.
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R> summary(epilepsy_glm)

Call:
glm(formula = seizure.rate ~ base + age + treatment + offset(per),

family = "poisson", data = epilepsy)

Deviance Residuals:
Min 1Q Median 3Q Max

-4.4360 -1.4034 -0.5029 0.4842 12.3223

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.1306156 0.1356191 -0.963 0.33549
base 0.0226517 0.0005093 44.476 < 2e-16 ***
age 0.0227401 0.0040240 5.651 1.59e-08 ***
treatmentProgabide -0.1527009 0.0478051 -3.194 0.00140 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2521.75 on 235 degrees of freedom
Residual deviance: 958.46 on 232 degrees of freedom
AIC: 1732.5

Number of Fisher Scoring iterations: 5

Figure 11.8 R output of the summary method for the epilepsy_glm model.
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R> summary(epilepsy_gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logarithm
Variance to Mean Relation: Poisson
Correlation Structure: Independent

Call:
gee(formula = seizure.rate ~ base + age + treatment + offset(per),

id = subject, data = epilepsy, family = "poisson", corstr = "independence",
scale.fix = TRUE, scale.value = 1)

Summary of Residuals:
Min 1Q Median 3Q Max

-4.9195387 0.1808059 1.7073405 4.8850644 69.9658560

Coefficients:
Estimate Naive S.E. Naive z

(Intercept) -0.13061561 0.1356191185 -0.9631062
base 0.02265174 0.0005093011 44.4761250
age 0.02274013 0.0040239970 5.6511312
treatmentProgabide -0.15270095 0.0478051054 -3.1942393

Robust S.E. Robust z
(Intercept) 0.365148155 -0.3577058
base 0.001235664 18.3316325
age 0.011580405 1.9636736
treatmentProgabide 0.171108915 -0.8924196

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1

Figure 11.9 R output of the summary method for the epilepsy_gee1 model.
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R> summary(epilepsy_gee2)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logarithm
Variance to Mean Relation: Poisson
Correlation Structure: Exchangeable

Call:
gee(formula = seizure.rate ~ base + age + treatment + offset(per),

id = subject, data = epilepsy, family = "poisson", corstr = "exchangeable",
scale.fix = TRUE, scale.value = 1)

Summary of Residuals:
Min 1Q Median 3Q Max

-4.9195387 0.1808059 1.7073405 4.8850644 69.9658560

Coefficients:
Estimate Naive S.E. Naive z

(Intercept) -0.13061561 0.2004416507 -0.651639
base 0.02265174 0.0007527342 30.092612
age 0.02274013 0.0059473665 3.823564
treatmentProgabide -0.15270095 0.0706547450 -2.161227

Robust S.E. Robust z
(Intercept) 0.365148155 -0.3577058
base 0.001235664 18.3316325
age 0.011580405 1.9636736
treatmentProgabide 0.171108915 -0.8924196

Estimated Scale Parameter: 1
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.3948033 0.3948033 0.3948033
[2,] 0.3948033 1.0000000 0.3948033 0.3948033
[3,] 0.3948033 0.3948033 1.0000000 0.3948033
[4,] 0.3948033 0.3948033 0.3948033 1.0000000

Figure 11.10 R output of the summary method for the epilepsy_gee2 model.
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R> summary(epilepsy_gee3)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Logarithm
Variance to Mean Relation: Poisson
Correlation Structure: Exchangeable

Call:
gee(formula = seizure.rate ~ base + age + treatment + offset(per),

id = subject, data = epilepsy, family = "poisson", corstr = "exchangeable",
scale.fix = FALSE, scale.value = 1)

Summary of Residuals:
Min 1Q Median 3Q Max

-4.9195387 0.1808059 1.7073405 4.8850644 69.9658560

Coefficients:
Estimate Naive S.E. Naive z

(Intercept) -0.13061561 0.452199543 -0.2888451
base 0.02265174 0.001698180 13.3388301
age 0.02274013 0.013417353 1.6948302
treatmentProgabide -0.15270095 0.159398225 -0.9579840

Robust S.E. Robust z
(Intercept) 0.365148155 -0.3577058
base 0.001235664 18.3316325
age 0.011580405 1.9636736
treatmentProgabide 0.171108915 -0.8924196

Estimated Scale Parameter: 5.089608
Number of Iterations: 1

Working Correlation
[,1] [,2] [,3] [,4]

[1,] 1.0000000 0.3948033 0.3948033 0.3948033
[2,] 0.3948033 1.0000000 0.3948033 0.3948033
[3,] 0.3948033 0.3948033 1.0000000 0.3948033
[4,] 0.3948033 0.3948033 0.3948033 1.0000000

Figure 11.11 R output of the summary method for the epilepsy_gee3 model.
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CHAPTER 12

Meta-Analysis: Nicotine Gum and
Smoking Cessation and the Efficacy of

BCG Vaccine in the Treatment of
Tuberculosis

12.1 Introduction

12.2 Systematic Reviews and Meta-Analysis

12.3 Analysis Using R

The aim in collecting the results from the randomised trials of using nicotine
gum to help smokers quit was to estimate the overall odds ratio, the odds of
quitting smoking for those given the gum, divided by the odds of quitting for
those not receiving the gum. The odds ratios and corresponding confidence
intervals are computed by means of the meta.MH function for fixed effects
meta-analysis as shown here
R> library("rmeta")
R> data("smoking", package = "HSAUR")
R> smokingOR <- meta.MH(smoking[["tt"]], smoking[["tc"]],
+ smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))

and the results can be inspected via a summary method – see Figure 12.1.
We shall use both the fixed effects and random effects approaches here so

that we can compare results. For the fixed effects model (see Figure 12.1) the
estimated overall log-odds ratio is 0.513 with a standard error of 0.066. This
leads to an estimate of the overall odds ratio of 1.67, with a 95% confidence
interval as given above. For the random effects model
R> smokingDSL <- meta.DSL(smoking[["tt"]], smoking[["tc"]],
+ smoking[["qt"]], smoking[["qc"]], names = rownames(smoking))
R> print(smokingDSL)

Random effects ( DerSimonian-Laird ) meta-analysis
Call: meta.DSL(ntrt = smoking[["tt"]], nctrl = smoking[["tc"]], ptrt = smoking[["qt"]],

pctrl = smoking[["qc"]], names = rownames(smoking))
Summary OR= 1.75 95% CI ( 1.48, 2.07 )
Estimated random effects variance: 0.05

the corresponding estimate is 1.751. Both models suggest that there is clear
evidence that nicotine gum increases the odds of quitting. The random effects
confidence interval is considerably wider than that from the fixed effects model;

3
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R> summary(smokingOR)

Fixed effects ( Mantel-Haenszel ) meta-analysis
Call: meta.MH(ntrt = smoking[["tt"]], nctrl = smoking[["tc"]], ptrt = smoking[["qt"]],

pctrl = smoking[["qc"]], names = rownames(smoking))
------------------------------------

OR (lower 95% upper)
Blondal89 1.85 0.99 3.46
Campbell91 0.98 0.50 1.92
Fagerstrom82 1.76 0.80 3.89
Fee82 1.53 0.77 3.05
Garcia89 2.95 1.01 8.62
Garvey00 2.49 1.43 4.34
Gross95 2.62 1.03 6.71
Hall85 2.03 0.78 5.29
Hall87 2.82 1.33 5.99
Hall96 0.87 0.46 1.64
Hjalmarson84 2.17 1.10 4.28
Huber88 6.00 2.57 14.01
Jarvis82 3.33 1.37 8.08
Jensen91 1.43 0.84 2.44
Killen84 1.33 0.43 4.15
Killen90 1.23 0.93 1.64
Malcolm80 3.52 0.85 14.54
McGovern92 1.17 0.70 1.94
Nakamura90 3.82 1.15 12.71
Niaura94 1.34 0.35 5.19
Pirie92 1.84 1.20 2.82
Puska79 1.46 0.78 2.75
Schneider85 1.71 0.52 5.62
Tonnesen88 2.12 0.93 4.86
Villa99 1.76 0.55 5.64
Zelman92 1.46 0.68 3.14
------------------------------------
Mantel-Haenszel OR =1.67 95% CI ( 1.47,1.9 )
Test for heterogeneity: X^2( 25 ) = 34.9 ( p-value 0.09 )

Figure 12.1 R output of the summary method for smokingOR.

here the test of homogeneity of the studies is not significant implying that we
might use the fixed effects results. But the test is not particularly powerful
and it is more sensible to assume a priori that heterogeneity is present and so
we use the results from the random effects model.
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R> plot(smokingOR, ylab = "")

Odds Ratio

0.40 1.00 2.51 6.31 15.85

Blondal89
Campbell91
Fagerstrom82
Fee82
Garcia89
Garvey00
Gross95
Hall85
Hall87
Hall96
Hjalmarson84
Huber88
Jarvis82
Jensen91
Killen84
Killen90
Malcolm80
McGovern92
Nakamura90
Niaura94
Pirie92
Puska79
Schneider85
Tonnesen88
Villa99
Zelman92

Summary

Figure 12.2 Forest plot of observed effect sizes and 95% confidence intervals for
the nicotine gum studies.
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12.4 Meta-Regression

The examination of heterogeneity of the effect sizes from the studies in a
meta-analysis begins with the formal test for its presence, although in most
meta-analyses such heterogeneity can almost be assumed to be present. There
will be many possible sources of such heterogeneity and estimating how these
various factors affect the observed effect sizes in the studies chosen is often
of considerable interest and importance, indeed usually more important than
the relatively simplistic use of meta-analysis to determine a single summary
estimate of overall effect size. We can illustrate the process using the BCG
vaccine data. We first find the estimate of the overall effect size from applying
the fixed effects and the random effects models described previously:
R> data("BCG", package = "HSAUR")
R> BCG_OR <- meta.MH(BCG[["BCGVacc"]], BCG[["NoVacc"]],
+ BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study)
R> BCG_DSL <- meta.DSL(BCG[["BCGVacc"]], BCG[["NoVacc"]],
+ BCG[["BCGTB"]], BCG[["NoVaccTB"]], names = BCG$Study)

The results are inspected using the summary method as shown in Figures 12.3
and 12.4. To assess how the two covariates, latitude and year,

R> summary(BCG_OR)

Fixed effects ( Mantel-Haenszel ) meta-analysis
Call: meta.MH(ntrt = BCG[["BCGVacc"]], nctrl = BCG[["NoVacc"]], ptrt = BCG[["BCGTB"]],

pctrl = BCG[["NoVaccTB"]], names = BCG$Study)
------------------------------------

OR (lower 95% upper)
1 0.39 0.12 1.26
2 0.19 0.08 0.46
3 0.25 0.07 0.91
4 0.23 0.18 0.31
5 0.80 0.51 1.26
6 0.38 0.32 0.47
7 0.20 0.08 0.50
8 1.01 0.89 1.15
9 0.62 0.39 1.00
10 0.25 0.14 0.42
11 0.71 0.57 0.89
12 1.56 0.37 6.55
13 0.98 0.58 1.66
------------------------------------
Mantel-Haenszel OR =0.62 95% CI ( 0.57,0.68 )
Test for heterogeneity: X^2( 12 ) = 163.94 ( p-value 0 )

Figure 12.3 R output of the summary method for BCG_OR.

relate to the observed effect sizes we shall use multiple linear regression but
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R> summary(BCG_DSL)

Random effects ( DerSimonian-Laird ) meta-analysis
Call: meta.DSL(ntrt = BCG[["BCGVacc"]], nctrl = BCG[["NoVacc"]], ptrt = BCG[["BCGTB"]],

pctrl = BCG[["NoVaccTB"]], names = BCG$Study)
------------------------------------

OR (lower 95% upper)
1 0.39 0.12 1.26
2 0.19 0.08 0.46
3 0.25 0.07 0.91
4 0.23 0.18 0.31
5 0.80 0.51 1.26
6 0.38 0.32 0.47
7 0.20 0.08 0.50
8 1.01 0.89 1.15
9 0.62 0.39 1.00
10 0.25 0.14 0.42
11 0.71 0.57 0.89
12 1.56 0.37 6.55
13 0.98 0.58 1.66
------------------------------------
SummaryOR= 0.47 95% CI ( 0.32,0.69 )
Test for heterogeneity: X^2( 12 ) = 163.16 ( p-value 0 )
Estimated random effects variance: 0.37

Figure 12.4 R output of the summary method for BCG_DSL.

will weight each observation by Wi = (σ̂2 + V 2
i )−1, i = 1, . . . , 13, where σ̂2 is

the estimated between-study variance and V 2
i is the estimated variance from

the ith study. The required R code to fit the linear model via weighted least
squares is:
R> studyweights <- 1/(BCG_DSL$tau2 + BCG_DSL$selogs)
R> y <- BCG_DSL$logs
R> BCG_mod <- lm(y ~ Latitude + Year, data = BCG, weights = studyweights)

and the results of the summary method are shown in Figure 12.5. There is
some evidence that latitude is associated with observed effect size, the log-
odds ratio becoming increasingly negative as latitude increases, as we can see
from a scatterplot of the two variables with the added weighted regression fit
seen in Figure 12.6.

12.5 Publication Bias

We can construct a funnel plot for the nicotine gum data using the R code
depicted with Figure 12.8. There does not appear to be any strong evidence
of publication bias here.
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R> summary(BCG_mod)

Call:
lm(formula = y ~ Latitude + Year, data = BCG, weights = studyweights)

Residuals:
Min 1Q Median 3Q Max

-1.40868 -0.33622 -0.04847 0.25412 1.13362

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -14.521025 37.178382 -0.391 0.7043
Latitude -0.026463 0.013553 -1.953 0.0794 .
Year 0.007442 0.018755 0.397 0.6998
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6862 on 10 degrees of freedom
Multiple R-Squared: 0.45, Adjusted R-squared: 0.34
F-statistic: 4.091 on 2 and 10 DF, p-value: 0.05033

Figure 12.5 R output of the summary method for BCG_mod.
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R> plot(y ~ Latitude, data = BCG, ylab = "Estimated log-OR")
R> abline(lm(y ~ Latitude, data = BCG, weights = studyweights))
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Figure 12.6 Plot of observed effect size for the BCG vaccine data against latitude,
with a weighted least squares regression fit shown in addition.
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Figure 12.7 Example funnel plots from simulated data. The asymmetry in the
lower plot is a hint that a publication bias might be a problem.
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R> funnelplot(smokingDSL$logs, smokingDSL$selogs, summ = smokingDSL$logDSL,
+ xlim = c(-1.7, 1.7))
R> abline(v = 0, lty = 2)
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Figure 12.8 Funnel plot for nicotine gum data.



CHAPTER 13

Principal Component Analysis: The
Olympic Heptathlon

13.1 Introduction

13.2 Principal Component Analysis

13.3 Analysis Using R

To begin it will help to score all the seven events in the same direction, so that
‘large’ values are ‘good’. We will recode the running events to achieve this;
R> data("heptathlon", package = "HSAUR")
R> heptathlon$hurdles <- max(heptathlon$hurdles) -
+ heptathlon$hurdles
R> heptathlon$run200m <- max(heptathlon$run200m) -
+ heptathlon$run200m
R> heptathlon$run800m <- max(heptathlon$run800m) -
+ heptathlon$run800m

Figure 13.1 shows a scatterplot matrix of the results from the 25 competitors
on the seven events. We see that most pairs of events are positively correlated
to a greater or lesser degree. The exceptions all involve the javelin event –
this is the only really ‘technical’ event and it is clear that training to become
successful in the other six ‘power’-based events makes this event difficult for
the majority of the competitors. We can examine the numerical values of the
correlations by applying the cor function
R> round(cor(heptathlon[, -score]), 2)

hurdles highjump shot run200m longjump javelin run800m
hurdles 1.00 0.81 0.65 0.77 0.91 0.01 0.78
highjump 0.81 1.00 0.44 0.49 0.78 0.00 0.59
shot 0.65 0.44 1.00 0.68 0.74 0.27 0.42
run200m 0.77 0.49 0.68 1.00 0.82 0.33 0.62
longjump 0.91 0.78 0.74 0.82 1.00 0.07 0.70
javelin 0.01 0.00 0.27 0.33 0.07 1.00 -0.02
run800m 0.78 0.59 0.42 0.62 0.70 -0.02 1.00

This correlation matrix demonstrates again the points made earlier. A prin-
cipal component analysis of the data can be applied using the prcomp func-
tion. The result is a list containing the coefficients defining each component
(sometimes referred to as loadings), the principal component scores, etc. The
required code is (omitting the score variable)

3
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R> score <- which(colnames(heptathlon) == "score")
R> plot(heptathlon[, -score])
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Figure 13.1 Scatterplot matrix for the heptathlon data.

R> heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE)
R> print(heptathlon_pca)

Standard deviations:
[1] 2.1119364 1.0928497 0.7218131 0.6761411 0.4952441 0.2701029
[7] 0.2213617

Rotation:
PC1 PC2 PC3 PC4

hurdles -0.4528710 0.15792058 -0.04514996 0.02653873
highjump -0.3771992 0.24807386 -0.36777902 0.67999172
shot -0.3630725 -0.28940743 0.67618919 0.12431725
run200m -0.4078950 -0.26038545 0.08359211 -0.36106580
longjump -0.4562318 0.05587394 0.13931653 0.11129249
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javelin -0.0754090 -0.84169212 -0.47156016 0.12079924
run800m -0.3749594 0.22448984 -0.39585671 -0.60341130

PC5 PC6 PC7
hurdles -0.09494792 -0.78334101 0.38024707
highjump 0.01879888 0.09939981 -0.43393114
shot 0.51165201 -0.05085983 -0.21762491
run200m -0.64983404 0.02495639 -0.45338483
longjump -0.18429810 0.59020972 0.61206388
javelin 0.13510669 -0.02724076 0.17294667
run800m 0.50432116 0.15555520 -0.09830963

The summary method can be used for further inspection of the details:
R> summary(heptathlon_pca)

Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 2.112 1.093 0.7218 0.6761 0.4952 0.2701
Proportion of Variance 0.637 0.171 0.0744 0.0653 0.0350 0.0104
Cumulative Proportion 0.637 0.808 0.8822 0.9475 0.9826 0.9930

PC7
Standard deviation 0.221
Proportion of Variance 0.007
Cumulative Proportion 1.000

The linear combination for the first principal component is
R> a1 <- heptathlon_pca$rotation[, 1]
R> a1

hurdles highjump shot run200m longjump
-0.4528710 -0.3771992 -0.3630725 -0.4078950 -0.4562318

javelin run800m
-0.0754090 -0.3749594

We see that the 200m and long jump competitions receive the highest weight
but the javelin result is less important. For computing the first principal com-
ponent, the data need to be rescaled appropriately. The center and the scaling
used by prcomp internally can be extracted from the heptathlon_pca via
R> center <- heptathlon_pca$center
R> scale <- heptathlon_pca$scale

Now, we can apply the scale function to the data and multiply with the
loadings matrix in order to compute the first principal component score for
each competitor
R> hm <- as.matrix(heptathlon[, -score])
R> drop(scale(hm, center = center, scale = scale) %*%
+ heptathlon_pca$rotation[, 1])

Joyner-Kersee (USA) John (GDR) Behmer (GDR)
-4.121447626 -2.882185935 -2.649633766

Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)
-1.343351210 -1.359025696 -1.043847471
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Fleming (AUS) Greiner (USA) Lajbnerova (CZE)
-1.100385639 -0.923173639 -0.530250689
Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL)
-0.759819024 -0.556268302 -1.186453832

Scheider (SWI) Braun (FRG) Ruotsalainen (FIN)
0.015461226 0.003774223 0.090747709
Yuping (CHN) Hagger (GB) Brown (USA)
-0.137225440 0.171128651 0.519252646

Mulliner (GB) Hautenauve (BEL) Kytola (FIN)
1.125481833 1.085697646 1.447055499

Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR)
2.014029620 2.880298635 2.970118607
Launa (PNG)
6.270021972

or, more conveniently, by extracting the first from all precomputed principal
components
R> predict(heptathlon_pca)[, 1]

Joyner-Kersee (USA) John (GDR) Behmer (GDR)
-4.121447626 -2.882185935 -2.649633766

Sablovskaite (URS) Choubenkova (URS) Schulz (GDR)
-1.343351210 -1.359025696 -1.043847471
Fleming (AUS) Greiner (USA) Lajbnerova (CZE)
-1.100385639 -0.923173639 -0.530250689
Bouraga (URS) Wijnsma (HOL) Dimitrova (BUL)
-0.759819024 -0.556268302 -1.186453832

Scheider (SWI) Braun (FRG) Ruotsalainen (FIN)
0.015461226 0.003774223 0.090747709
Yuping (CHN) Hagger (GB) Brown (USA)
-0.137225440 0.171128651 0.519252646
Mulliner (GB) Hautenauve (BEL) Kytola (FIN)
1.125481833 1.085697646 1.447055499

Geremias (BRA) Hui-Ing (TAI) Jeong-Mi (KOR)
2.014029620 2.880298635 2.970118607
Launa (PNG)
6.270021972

The first two components account for 81% of the variance. A barplot of each
component’s variance (see Figure 13.2) shows how the first two components
dominate. A plot of the data in the space of the first two principal components,
with the points labelled by the name of the corresponding competitor can be
produced as shown with Figure 13.3. In addition, the first two loadings for the
events are given in a second coordinate system, also illustrating the special role
of the javelin event. This graphical representation is known as biplot (?). The
correlation between the score given to each athlete by the standard scoring
system used for the heptathlon and the first principal component score can
be found from
R> cor(heptathlon$score, heptathlon_pca$x[, 1])
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R> plot(heptathlon_pca)
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Figure 13.2 Barplot of the variances explained by the principal components.

[1] -0.9910978

This implies that the first principal component is in good agreement with the
score assigned to the athletes by official Olympic rules; a scatterplot of the
official score and the first principal component is given in Figure 13.4.
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R> biplot(heptathlon_pca, col = c("gray", "black"))
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Figure 13.3 Biplot of the (scaled) first two principal components.
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R> plot(heptathlon$score, heptathlon_pca$x[, 1])
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Figure 13.4 Scatterplot of the score assigned to each athlete in 1988 and the first
principal component.



CHAPTER 14

Multidimensional Scaling: British
Water Voles and Voting in US

Congress

14.1 Introduction

14.2 Multidimensional Scaling

14.3 Analysis Using R

We can apply classical scaling to the distance matrix for populations of water
voles using the R function cmdscale. The following code finds the classical
scaling solution and computes the two criteria for assessing the required num-
ber of dimensions as described above.

R> data("watervoles", package = "HSAUR")
R> voles_mds <- cmdscale(watervoles, k = 13, eig = TRUE)
R> voles_mds$eig

[1] 7.359910e-01 2.626003e-01 1.492622e-01 6.990457e-02
[5] 2.956972e-02 1.931184e-02 2.775558e-17 -1.139451e-02
[9] -1.279569e-02 -2.849924e-02 -4.251502e-02 -5.255450e-02
[13] -7.406143e-02

Note that some of the eigenvalues are negative. The criterion P2 can be com-
puted by

R> sum(abs(voles_mds$eig[1:2]))/sum(abs(voles_mds$eig))

[1] 0.6708889

and the criterion suggested by Mardia et al. (1979) is

R> sum((voles_mds$eig[1:2])^2)/sum((voles_mds$eig)^2)

[1] 0.9391378

The two criteria for judging number of dimensions differ considerably, but both
values are reasonably large, suggesting that the original distances between the
water vole populations can be represented adequately in two dimensions. The
two-dimensional solution can be plotted by extracting the coordinates from
the points element of the voles_mds object; the plot is shown in Figure 14.1.
We shall now apply non-metric scaling to the voting behaviour shown in

Table ??. Non-metric scaling is available with function isoMDS from package
MASS (Venables and Ripley, 2002):

3



4 MULTIDIMENSIONAL SCALING
R> x <- voles_mds$points[, 1]
R> y <- voles_mds$points[, 2]
R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",
+ xlim = range(x) * 1.2, type = "n")
R> text(x, y, labels = colnames(watervoles))
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Figure 14.1 Two-dimensional solution from classical multidimensional scaling of
distance matrix for water vole populations.

R> library("MASS")
R> data("voting", package = "HSAUR")
R> voting_mds <- isoMDS(voting)

and we again depict the two-dimensional solution (Figure 14.3). The Figure
suggests that voting behaviour is essentially along party lines, although there
is more variation among Republicans. The voting behaviour of one of the
Republicans (Rinaldo) seems to be closer to his democratic collegues rather
than to the voting behaviour of other Republicans.
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R> library("ape")
R> st <- mst(watervoles)
R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",
+ xlim = range(x) * 1.2, type = "n")
R> for (i in 1:nrow(watervoles)) {
+ w1 <- which(st[i, ] == 1)
+ segments(x[i], y[i], x[w1], y[w1])
+ }
R> text(x, y, labels = colnames(watervoles))
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Figure 14.2 Minimum spanning tree for the watervoles data.
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R> x <- voting_mds$points[, 1]
R> y <- voting_mds$points[, 2]
R> plot(x, y, xlab = "Coordinate 1", ylab = "Coordinate 2",
+ xlim = range(voting_mds$points[, 1]) * 1.2,
+ type = "n")
R> text(x, y, labels = colnames(voting))
R> voting_sh <- Shepard(voting[lower.tri(voting)],
+ voting_mds$points)
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Figure 14.3 Two-dimensional solution from non-metric multidimensional scaling
of distance matrix for voting matrix.
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R> library("MASS")
R> voting_sh <- Shepard(voting[lower.tri(voting)],
+ voting_mds$points)
R> plot(voting_sh, pch = ".", xlab = "Dissimilarity",
+ ylab = "Distance", xlim = range(voting_sh$x),
+ ylim = range(voting_sh$x))
R> lines(voting_sh$x, voting_sh$yf, type = "S")
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Figure 14.4 The Shepard diagram for the voting data shows some discrepancies
between the original dissimilarities and the multidimensional scaling
solution.
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CHAPTER 15

Cluster Analysis: Classifying the
Exoplanets

15.1 Introduction

15.2 Cluster Analysis

15.3 Analysis Using R

Sadly Figure 15.2 gives no completely convincing verdict on the number of
groups we should consider, but using a little imagination ‘little elbows’ can
be spotted at the three and five group solutions. We can find the number of
planets in each group using
R> planet_kmeans3 <- kmeans(planet.dat, centers = 3)
R> table(planet_kmeans3$cluster)

1 2 3
28 10 63

The centers of the clusters for the untransformed data can be computed using
a small convenience function
R> ccent <- function(cl) {
+ f <- function(i) colMeans(planets[cl == i, ])
+ x <- sapply(sort(unique(cl)), f)
+ colnames(x) <- sort(unique(cl))
+ return(x)
+ }

which, applied to the three cluster solution obtained by k-means gets
R> ccent(planet_kmeans3$cluster)

1 2 3
mass 7.0532143 3.4360 1.6540635
period 839.1644356 2420.5500 311.3897179
eccen 0.5184643 0.2718 0.1777984

for the three cluster solution and, for the five cluster solution using
R> planet_kmeans5 <- kmeans(planet.dat, centers = 5)
R> table(planet_kmeans5$cluster)

1 2 3 4 5
28 5 7 49 12

R> ccent(planet_kmeans5$cluster)

3



4 CLUSTER ANALYSIS
R> data("planets", package = "HSAUR")
R> library("scatterplot3d")
R> scatterplot3d(log(planets$mass), log(planets$period),
+ log(planets$eccen), type = "h", angle = 55,
+ scale.y = 0.7, pch = 16, y.ticklabs = seq(0,
+ 10, by = 2), y.margin.add = 0.1)
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Figure 15.1 3D scatterplot of the logarithms of the three variables available for
each of the exoplanets.

1 2 3 4 5
mass 2.2617857 14.3480 2.185714 1.6846122 8.595
period 580.6828929 659.3976 2557.642857 282.2685965 1335.740
eccen 0.4910714 0.3268 0.199000 0.1221082 0.473
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R> rge <- apply(planets, 2, max) - apply(planets, 2,
+ min)
R> planet.dat <- sweep(planets, 2, rge, FUN = "/")
R> n <- nrow(planet.dat)
R> wss <- rep(0, 10)
R> wss[1] <- (n - 1) * sum(apply(planet.dat, 2, var))
R> for (i in 2:10) wss[i] <- sum(kmeans(planet.dat,
+ centers = i)$withinss)
R> plot(1:10, wss, type = "b", xlab = "Number of groups",
+ ylab = "Within groups sum of squares")
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Figure 15.2 Within-cluster sum of squares for different numbers of clusters for
the exoplanet data.
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R> plot(planet_mclust, planet.dat, what = "BIC", col = "black",
+ ylab = "-BIC")
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Figure 15.3 Plot of BIC values for a variety of models and a range of number of
clusters.

15.3.1 Model-based Clustering in R

We now proceed to apply model-based clustering to the planets data. R func-
tions for model-based clustering are available in package mclust (Fraley et al.,
2006, Fraley and Raftery, 2002). Here we use the Mclust function since this
selects both the most appropriate model for the data and the optimal number
of groups based on the values of the BIC computed over several models and
a range of values for number of groups. The necessary code is:

R> library("mclust")
R> planet_mclust <- Mclust(planet.dat)

and we first examine a plot of BIC values using The resulting diagram is
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shown in Figure 15.3. In this diagram the numbers refer to different model
assumptions about the shape of clusters:
1. Spherical, equal volume,
2. Spherical, unequal volume,
3. Diagonal equal volume, equal shape,
4. Diagonal varying volume, varying shape,
5. Ellipsoidal, equal volume, shape and orientation,
6. Ellipsoidal, varying volume, shape and orientation.
The BIC selects model 4 (diagonal varying volume and varying shape) with
three clusters as the best solution as can be seen from the print output:
R> print(planet_mclust)

best model: VVI with 3 components

This solution can be shown graphically as a scatterplot matrix The plot is
shown in Figure 15.4. Figure 15.5 depicts the clustering solution in the three-
dimensional space. The number of planets in each cluster and the mean
vectors of the three clusters for the untransformed data can now be inspected
by using
R> table(planet_mclust$classification)

1 2 3
19 41 41

R> ccent(planet_mclust$classification)

1 2 3
mass 1.16652632 1.5797561 6.0761463
period 6.47180158 313.4127073 1325.5310048
eccen 0.03652632 0.3061463 0.3704951

Cluster 1 consists of planets about the same size as Jupiter with very short
periods and eccentricities (similar to the first cluster of the k-means solu-
tion). Cluster 2 consists of slightly larger planets with moderate periods and
large eccentricities, and cluster 3 contains the very large planets with very
large periods. These two clusters do not match those found by the k-means
approach.
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R> x <- clPairs(planet.dat, classification = planet_mclust$classification,
+ symbols = 1:3, col = "black")
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Figure 15.4 Scatterplot matrix of planets data showing a three cluster solution
from Mclust.
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R> scatterplot3d(log(planets$mass), log(planets$period),
+ log(planets$eccen), type = "h", angle = 55,
+ scale.y = 0.7, pch = planet_mclust$classification,
+ y.ticklabs = seq(0, 10, by = 2), y.margin.add = 0.1)

−3 −2 −1  0  1  2  3

−
5

−
4

−
3

−
2

−
1

 0

0

2

4

6

8

10

log(planets$mass)

lo
g(

pl
an

et
s$

pe
rio

d)

lo
g(

pl
an

et
s$

ec
ce

n)

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 15.5 3D scatterplot of planets data showing a three cluster solution from
Mclust.
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CHAPTER 16

Errata

The document gives a list of typos, errors, inconsistencies etc. which have been
spotted. Moreover, small numeric output differences which are due to updated
packages are reported here. To get a full list of differences run R CMD check
HSAUR on the source package.

Preface

Typo in name of vignette for Chapter 1, should read
R> vignette("Ch_introduction_to_R", package = "HSAUR")

and
R> edit(vignette("Ch_introduction_to_R", package = "HSAUR"))

As of version 1.0-3, only the correctly named vignette is available.

16.1 Introduction to R

Typo at page 20 (Ex. 1.5): number of companies, not number of countries.

16.2 Simple Inference

Typo at page 31, code line 4: use argument varwidth = TRUE, not var.width
= TRUE.

16.3 Conditional Inference

• The names of the test statistics in the output have been changed from T to
Z or chi-squared throughout the chapter.

• Reference Hothorn et al. (2006a) updated

16.4 Analysis of Variance

–nothing known–

16.5 Multiple Linear Regression

Page 83: both fitted and predict can be used to compute fitted values, the
later on can be applied to new unseen data as well.

3



4 ERRATA

16.6 Logistic Regression and Generalised Linear Models

Function myplot (page 100): the vfont argument in text has been changed
to family = "HersheySerif" (the resulting plots remain the same).

16.7 Density Estimation

• Page 121: small numeric differences for the output of optim
• update to mclust version 3.0-0 (new names of parameters in mclust objects)

16.8 Recursive Partitioning

• Page 139: small differences in predtab

• Page 140: small differences in table at bottom of this page
• Reference Hothorn et al. (2006b) updated

16.9 Survival Analysis

The name of the test statistic in the output of surv_test has been changed
to chi-squared.

16.10 Analysing Longitudinal Data I

Page 168, Figure 10.2: summary does not provide degrees of freedom and p-
values in newer versions of lme4.

16.11 Analysing Longitudinal Data II

–nothing known–

16.12 Meta-Analysis

–nothing known–

16.13 Principal Component Analysis

–nothing known–

16.14 Multidimensional Scaling

–nothing known–

16.15 Cluster Analysis

update to mclust version 3.0-0 (new plot method)
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Thanks
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BCG BCG Vaccine Data

Description

A meta-analysis on the efficacy of BCG vaccination against tuberculosis (TB).

Usage

data("BCG")
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Format

A data frame with 13 observations on the following 7 variables.

Study an identifier of the study.

BCGTB the number of subjects suffering from TB after a BCG vaccination.

BCGVacc the number of subjects with BCG vaccination.

NoVaccTB the number of subjects suffering from TB without BCG vaccination.

NoVacc the total number of subjects without BCG vaccination.

Latitude geographic position of the place the study was undertaken.

Year the year the study was undertaken.

Details

Bacille Calmette Guerin (BCG) is the most widely used vaccination in the world. Developed in the
1930s and made of a live, weakened strain of Mycobacterium bovis, the BCG is the only vaccination
available against tuberculosis today. Colditz et al. (1994) report data from 13 clinical trials of BCG
vaccine each investigating its efficacy in the treatment of tuberculosis. The number of subjects
suffering from TB with or without BCG vaccination are given here. In addition, the data contains
the values of two other variables for each study, namely, the geographic latitude of the place where
the study was undertaken and the year of publication. These two variables will be used to investigate
and perhaps explain any heterogeneity among the studies.

Source

G. A. Colditz, T. F. Brewer, C. S. Berkey, M. E. Wilson, E. Burdick, H. V. Fineberg and F. Mosteller
(1994), Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published
literature. Journal of the American Medical Association, 271(2), 698–702.

Examples

data("BCG", package = "HSAUR")
boxplot(BCG$BCGTB/BCG$BCGVacc, BCG$NoVaccTB/BCG$NoVacc,

names = c("BCG Vaccination", "No Vaccination"),
ylab = "Percent BCG cases")

BtheB Beat the Blues Data

Description

Data from a clinical trial of an interactive multimedia program called ‘Beat the Blues’.

Usage

data("BtheB")
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Format

A data frame with 100 observations of 100 patients on the following 8 variables.

drug did the patient take anti-depressant drugs (No or Yes).

length the length of the current episode of depression, a factor with levels <6m (less than six
months) and >6m (more than six months).

treatment treatment group, a factor with levels TAU (treatment as usual) and BtheB (Beat the
Blues)

bdi.pre Beck Depression Inventory II before treatment.

bdi.2m Beck Depression Inventory II after two months.

bdi.4m Beck Depression Inventory II after four months.

bdi.6m Beck Depression Inventory II after six months.

bdi.8m Beck Depression Inventory II after eight months.

Details

Longitudinal data from a clinical trial of an interactive, multimedia program known as "Beat the
Blues" designed to deliver cognitive behavioural therapy to depressed patients via a computer ter-
minal. Patients with depression recruited in primary care were randomised to either the Beating the
Blues program, or to "Treatment as Usual (TAU)".

Note that the data are stored in the wide form, i.e., repeated measurments are represented by addi-
tional columns in the data frame.

Source

J. Proudfoot, D. Goldberg and A. Mann (2003). Computerised, interactive, multimedia CBT re-
duced anxiety and depression in general practice: A RCT. Psychological Medicine, 33, 217–227.

Examples

data("BtheB", package = "HSAUR")
layout(matrix(1:2, nrow = 1))
ylim <- range(BtheB[,grep("bdi", names(BtheB))], na.rm = TRUE)
boxplot(subset(BtheB, treatment == "TAU")[,grep("bdi", names(BtheB))],

main = "Treated as usual", ylab = "BDI",
xlab = "Time (in months)", names = c(0, 2, 4, 6, 8), ylim = ylim)

boxplot(subset(BtheB, treatment == "BtheB")[,grep("bdi", names(BtheB))],
main = "Beat the Blues", ylab = "BDI", xlab = "Time (in months)",
names = c(0, 2, 4, 6, 8), ylim = ylim)
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CYGOB1 CYG OB1 Star Cluster Data

Description

Energy output and surface termperature for Star Cluster CYG OB1.

Usage

data("CYGOB1")

Format

A data frame with 47 observations on the following 2 variables.

logst log survface termperature of the star.

logli log light intensity of the star.

Details

The Hertzsprung-Russell (H-R) diagram forms the basis of the theory of stellar evolution. The
diagram is essentially a plot of the energy output of stars plotted against their surface temperature.
Data from the H-R diagram of Star Cluster CYG OB1, calibrated according to VanismaGreve1972
are given here.

Source

F. Vanisma and J. P. De Greve (1972), Close binary systems before and after mass transfer. Astro-
physics and Space Science, 87, 377–401.

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("CYGOB1", package = "HSAUR")
plot(logst ~ logli, data = CYGOB1)
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Forbes2000 The Forbes 2000 Ranking of the World’s Biggest Companies (Year
2004)

Description

The Forbes 2000 list is a ranking of the world’s biggest companies, measured by sales, profits,
assets and market value.

Usage

data("Forbes2000")

Format

A data frame with 2000 observations on the following 8 variables.

rank the ranking of the company.

name the name of the company.

country a factor giving the country the company is situated in.

category a factor describing the products the company produces.

sales the amount of sales of the company in billion USD.

profits the profit of the company in billion USD.

assets the assets of the company in billion USD.

marketvalue the market value of the company in billion USD.

Source

http://www.forbes.com, assessed on November 26th, 2004.

Examples

data("Forbes2000", package = "HSAUR")
summary(Forbes2000)
### number of countries
length(levels(Forbes2000$country))
### number of industries
length(levels(Forbes2000$category))

http://www.forbes.com
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HSAURtable Produce LaTeX Tables

Description

Generate longtable LaTeX environments.

Usage

HSAURtable(object, ...)
## S3 method for class 'table':
HSAURtable(object, xname = deparse(substitute(object)), pkg = NULL,

...)
## S3 method for class 'data.frame':
HSAURtable(object, xname = deparse(substitute(object)), pkg = NULL,

nrows = NULL, ...)
## S3 method for class 'tabtab':
toLatex(object, caption = NULL, label = NULL,

topcaption = TRUE, index = TRUE, ...)
## S3 method for class 'dftab':
toLatex(object, pcol = 1, caption = NULL,

label = NULL, rownames = FALSE, topcaption = TRUE, index = TRUE,
...)

Arguments

object an object of table or data.frame.

xname the name of the object.

pkg the package object comes from, optionally.

nrows the number of rows actually printed for a data.frame.

caption the (optional) caption of the table without label.

label the (optional) label to be defined for this table.

pcol the number of parallel columns.

rownames logical, should the rownames be printed in the first row without column name?

topcaption logical, should the captions be placed on top (default) of the table?

index logical, should an index entry be generated?

... additional arguments, currently ignored.

Details

Based on the data in object, an object from which a Latex table (in a longtable environment)
may be constructed (via toLatex) is generated.



8 Lanza

Value

An object of class tabtab or dftab for which toLatex methods are available.

toLatex produces objects of class Latex, a character vector, essentially.

Examples

data("rearrests", package = "HSAUR")
toLatex(HSAURtable(rearrests),

caption = "Rearrests of juvenile felons.",
label = "rearrests_tab")

Lanza Prevention of Gastointestinal Damages

Description

Data from four randomised clinical trials on the prevention of gastointestinal damages by Miso-
prostol reported by Lanza et al. (1987, 1988a,b, 1989).

Usage

data("Lanza")

Format

A data frame with 198 observations on the following 3 variables.

study a factor with levels I, II, III, and IV describing the study number.

treatment a factor with levels Misoprostol Placebo

classification an ordered factor with levels 1 < 2 < 3 < 4 < 5 describing an ordered response
variable.

Details

The response variable is defined by the number of haemorrhages or erosions.

Source

F. L. Lanza (1987), A double-blind study of prophylactic effect of misoprostol on lesions of gastric
and duodenal mucosa induced by oral administration of tolmetin in healthy subjects. British Journal
of Clinical Practice, May suppl, 91–101.

F. L. Lanza, R. L. Aspinall, E. A. Swabb, R. E. Davis, M. F. Rack, A. Rubin (1988a), Double-blind,
placebo-controlled endoscopic comparison of the mucosal protective effects of misoprostol versus
cimetidine on tolmetin-induced mucosal injury to the stomach and duodenum. Gastroenterology,
95(2), 289–294.
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F. L. Lanza, K. Peace, L. Gustitus, M. F. Rack, B. Dickson (1988b), A blinded endoscopic compar-
ative study of misoprostol versus sucralfate and placebo in the prevention of aspirin-induced gastric
and duodenal ulceration. American Journal of Gastroenterology, 83(2), 143–146.

F. L. Lanza, D. Fakouhi, A. Rubin, R. E. Davis, M. F. Rack, C. Nissen, S. Geis (1989), A double-
blind placebo-controlled comparison of the efficacy and safety of 50, 100, and 200 micrograms of
misoprostol QID in the prevention of ibuprofen-induced gastric and duodenal mucosal lesions and
symptoms. American Journal of Gastroenterology, 84(6), 633–636.

Examples

data("Lanza", package = "HSAUR")
layout(matrix(1:4, nrow = 2))
pl <- tapply(1:nrow(Lanza), Lanza$study, function(indx)

mosaicplot(table(Lanza[indx,"treatment"],
Lanza[indx,"classification"]),

main = "", shade = TRUE))

aspirin Aspirin Data

Description

Efficacy of Aspirin in preventing death after a myocardial infarct.

Usage

data("aspirin")

Format

A data frame with 7 observations on the following 4 variables.

dp number of deaths after placebo.

tp total number subjects treated with placebo.

da number of deaths after Aspirin.

ta total number of subjects treated with Aspirin.

Details

The data were collected for a meta-analysis of the effectiveness of Aspirin (versus placebo) in
preventing death after a myocardial infarction.

Source

J. L. Fleiss (1993), The statistical basis of meta-analysis. Statistical Methods in Medical Research
2, 121–145.
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Examples

data("aspirin", package = "HSAUR")
aspirin

birthdeathrates Birth and Death Rates Data

Description

Birth and death rates for 69 countries.

Usage

data("birthdeathrates")

Format

A data frame with 69 observations on the following 2 variables.

birth birth rate.

death death rate.

Source

J. A. Hartigan (1975), Clustering Algorithms. John Wiley & Sons, New York.

Examples

data("birthdeathrates", package = "HSAUR")
plot(birthdeathrates)

bladdercancer Bladder Cancer Data

Description

Data arise from 31 male patients who have been treated for superficial bladder cancer, and give the
number of recurrent tumours during a particular time after the removal of the primary tumour, along
with the size of the original tumour.

Usage

data("bladdercancer")
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Format

A data frame with 31 observations on the following 3 variables.

time the duration.

tumorsize a factor with levels <=3cm and >3cm.

number number of recurrent tumours.

Details

The aim is the estimate the effect of size of tumour on the number of recurrent tumours.

Source

G. U. H. Seeber (1998), Poisson Regression. In: Encyclopedia of Biostatistics (P. Armitage and T.
Colton, eds), John Wiley & Sons, Chichester.

Examples

data("bladdercancer", package = "HSAUR")
mosaicplot(xtabs(~ number + tumorsize, data = bladdercancer))

clouds Cloud Seeding Data

Description

Data from an experiment investigating the use of massive amounts of silver iodide (100 to 1000
grams per cloud) in cloud seeding to increase rainfall.

Usage

data("clouds")

Format

A data frame with 24 observations on the following 7 variables.

seeding a factor indicating whether seeding action occured (no or yes).

time number of days after the first day of the experiment.

cloudcover the percentage cloud cover in the experimental area, measured using radar.

sne suitability criterion.

prewetness the total rainfall in the target area one hour before seeding (in cubic metres times
1e+8).

echomotion a factor showing whether the radar echo was moving or stationary.

rainfall the amount of rain in cubic metres times 1e+8.
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Details

Weather modification, or cloud seeding, is the treatment of individual clouds or storm systems with
various inorganic and organic materials in the hope of achieving an increase in rainfall. Introduction
of such material into a cloud that contains supercooled water, that is, liquid water colder than zero
Celsius, has the aim of inducing freezing, with the consequent ice particles growing at the expense
of liquid droplets and becoming heavy enough to fall as rain from clouds that otherwise would
produce none.

The data available in cloud were collected in the summer of 1975 from an experiment to inves-
tigate the use of massive amounts of silver iodide 100 to 1000 grams per cloud) in cloud seeding
to increase rainfall. In the experiment, which was conducted in an area of Florida, 24 days were
judged suitable for seeding on the basis that a measured suitability criterion (SNE).

Source

W. L. Woodley, J. Simpson, R. Biondini and J. Berkeley (1977), Rainfall results 1970-75: Florida
area cumulus experiment. Science 195, 735–742.

Examples

data("clouds", package = "HSAUR")
layout(matrix(1:2, nrow = 2))
boxplot(rainfall ~ seeding, data = clouds, ylab = "Rainfall")
boxplot(rainfall ~ echomotion, data = clouds, ylab = "Rainfall")

epilepsy Epilepsy Data

Description

A randomised clinical trial investigating the effect of an anti-epileptic drug.

Usage

data("epilepsy")

Format

A data frame with 236 observations on the following 6 variables.

treatment the treatment group, a factor with levels placebo and Progabide.

base the number of seizures before the trial.

age the age of the patient.

seizure.rate the number of seizures (response variable).

period treatment period, an ordered factor with levels 1 to 4.

subject the patient ID, a factor with levels 1 to 59.



foster 13

Details

In this clinical trial, 59 patients suffering from epilepsy were randomized to groups receiving either
the anti-epileptic drug Progabide or a placebo in addition to standard chemotherapy. The numbers
of seizures suffered in each of four, two-week periods were recorded for each patient along with a
baseline seizure count for the 8 weeks prior to being randomized to treatment and age. The main
question of interest is whether taking progabide reduced the number of epileptic seizures compared
with placebo.

Source

P. F. Thall and S. C. Vail (1990), Some covariance models for longitudinal count data with overdis-
persion. Biometrics, 46, 657–671.

Examples

data("epilepsy", package = "HSAUR")
library(lattice)
dotplot(I(seizure.rate / base) ~ period | subject, data = epilepsy,

subset = treatment == "Progabide")
dotplot(I(seizure.rate / base) ~ period | subject, data = epilepsy,

subset = treatment == "Progabide")

foster Foster Feeding Experiment

Description

The data are from a foster feeding experiment with rat mothers and litters of four different geno-
types. The measurement is the litter weight after a trial feeding period.

Usage

data("foster")

Format

A data frame with 61 observations on the following 3 variables.

litgen genotype of the litter, a factor with levels A, B, I, and J.

motgen genotype of the mother, a factor with levels A, B, I, and J.

weight the weight of the litter after a feeding period.

Details

Here the interest lies in uncovering the effect of genotype of mother and litter on litter weight.
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Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("foster", package = "HSAUR")
plot.design(foster)

gardenflowers Garden Flowers

Description

The dissimilarity matrix of 18 species of garden flowers.

Usage

data("gardenflowers")

Format

An object of class dist.

Details

The dissimilarity was computed based on certain characteristics of the flowers.

Source

L. Kaufman and P. J. Rousseeuw (1990), Finding groups in data: an introduction to cluster analysis,
John Wiley & Sons, New York.

Examples

data("gardenflowers", package = "HSAUR")
gardenflowers
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heptathlon Olympic Heptathlon Seoul 1988

Description

Results of the olympic heptathlon competition, Seoul, 1988.

Usage

data("heptathlon")

Format

A data frame with 25 observations on the following 8 variables.

hurdles results 100m hurdles.

highjump results high jump.

shot results shot.

run200m results 200m race.

longjump results long jump.

javelin results javelin.

run800m results 800m race.

score total score.

Details

The first combined Olympic event for women was the pentathlon, first held in Germany in 1928.
Initially this consisted of the shot putt, long jump, 100m, high jump and javelin events held over
two days. The pentathlon was first introduced into the Olympic Games in 1964, when it consisted
of the 80m hurdles, shot, high jump, long jump and 200m. In 1977 the 200m was replaced by the
800m and from 1981 the IAAF brought in the seven-event heptathlon in place of the pentathlon,
with day one containing the events-100m hurdles, shot, high jump, 200m and day two, the long
jump, javelin and 800m. A scoring system is used to assign points to the results from each event
and the winner is the woman who accumulates the most points over the two days. The event made
its first Olympic appearance in 1984.

In the 1988 Olympics held in Seoul, the heptathlon was won by one of the stars of women’s athletics
in the USA, Jackie Joyner-Kersee. The results for all 25 competitors are given here.

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.
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Examples

data("heptathlon", package = "HSAUR")
plot(heptathlon)

mastectomy Survival Times after Mastectomy of Breast Cancer Patients

Description

Survival times in months after mastectomy of women with breast cancer. The cancers are classified
as having metastized or not based on a histochemical marker.

Usage

data("matectomy")

Format

A data frame with 42 observations on the following 3 variables.

time survival times in months.

event a logical indicating if the event was observed (TRUE) or if the survival time was censored
(FALSE).

metastized a factor at levels yes and no.

Source

B. S. Everitt and S. Rabe-Hesketh (2001), Analysing Medical Data using S-PLUS, Springer, New
York, USA.

Examples

data("mastectomy", package = "HSAUR")
table(mastectomy$metastized)
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meteo Meteorological Measurements for 11 Years

Description

Several meteorological measurements for a period between 1920 and 1931.

Usage

data("meteo")

Format

A data frame with 11 observations on the following 6 variables.

year the years.

rainNovDec rainfall in November and December (mm).

temp average July temperature.

rainJuly rainfall in July (mm).

radiation radiation in July (millilitres of alcohol).

yield average harvest yield (quintals per hectare).

Details

Carry out a principal components analysis of both the covariance matrix and the correlation ma-
trix of the data and compare the results. Which set of components leads to the most meaningful
interpretation?

Source

B. S. Everitt and G. Dunn (2001), Applied Multivariate Data Analysis, 2nd edition, Arnold, London.

Examples

data("meteo", package = "HSAUR")
meteo



18 phosphate

orallesions Oral Lesions in Rural India

Description

The distribution of the oral lesion site found in house-to-house surveys in three geographic regions
of rural India.

Usage

data("orallesions")

Format

A two-way classification, see table.

Source

Cyrus R. Mehta and Nitin R. Patel (2003), StatXact-6: Statistical Software for Exact Nonparametric
Inference, Cytel Software Cooperation, Cambridge, USA.

Examples

data("orallesions", package = "HSAUR")
mosaicplot(orallesions)

phosphate Phosphate Level Data

Description

Plasma inorganic phosphate levels from 33 subjects.

Usage

data("phosphate")
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Format

A data frame with 33 observations on the following 9 variables.

group a factor with levels control and obese.

t0 baseline phosphate level,

t0.5 phosphate level after 1/2 an hour.

t1 phosphate level after one an hour.

t1.5 phosphate level after 1 1/2 hours.

t2 phosphate level after two hours.

t3 phosphate level after three hours.

t4 phosphate level after four hours.

t5 phosphate level after five hours.

Source

C. S. Davis (2002), Statistical Methods for the Analysis of Repeated Measurements, Springer, New
York.

Examples

data("phosphate", package = "HSAUR")
plot(t0 ~ group, data = phosphate)

pistonrings Piston Rings Failures

Description

Number of failures of piston rings in three legs of four steam-driven compressors.

Usage

data("pistonrings")

Format

A two-way classification, see table.

Details

The data are given in form of a table. The table gives the number of piston-ring failures in each
of three legs of four steam-driven compressors located in the same building. The compressors have
identical design and are oriented in the same way. The question of interest is whether the two
classification variables (compressor and leg) are independent.
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Source

S. J. Haberman (1973), The analysis of residuals in cross-classificed tables. Biometrics 29, 205–
220.

Examples

data("pistonrings", package = "HSAUR")
mosaicplot(pistonrings)

planets Exoplanets Data

Description

Data on planets outside the Solar System.

Usage

data("planets")

Format

A data frame with 101 observations from 101 exoplanets on the following 3 variables.

mass Jupiter mass of the planet.

period period in earth days.

eccen the radial eccentricity of the planet.

Details

From the properties of the exoplanets found up to now it appears that the theory of planetary de-
velopment constructed for the planets of the Solar System may need to be reformulated. The exo-
planets are not at all like the nine local planets that we know so well. A first step in the process of
understanding the exoplanets might be to try to classify them with respect to their known properties.

Source

M. Mayor and P. Frei (2003). New Worlds in the Cosmos: The Discovery of Exoplanets. Cambridge
University Press, Cambridge, UK.
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Examples

data("planets", package = "HSAUR")
require("scatterplot3d")
scatterplot3d(log(planets$mass), log(planets$period), log(planets$eccen),

type = "h", highlight.3d = TRUE, angle = 55,
scale.y = 0.7, pch = 16)

plasma Blood Screening Data

Description

The erythrocyte sedimentation rate and measurements of two plasma proteins (fibrinogen and glob-
ulin).

Usage

data("plasma")

Format

A data frame with 32 observations on the following 3 variables.

fibrinogen the fibrinogen level in the blood.

globulin the globulin level in the blood.

ESR the erythrocyte sedimentation rate, either less or greater 20 mm / hour.

Details

The erythrocyte sedimentation rate (ESR) is the rate at which red blood cells (erythrocytes) settle
out of suspension in blood plasma, when measured under standard conditions. If the ESR increases
when the level of certain proteins in the blood plasma rise in association with conditions such as
rheumatic diseases, chronic infections and malignant diseases, its determination might be useful in
screening blood samples taken form people suspected to being suffering from one of the conditions
mentioned. The absolute value of the ESR is not of great importance rather it is whether it is less
than 20mm/hr since lower values indicate a healthy individual.

The question of interest is whether there is any association between the probability of an ESR
reading greater than 20mm/hr and the levels of the two plasma proteins. If there is not then the
determination of ESR would not be useful for diagnostic purposes.

Source

D. Collett and A. A. Jemain (1985), Residuals, outliers and influential observations in regression
analysis. Sains Malaysiana, 4, 493–511.
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Examples

data("plasma", package = "HSAUR")
layout(matrix(1:2, ncol = 2))
boxplot(fibrinogen ~ ESR, data = plasma, varwidth = TRUE)
boxplot(globulin ~ ESR, data = plasma, varwidth = TRUE)

polyps Familial Andenomatous Polyposis

Description

Data from a placebo-controlled trial of a non-steroidal anti-inflammatory drug in the treatment of
familial andenomatous polyposis (FAP).

Usage

data("polyps")

Format

A data frame with 20 observations on the following 3 variables.

number number of colonic polyps at 12 months.

treat treatment arms of the trail, a factor with levels placebo and drug.

age the age of the patient.

Details

Giardiello et al. (1993) and Piantadosi (1997) describe the results of a placebo-controlled trial of
a non-steroidal anti-inflammatory drug in the treatment of familial andenomatous polyposis (FAP).
The trial was halted after a planned interim analysis had suggested compelling evidence in favour
of the treatment. Here we are interested in assessing whether the number of colonic polyps at 12
months is related to treatment and age of patient.

Source

F. M. Giardiello, S. R. Hamilton, A. J. Krush, S. Piantadosi, L. M. Hylind, P. Celano, S. V. Booker,
C. R. Robinson and G. J. A. Offerhaus (1993), Treatment of colonic and rectal adenomas with
sulindac in familial adenomatous polyposis. New England Journal of Medicine, 328(18), 1313–
1316.

S. Piantadosi (1997), Clinical Trials: A Methodologic Perspective. John Wiley & Sons, New York.
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Examples

data("polyps", package = "HSAUR")
plot(number ~ age, data = polyps, pch = as.numeric(polyps$treat))
legend(40, 40, legend = levels(polyps$treat), pch = 1:2, bty = "n")

pottery Romano-British Pottery Data

Description

Chemical composition of Romano-British pottery.

Usage

data("pottery")

Format

A data frame with 45 observations on the following 9 chemicals.

Al2O3 aluminium trioxide.
Fe2O3 iron trioxide.
MgO magnesium oxide.
CaO calcium oxide.
Na2O natrium oxide.
K2O calium oxide.
TiO2 titanium oxide.
MnO mangan oxide.
BaO barium oxide.

Details

The data gives the chemical composition of specimens of Romano-British pottery, determined by
atomic absorption spectrophotometry, for nine oxides.

Source

A. Tubb and N. J. Parker and G. Nickless (1980), The analysis of Romano-British pottery by atomic
absorption spectrophotometry. Archaeometry, 22, 153–171.

Examples

data("pottery", package = "HSAUR")
plot(pottery)
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rearrests Rearrests of Juvenile Felons

Description

Rearrests of juventile felons by type of court in which they were tried.

Usage

data("rearrests")

Format

A two-way classification, see table.

Details

The data (taken from Agresti, 1996) arise from a sample of juveniles convicted of felony in Florida
in 1987. Matched pairs were formed using criteria such as age and the number of previous offences.
For each pair, one subject was handled in the juvenile court and the other was transferred to the
adult court. Whether or not the juvenile was rearrested by the end of 1988 was then noted. Here
the question of interest is whether the true proportions rearrested were identical for the adult and
juvenile court assignments?

Source

A. Agresti (1996). An Introduction to Categorical Data Analysis. Wiley, New York.

Examples

data("rearrests", package = "HSAUR")
rearrests

respiratory Respiratory Illness Data

Description

The respiratory status of patients recruited for a randomised clinical multicenter trial.

Usage

data("respiratory")
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Format

A data frame with 555 observations on the following 7 variables.

centre the study center, a factor with levels 1 and 2.

treatment the treatment arm, a factor with levels placebo and treatment.

sex a factor with levels female and male.

age the age of the patient.

status the respiratory status (response variable), a factor with levels poor and good.

month the month, each patient was examined at months 0, 1, 2, 3 and 4.

subject the patient ID, a factor with levels 1 to 111.

Details

In each of two centres, eligible patients were randomly assigned to active treatment or placebo.
During the treatment, the respiratory status (categorised poor or good) was determined at each of
four, monthly visits. The trial recruited 111 participants (54 in the active group, 57 in the placebo
group) and there were no missing data for either the responses or the covariates. The question of
interest is to assess whether the treatment is effective and to estimate its effect.

Note that the data are in long form, i.e, repeated measurments are stored as additional rows in the
data frame.

Source

C. S. Davis (1991), Semi-parametric and non-parametric methods for the analysis of repeated mea-
surements with applications to clinical trials. Statistics in Medicine, 10, 1959–1980.

Examples

data("respiratory", package = "HSAUR")
mosaicplot(xtabs( ~ treatment + month + status, data = respiratory))

roomwidth Students Estimates of Lecture Room Width

Description

Lecture room width estimated by students in two different units.

Usage

data("roomwidth")
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Format

A data frame with 113 observations on the following 2 variables.

unit a factor with levels feet and metres.

width the estimated width of the lecture room.

Details

Shortly after metric units of length were officially introduced in Australia, each of a group of 44
students was asked to guess, to the nearest metre, the width of the lecture hall in which they were
sitting. Another group of 69 students in the same room was asked to guess the width in feet, to the
nearest foot. The data were collected by Professor T. Lewis and are taken from Hand et al (1994).
The main question is whether estimation in feet and in metres gives different results.

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("roomwidth", package = "HSAUR")
convert <- ifelse(roomwidth$unit == "feet", 1, 3.28)
boxplot(I(width * convert) ~ unit, data = roomwidth)

schizophrenia Age of Onset of Schizophrenia Data

Description

Data on sex differences in the age of onset of schizophrenia.

Usage

data("schizophrenia")

Format

A data frame with 251 observations on the following 2 variables.

age age at the time of diagnosis.

gender a factor with levels female and male
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Details

A sex difference in the age of onset of schizophrenia was noted by Kraepelin (1919). Subsequently
epidemiological studies of the disorder have consistently shown an earlier onset in men than in
women. One model that has been suggested to explain this observed difference is know as the
subtype model which postulates two type of schizophrenia, one characterised by early onset, typical
symptoms and poor premorbid competence, and the other by late onset, atypical symptoms, and
good premorbid competence. The early onset type is assumed to be largely a disorder of men and
the late onset largely a disorder of women.

Source

E. Kraepelin (1919), Dementia Praecox and Paraphrenia. Livingstone, Edinburgh.

Examples

data("schizophrenia", package = "HSAUR")
boxplot(age ~ gender, data = schizophrenia)

schizophrenia2 Schizophrenia Data

Description

Though disorder and early onset of schizophrenia.

Usage

data("schizophrenia2")

Format

A data frame with 220 observations on the following 4 variables.

subject the patient ID, a factor with levels 1 to 44.

onset the time of onset of the disease, a factor with levels < 20 yrs and > 20 yrs.

disorder whether thought disorder was absent or present, the response variable.

month month after hospitalisation.

Details

The data were collected in a follow-up study of women patients with schizophrenia. The binary
response recorded at 0, 2, 6, 8 and 10 months after hospitalisation was thought disorder (absent or
present). The single covariate is the factor indicating whether a patient had suffered early or late
onset of her condition (age of onset less than 20 years or age of onset 20 years or above). The
question of interest is whether the course of the illness differs between patients with early and late
onset?
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Source

Davis (2002), Statistical Methods for the Analysis of Repeated Measurements, Springer, New York.

Examples

data("schizophrenia2", package = "HSAUR")
mosaicplot(xtabs( ~ onset + month + disorder, data = schizophrenia2))

schooldays Days not Spent at School

Description

Data from a sociological study, the number of days absent from school is the response variable.

Usage

data("schooldays")

Format

A data frame with 154 observations on the following 5 variables.

race race of the child, a factor with levels aboriginal and non-aboriginal.

sex the sex of the child, a factor with levels female and male.

school the school type, a factor with levels F0 (primary), F1 (first), F2 (second) and F3 (third
form).

learner how good is the child in learning things, a factor with levels average and slow.

absent number of days absent from school.

Details

The data arise from a sociological study of Australian Aboriginal and white children reported by
Quine (1975).

In this study, children of both sexes from four age groups (final grade in primary schools and first,
second and third form in secondary school) and from two cultural groups were used. The children
in age group were classified as slow or average learners. The response variable was the number of
days absent from school during the school year. (Children who had suffered a serious illness during
the years were excluded.)

Source

S. Quine (1975), Achievement Orientation of Aboriginal and White Adolescents. Doctoral Disser-
tation, Australian National University, Canberra.
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Examples

data("schooldays", package = "HSAUR")
plot.design(schooldays)

skulls Egyptian Skulls

Description

Measurements made on Egyptian skulls from five epochs.

Usage

data("skulls")

Format

A data frame with 150 observations on the following 5 variables.

epoch the epoch the skull as assigned to, a factor with levels c4000BC c3300BC, c1850BC,
c200BC, and cAD150, where the years are only given approximately, of course.

mb maximum breaths of the skull.

bh basibregmatic heights of the skull.

bl basialiveolar length of the skull.

nh nasal heights of the skull.

Details

The question is whether the measurements change over time. Non-constant measurements of the
skulls over time would indicate interbreeding with immigrant populations.

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("skulls", package = "HSAUR")
means <- tapply(1:nrow(skulls), skulls$epoch, function(i)

apply(skulls[i,colnames(skulls)[-1]], 2, mean))
means <- matrix(unlist(means), nrow = length(means), byrow = TRUE)
colnames(means) <- colnames(skulls)[-1]
rownames(means) <- levels(skulls$epoch)
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pairs(means,
panel = function(x, y) {

text(x, y, levels(skulls$epoch))
})

smoking Nicotine Gum and Smoking Cessation

Description

Data from a meta-analysis on nicotine gum and smoking cessation

Usage

data("smoking")

Format

A data frame with 26 observations (studies) on the following 4 variables.

qt the number of treated subjetcs who stopped smoking.

tt the totla number of treated subjects.

qc the number of subjetcs who stopped smoking without being treated.

tc the total number of subject not being treated.

Details

Cigarette smoking is the leading cause of preventable death in the United States and kills more
Americans than AIDS, alcohol, illegal drug use, car accidents, fires, murders and suicides com-
bined. It has been estimated that 430,000 Americans die from smoking every year. Fighting to-
bacco use is, consequently, one of the major public health goals of our time and there are now many
programs available designed to help smokers quit. One of the major aids used in these programs is
nicotine chewing gum, which acts as a substitute oral activity and provides a source of nicotine that
reduces the withdrawal symptoms experienced when smoking is stopped. But separate randomized
clinical trials of nicotine gum have been largely inconclusive, leading Silagy (2003) to consider
combining the results studies found from an extensive literature search. The results of these trials
in terms of numbers of people in the treatment arm and the control arm who stopped smoking for at
least 6 months after treatment are given here.

Source

C. Silagy (2003), Nicotine replacement therapy for smoking cessation (Cochrane Review). The
Cochrane Library, 4, John Wiley & Sons, Chichester.
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Examples

data("smoking", package = "HSAUR")
boxplot(smoking$qt/smoking$tt,

smoking$qc/smoking$tc,
names = c("Treated", "Control"), ylab = "Percent Quitters")

students Student Risk Taking

Description

Students were administered two parallel forms of a test after a random assignment to three different
treatments.

Usage

data("students")

Format

A data frame with 35 observations on the following 3 variables.

treatment a factor with levels AA, C, and NC.

low the result of the first test.

high the result of the second test.

Details

The data arise from a large study of risk taking (Timm, 2002). Students were randomly assigned to
three different treatments labelled AA, C and NC. Students were administered two parallel forms
of a test called low and high. The aim is to carry out a test of the equality of the bivariate means
of each treatment population.

Source

N. H. Timm (2002), Applied Multivariate Analysis. Springer, New York.

Examples

data("students", package = "HSAUR")
layout(matrix(1:2, ncol = 2))
boxplot(low ~ treatment, data = students, ylab = "low")
boxplot(high ~ treatment, data = students, ylab = "high")
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suicides Crowd Baiting Behaviour and Suicides

Description

Data from a study carried out to investigate the causes of jeering or baiting behaviour by a crowd
when a person is threatening to commit suicide by jumping from a high building.

Usage

data("suicides")

Format

A two-way classification, see table.

Source

L. Mann (1981), The baiting crowd in episodes of threatened suicide. Journal of Personality and
Social Psychology, 41, 703–709.

Examples

data("suicides", package = "HSAUR")
mosaicplot(suicides)

toothpaste Toothpaste Data

Description

Meta-analysis of studies comparing two different toothpastes.

Usage

data("toothpaste")
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Format

A data frame with 9 observations on the following 7 variables.

Study the identifier of the study.

nA number of subjects using toothpaste A.

meanA mean DMFS index of subjects using toothpaste A.

sdA standard deviation of DMFS index of subjects using toothpaste A.

nB number of subjects using toothpaste B.

meanB mean DMFS index of subjects using toothpaste B.

sdB standard deviation of DMFS index of subjects using toothpaste B.

Details

The data are the results of nine randomised trials comparing two different toothpastes for the pre-
vention of caries development. The outcomes in each trial was the change, from baseline, in the
decayed, missing (due to caries) and filled surface dental index (DMFS).

Source

B. S. Everitt and A. Pickles (2000), Statistical Aspects of the Design and Analysis of Clinical Trials,
Imperial College Press, London.

Examples

data("toothpaste", package = "HSAUR")
toothpaste

voting House of Representatives Voting Data

Description

Voting results for 15 congressmen from New Jersey.

Usage

data("voting")

Format

A 15 times 15 matrix.
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Details

Romesburg (1984) gives a set of data that shows the number of times 15 congressmen from New
Jersey voted differently in the House of Representatives on 19 environmental bills. Abstentions are
not recorded.

Source

H. C. Romesburg (1984), Cluster Analysis for Researchers. Lifetime Learning Publications, Bel-
mont, Canada.

Examples

data("voting", package = "HSAUR")
require("MASS")
voting_mds <- isoMDS(voting)
plot(voting_mds$points[,1], voting_mds$points[,2],

type = "n", xlab = "Coordinate 1", ylab = "Coordinate 2",
xlim = range(voting_mds$points[,1])*1.2)

text(voting_mds$points[,1], voting_mds$points[,2],
labels = colnames(voting))

voting_sh <- Shepard(voting[lower.tri(voting)], voting_mds$points)

water Mortality and Water Hardness

Description

The mortality and drinking water hardness for 61 cities in England and Wales.

Usage

data("water")

Format

A data frame with 61 observations on the following 4 variables.

location a factor with levels North and South indicating whether the town is as north as Derby.

town the name of the town.

mortality averaged annual mortality per 100.000 male inhabitants.

hardness calcium concentration (in parts per million).
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Details

The data were collected in an investigation of environmental causes of disease. They show the
annual mortality per 100,000 for males, averaged over the years 1958-1964, and the calcium con-
centration (in parts per million) in the drinking water for 61 large towns in England and Wales.
The higher the calcium concentration, the harder the water. Towns at least as far north as Derby
are identified in the table. Here there are several questions that might be of interest including, are
mortality and water hardness related, and do either or both variables differ between northern and
southern towns?

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("water", package = "HSAUR")
plot(mortality ~ hardness, data = water,

col = as.numeric(water$location))

watervoles Water Voles Data

Description

Percentage incidence of the 13 characteristics of water voles in 14 areas.

Usage

data("watervoles")

Format

A dissimilarity matrix for the following 14 variables, i.e, areas: Surrey, Shropshire,
Yorkshire, Perthshire, Aberdeen, Elean Gamhna, Alps, Yugoslavia, Germany,
Norway, Pyrenees I, Pyrenees II, North Spain, and South Spain.

Details

Corbet et al. (1970) report a study of water voles (genus Arvicola) in which the aim was to compare
British populations of these animals with those in Europe, to investigate whether more than one
species might be present in Britain. The original data consisted of observations of the presence or
absence of 13 characteristics in about 300 water vole skulls arising from six British populations
and eight populations from the rest of Europe. The data are the percentage incidence of the 13
characteristics in each of the 14 samples of water vole skulls.
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Source

G. B. Corbet, J. Cummins, S. R. Hedges, W. J. Krzanowski (1970), The taxonomic structure of
British water voles, genus Arvicola. Journal of Zoology, 61, 301–316.

Examples

data("watervoles", package = "HSAUR")
watervoles

waves Electricity from Wave Power at Sea

Description

Measurements of root mean square bending moment by two different mooring methods.

Usage

data("waves")

Format

A data frame with 18 observations on the following 2 variables.

method1 Root mean square bending moment in Newton metres, mooring method 1
method2 Root mean square bending moment in Newton metres, mooring method 2

Details

In a design study for a device to generate electricity from wave power at sea, experiments were
carried out on scale models in a wave tank to establish how the choice of mooring method for the
system affected the bending stress produced in part of the device. The wave tank could simulate a
wide range of sea states and the model system was subjected to the same sample of sea states with
each of two mooring methods, one of which was considerably cheaper than the other. The question
of interest is whether bending stress differs for the two mooring methods.

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("waves", package = "HSAUR")
plot(method1 ~ method2, data = waves)
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weightgain Gain in Weight of Rats

Description

The data arise from an experiment to study the gain in weight of rats fed on four different diets,
distinguished by amount of protein (low and high) and by source of protein (beef and cereal).

Usage

data("weightgain")

Format

A data frame with 40 observations on the following 3 variables.

source source of protein given, a factor with levels Beef and Cereal.

type amount of protein given, a factor with levels High and Low.

weightgain weigt gain in grams.

Details

Ten rats are randomized to each of the four treatments. The question of interest is how diet affects
weight gain.

Source

D. J. Hand, F. Daly, A. D. Lunn, K. J. McConway and E. Ostrowski (1994). A Handbook of Small
Datasets, Chapman and Hall/CRC, London.

Examples

data("weightgain", package = "HSAUR")
interaction.plot(weightgain$type, weightgain$source,

weightgain$weightgain)
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womensrole Womens Role in Society

Description

Data from a survey from 1974 / 1975 asking both female and male responders about their opinion
on the statement: Women should take care of running their homes and leave running the country up
to men.

Usage

data("womensrole")

Format

A data frame with 42 observations on the following 4 variables.

education years of education.

sex a factor with levels Male and Female.

agree number of subjects in agreement with the statement.

disagree number of subjects in disagreement with the statement.

Details

The data are from Haberman (1973) and also given in Collett (2003). The questions here are whether
the response of men and women differ.

Source

S. J. Haberman (1973), The analysis of residuals in cross-classificed tables. Biometrics, 29, 205–
220.

D. Collett (2003), Modelling Binary Data. Chapman and Hall / CRC, London. 2nd edition.

Examples

data("womensrole", package = "HSAUR")
summary(subset(womensrole, sex == "Female"))
summary(subset(womensrole, sex == "Male"))
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