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At least four approaches have been used to estimate communalities 
that will leave an observed correlation matrix R Gramian and with minimum 
rank. I t  has long been known that the square of the observed multiple- 
correlation coefficient is a lower bound to any communality of a variable of 
R. This lower bound actually provides a "best possible" estimate in several 
senses. Furthermore, under certain conditions basic to the Spearman- 
Thurstone common-factor theory, the bound must equal the eommunality 
in the limit as the number of observed variables increases. Otherwise, this 
type of theory cannot hold for R. 

I. Introduction 

One of t he  in t r igu ing  p rob l ems  of f ac to r  ana lys i s  has  been  to  find a 
fo rmula  for  communa l i t i e s  t h a t  will  min imize  the  r a n k  of an  a r b i t r a r y  
cor re la t ion  m a t r i x  R. M o r e  explici t ly,  t he  p rob l e m is to  find a d iagona l  
m a t r i x  U such t h a t  R - U 2 is G r a m i a n  and  of m i n i m u m  rank .  

L e t  n deno te  the  order  of R (and of U), and  m the  m i n i m u m  r a n k  for 
G r a m i a n  R - U 2. A t  leas t  four  approaches  have  been used  to  e s t i m a t e  
communa l i t i e s  t h a t  will  y ie ld  m: 

(a) trial-and-error exact formulas 
(b) exact formulas for special cases of R 
(c) successive approximations 
(d) lower bounds. 

The main thesis of this paper is that, in certain senses, the last-mentioned 
of these four approaches provides "best possible" estimates of communalities 
for an arbitrary R, even though biased in general by being underestimates. 

Let ul be the jth diagonal element of any U that leaves R - U ~ Gramian 
(whether or not.with minimum rank), and let h~ be the corresponding com- 
m u n a l i t y :  

h~ = 1 - -  u~ ( j  = 1, 2, - - -  , n ) .  (1) 

L e t  Pi deno t e  t he  mu l t i p l e  cor re la t ion  coefficient of t he  j t h  va r i ab l e  in  R 
on the  r ema in ing  n - -  1 var iab les ,  and  at t he  cor respond ing  s t a n d a r d  er ror  
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of estimate (assuming all observed variables to have unit  variances): 

2 2 p~ = 1 -- ~i ( j  = 1, 2 , - - "  ,n ) .  (2) 

Then it has been shown (2, 92f; 3, 293) tha t  always 

2 2 . °  p; =< h~ ( j  = 1, 2, - , n ) .  (3) 

No bet ter  general lower bound to hl has yet  been established than p~. 
We shall prove here tha t  there exist many nonsingular matrices R for 

which the equality in (3) holds for n -- m of the minimizing communali t ies--  
all but  m of the p~ are actual communalities (the remaining communalities 
equal unity). Such matrices R, however, are of a very restricted type. 

A more generally useful result tha t  we shall establish applies to the 
typical R postulated in the Spearman-Thurstone theory. This school of 
thought  believes a common-factor analysis is meaningful only if m is small 
compared with n. We shall prove tha t  if the ratio of m to n tends to zero 
as n -~ ~ ,  then all except possibly a zero proportion of the p~ must tend to 
the rank-minimizing hl • I f  the Spearman-Thurstone hypothesis is correct for 
a given R, then the p~ must almost always be very good approximations to the 
h~ when n is large. (Conversely, if the approxixnation is bad for many pi,  then 
the Spearman-Thurstone hypothesis of a limited number  of common factors 
must be false.) 

An even more general result refers to all R, regardless of the ratio of 
m to n. If there is to be one and only one unique-factor variable tha t  can 

2 yield the uniqueness u~ , then i t  must  be tha t  the limit of ~ must  be ui as 
n -~ Qo (or it must be tha t  pl -~ hl). Conversely, if ~ does not tend to u~ 
as n -*  ~ ,  then there is more than one "unique" variable tha t  can provide 

2 (and satisfy all other algebraic requirements of common- the same loading u; 
2 (or between 2 factor theory);  the larger the difference between ~ and u~ p~ 

and h~), the larger the possible difference between alternative "unique"  
parts for the same j t h  observed variable of R. 

Other important  properties of the lower bounds p~ will be established. 
Before going on to our new results, i t  may  be helpful-to review briefly the 
four approaches listed above. 

(a) Trial and Error 

Assuming tha t  sampling error and rounding-off errors in computations 
are nonexistent, trial and error is bound to yield an exact numerical answer 
when m < n/2; the  diagonal elements of U 2 in such cases are rational functions 
of the non-diagonal elements of R (cf. 8). I t  may  turn  out, of course, tha t  U 2 
is not uniquely determined; two or more different U s for the same R may 
yield m in many cases. When m ~_ n/2, trial and error can lead again to an 
expression for each communality, although in non-rational form in general. 
Again, multiple solutions for minimizing U 2 may  occur. 
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(b) Special Exact Formulas 

Some special cases of R make possible exact and rational formulas tha t  
need no apparent  resort to trial and error. The known cases are for m < n/2, 
the most celebrated being Spear*nan's where m = 1. Thurstone has summa- 
rized a number of such formulas (8, ch. XI I I ) .  A caution should be added to 
Thurstone 's  discussion to the effect tha t  not all the apparent  solutions may 
yield Gramian U 2 nor leave R - U 2 Gramian. Actually these formulas beg 
the question, for it  is generally not known in advance whether or not m < n/2. 
A specialized formula in effect must be tried on the given R to see if it works. 
Use of specialized formulas thus seems to be but  a modified type of trial and 
error. 

(c) Successive Approximations 

Attempts have been made to avoid a direct exact solution for U 2 by 
taking recourse instead to successive approximations. An approximation 
U~ is guessed, and R - U~ is "factored" until residuals are considered small 
enough, leading to a second approximation U~, etc. I t  has been claimed that  
such a procedure generally converges to a satisfactory U 2 (cf. 8, p. 295). 
Algebraic proof of such convergence has never been published to our knowl- 
edge. For  many iterative processes, the value to  which convergence takes 
place depends on the initial trial value. Tha t  this may be the case for the 
above procedure seems evident when one recalls that  there are many corre- 
lation matrices which do not have a unique set of communalities. Also, 
unless proof is given to the contrary, there is no reason to believe that  suc- 
cessive approximations may  not  converge to some U where R -- U 2 is not 
of minimum rank, if convergence takes place at  a l l  

The issue of successive approximations is further beclouded by sampling 
considerations. Lawley's maximum likelihood solution seems the most 
appropriate put  forward to date, as Rao points out (7). To at tain precision 
in the sampling theory, apparently some restrictions have been introduced 
as to the nature of the population R, else the possibility of equally minimizing 
alternative solutions would remain. Again, it  is not clear when a given R 
obeys these restrictions or when the sampling theory is valid in practice. 
[After the above was written, the writer received a copy of reference (1) in 
which a numerical example is given of the failure of Lawley's iterative pro- 
cedure to converge properly.] 

(d) Lower Bounds 

If we again ignore sampling and rounding-off errors, it  is always possible 
to  establish useful lower bounds to communalities without any trial and 
error and without any hypothesis about  or restrictions on R. The best of the 
lower bounds thus far established are the p~ , according to inequality (3) 
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above. I t  is often more convenient to discuss uniqueness rather than com- 
munalities, or to use inequality (4) rather than (3): 

z~ > u~ ( j  = 1, 2, . - .  ,n) .  (4) 

An important  feature of the bounds in (3) and (4) is that  they hold 
whether or not there is a multiple solution for U2; they hold for all possible 
solutions simultaneously. Indeed, they lead to a criterion for choosing among 
multiple solutions, as indicated in the next section. 

II.  Relationship to the Determinacy of Unique-Factor Scores 

Let  re denote the multiple-correlation coefficient on the n observed 
variables of a unique-factor variable hypothesized to f ield the uniqueness 
u~. I t  has been shown in (6) that  

2 

2 - -  " r; u~ ( j  = 1, 2, . . .  , n). (5) 
f f i  

Since (5) holds for all solutions U 2, it  suggests tha t  when a choice is necessary 
tha t  which makes the inequalities (4) as small as possible is most desirable; 
the denominator on the right of (5) is fixed for j, so tha t  such a choice 
makes the individual scores on the unique factor as determinate as possible 
from the observed data, or the r~ as close as possible to unity. I t  has been 
shown tha t  this also often tends to make individual scores on the common- 
factor variables as determinate as possible (6). 

Should the approximations (4) for U 2 turn out not to be close in a given 
case, then the factor analysis itself may be regarded as not very useful or 
definitive. For it  has been shown in (6) that  determining factor loadings 
alone--common and unique--can be far from sufficient for pinning down 
scores on the hypothesized factors. Alternative sets of scores for a given hypo- 
thesized factor can exist which yield identical Ioadings and yet correlate negligibly 
with each other, according to formula (6), 

r* = 2r~ - 1 ( j  = 1, 2 , . . .  , n ) ,  (6) 

where r~ is given by (5) and r* is the minimal correlation always attainable 
between two alternative sets of scores for the same unique factor hypo- 
thesized to underlie u~. [According to (6)~ if r~ = .5, then r* = 0, or alternative 
score solutions for the same j t h  unique factor always exist tha t  correlate 

2 zero with each other.  Even if ri is as large as .9, this raises r* only to .8. An 
equation parallel to (6) holds for common factors.] 

I II .  The "Best Possible" Estimates 

Can inequality (4) be improved on without recourse to some form 
of trial and error or u s e  of specialized hypotheses? This does not seem 
possible. According to (5) this would imply some advance information on 
the r~ ; there is no apparent way of getting such information on the r~ in a 
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universally systematic manner. The situation seems to be the reverse: r~ is 
2 determined by u; rather than conversely. 

The rest of this paper will be devoted largely to showing that  (4) is 
actually a "best possible" inequality in the sense that  the phrase "best 
possible" is usually used mathematically for inequalities. The essential 
characteristics are that  (a) many correlation matrices R exist for which the 
equality in (4) is actually attained at  the same time tha t  minimum rank m 
is attained, and (b) the inequalities in (4) must tend to equalities as n increases, 
under certain general conditions important to the theory of common-factor 
analysis. The bounds improve systematically in general as n increases, or as 
there is more information available from more observed variables. Further- 
more, inequality (4) leads to inequalities for m that are also "best possible," 
and is closely related to the problem of estimating individual scores on the 
unique factors without any rank assumptions, via image analysis. 

In virtually all attempts to solve the communality problem--whether 
exactly or by successive approximations--the problem is stated as for a 
fixed and finite n, or where R is from a finite number of n observed variables. 
It seems appropriate to ask also what happens to communalities as n in- 
creases or decreases. 

While this issue is not discussed very explicitly by most writers, it 
usually seems implied that if the additional variables retain the same general 
kind of content as the initial ones, communalities of the initial ones should 
remain constant for all n sufficiently large. This would imply that for n 
small enough we should generally have m > n/2, or easy exact computations 
for U 2 (even ignoring sampling error) should be the exception rather than the 
rule. Having m > n/2 for relatively small n does not preclude m from re- 
maining constant--and hence becoming relatively small--as n increases. 
It does imply that multiple solutions should be quite prevalent for finite n 
in practice. Furthermore, it cautions that an apparently exact solution for 
finite n may be but an artifact due to the finiteness of the number of variables 
observed. 

It would be desirable, in view of all the preceding considerations, to 
have a systematic way of getting information about communalities with no 
assumptions whatsoever about R, yet without resorting to trial and error. 
Furthermore, this information should remain valid as n increases. 

One of the virtues of the bounds (3) and (4) is that they possess these 
qualities in a simple and direct manner. This seems to he another type of 
"best possible" property h'om that usually considered, and one which appears 
peculiarly relevant to the problem of factor analysis. 

IV. Attaining Equality Wtien n Is Finite 
2 If  ~ = 0 for some j (so tha t  p~ = 1), then it must be that  ui = 0 from 

(4) and the fact that  a uniqueness cannot be negative. Here is one kind of 
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special circumstance wherein our bound becomes an exact estimate even 
when n is finite. In practice, this is not to be expected, since having one 
observed variable perfectly predictable from all the rest makes R singular. 

Many  cases of nonsingular R also exist for which the equality in (4) 
holds and n is finite. We shall exhibit some now. To this end, let us first 
recall tha t  the a~ are the reciprocals of the corresponding main diagonals 
of R -1. The following notation will be useful here and also later. Let  S -~ 
(the inverse of S 2) be the diagonal matrix with the same main diagonal 
elements as R -~. Then the j t h  main diagonal element of S 2 itself is simply 
~ (j  = 1, 2, . . . ,  n): 

S ~ = [ ~ ,  ~ ,  . . . ,  ~ ] .  (7) 

If R is nonsingular, there exists a nonsingular matrix F such tha t  

R = F F ' .  (8) 

F can be chosen in infinitely many ways for (8) when n => 2, but  always we 
can rearrange variables to find an F of the form 

F = AB C0 , (9) 

where A is a nonsingular square submatrix of order m, B is of order 
(n - m) X m, and C is nonsingular and of order n - m. From (8) and (9), 

R = A A '  A B '  . (10) 

B A  ' B B  r -4- CC'  

I t  is easily verified that  the inverse of F is given by 

F _ ~  = A -~ 0 . ( 1 1 )  

__ C - 1 B A  -1 C-~ 

From (8), R -1 = (F-1)rF -~, or using (11) 

R_I = ]  G H '  , (12) 

f g ( C C ' ) - '  

where 

and 

G = (AA' ) - '  + ( A - 1 ) ' B ' ( C C ' ) - ' B A  -~ (13) 

H -- - ( C C ' ) - I B A  -1. (14) 

Now consider the special case where CC' is a diagonal matrix. Then 
(CC')  -~ is also diagonal. According to (12) and (7), (CC')  -1 constitutes the 
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lower right-hand submatr ix  of S -2, or CC' constitutes the corresponding 
submatr ix  of S ~ and defines the ~ f o r j  = m + 1, m + 2, • . - ,  n. I f  we subtract  
this submatr ix  CC' from the lower right-hand corner of R in (10), we are 
clearly left with a reduced R tha t  is Gramian  and of rank m, it being the 
product  of [A B]'  and its transpose. Thus we have: 

Theorem 1. I f  R can be factored into an F of the form (9) where CC' is 
diagonal (and A and C are nonsingular), then the main diagonal elements of 
CC p are the respective 2 " m m , n. m ~ ~i for 3 = + 1, + 2, . . .  I f  these n -- ~ in 
CC t are subtracted from the corresponding main diagonal elements of R, the 
resulting matrix will be Gramian and of rank m. 

According to Theorem 1, when m is the actual  minimal rank possible 
for Gramian  R - U s, then the first m diagonal elements of U 2 can be set 
equal to zero, and the last  n - m diagonal elements equal to the corresponding 

2 2 ai as given by  CC p. Thus, the last n -- m of the z; serve exactly as rank- 
minimizing uniquencsses, or the equality in (4) holds for j = m + 1, m + 2, 
° ° *  , n .  

Notice tha t  the first m uniquenesses implied by  Theorem 1 are zero and 
not  equal to the 2 2 a i .  I f  the first m z~- were also subtracted out from the main 
diagonal of R, then the resulting R - S 2 would in general not be Gramian,  
nor of minimum rank (cf. 4). 

Theorem 1 holds even when the m in it is not minimal. I t  is always 
possible to use the Theorem for the case where C is of order 1, and hence 
CC' is necessarily a diagonal matrix. This provides: 

Corollary. For any nonsingular R, i f  any one cr~ is subtracted from the 
corresponding main diagonal element of R, then the resulting matrix is of rank 
n - - 1 .  

This result was par t ly  indicated by  Thurs tone in his discussion of the 
"diagonal"  method of matr ix  factoring (better  known to mathemat ic ians  
as the Schmidt or Gram-Schmidt  process of orthogonalization), but  without  
noticing apparent ly  tha t  his implied uniqueness was exactly 2 (8, p. 308). 

We have  thus completed showing tha t  there are m a n y  matrices for which 
m a n y  of the a~ can serve as rank-minimizing uniquenesses. Also, we have 
the  curious result tha t  any  one of the a~ alone will reduce nonsingular R to 
a Gramian  matr ix  of rank n -- 1. 

V. Equality in the Limit  as n ~ 

We have already seen in Pa r t  I I I  how, if a "unique"-factor  variable is 
really to be uniquely determined for a given u~, then we must  have u~/a~ ---* 1 
as n --* ~ ,  according to (5) and (6). This conclusion does not depend on the 
size of m, nor in particular on whether m remains finite or becomes infinite 
as n --~ : o  I t  thus applies to ordered factor theories--such as the radex, 



280  PSYCHOMETRIKA 

with its simplexes and circumplexes (5)--as well as to limited common-factor 
theories like those of Spearman and Thurstone, whenever the ~-law of 
deviation (5, p. 308) holds for the unique-factor variables. 

2 Thus, a general sufficient condition for ¢~ to tend to u~ when ui > 0 is 
tha t  r~ --~ 1 or r* --~ 1 as n --* o~. This holds for each j separately. 

A less general sufficient condition, and one tha t  does not necessarily 
hold for any one j but  only for "almost all" j ,  is given in 

Theorem 2. I f  R is nonsingular for all n, and i f  lim,_.~ m / n  = O, then 

l im -1 ~ = 1 .  

ui/(ri = 1. For all except possibly a zero proportion of the j it must be that lim~¢o 2 2 

The condition that  m / n  --~ 0 holds in particular for the Spearman- 
Thurstone approach to factor analysis, which postulates tha t  the number of 
common factors should be small compared to the number of observed 
variables. 

Since 2 2 ui/¢i  ~ 1 for all j ,  according to (4), we must have the mean 
ratio also bounded above by unity: 

- _ <  1. (15)  
n i = l  ey i - -  

The hypothesis tha t  R is nonsingutar for all n ensures tha t  no observed 
variable is perfectly predictable from the rest, or tha t  ~ > 0 for all j and n, 
so that division by ¢~ in (15) is always justified. The first conclusion of 
Theorem 2 is tha t  the limit of the left member of (15) as n -+ co is actually 
the right member. But  clearly, the mean value of a sequence cannot tend 
to an upper bound to each member of the sequence unless almost all members 
of the sequence also tend to this upper bound. Hence the second conclu- 
sion of Theorem 2 follows from the first. We need only to establish the first 
part of the theorem now. 

As is well known, if R - U 2 is Gramian and of rank m, we can write 

R = A A ' +  V 2, (16) 

where A is some matrix of order n X m and of rank m. Let  Q be defined as 
the symmetric matrix of order m: 

Q = I m  + A ' U - 2 A ,  (17) 

where I~ is the unit  matrix of order m. I t  has been shown in (2, 92) tha t  
Q is Gramian and nonsingular, and furthermore 

R - l =  U -2 - U - 2 A Q - I A ' U  -2. (18) 

I t  is easily verified further, from (18) and (17), tha t  

A'R-~A  = I,~ - Q=I. (19) 
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Since the left member of (19) is clearly Gramian, so must the right member 
be. Indeed, it is known that  I m -  Q-1 is the covariance matrix of the predicted 
values (from the observed n variables) of any m orthogonal common-factor 
scores underlying loading matrix A (6). Let q~ denote the kth main diagonal 
element of Q-l, or the variance of estimate of the kth common factor, and let 

2 Pk be defined as 

p~ -- 1 - q~ (k = 1, 2 , - - . ,  m). (20) 

Then p~ is the square of the multiple-correlation coefficient of the kth common 
factor from the n observed variables, and 

0 < p~ = 1 (k = 1, 2, . . .  , m). (21) 

Therefore, the trace--or sum of the main diagonal elements--of In - Q-1 
satisfies 

t r ( I n -  Q-~) = ~p~_-<  m. (22) 
k ~ l  

We are particularly interested in the trace of U~R -~, for clearly--re- 
membering (7) - -  

2 

tr  (U2R -1) = tr (U2S ~) -= ~ u-u~2. (23) 
i = i  0r i  

Since the trace of a product is unchanged if order of multipl{eation is reversed, 

tr (A'R-~A) = tr (AA'R -~) = tr (I~ -- U2R-1), (24) 

the last member follo~q_ng from the middle member by  recalling (16). There- 
fore, taking traces of both members of (19) and using (23)~ (24), and (22), 

• 2 = n - -  p k - > - n - -  m.  (25) 
i - 1  0"i k = l  

Dividing (25) through by n and prefixing inequality (15), 

_ -  -- 1 - -  p~ => 1 - - - .  (26) 
in, i - i  O'i n k ~ l  

Clearly, if ra/n --~ 0 in the last member of (26), the middle members must  
tend to unity, or Theorem 2 is established. 

Notice that  Theorem 2 could be rephrased to say that  almost all r~ --* 1, 
or almost all unique-factors must  be determinate in the limit. I t  is interesting 
to see this in a slightly different way. From (5) and the middle members of 
(26), 

1 " 1 
- ri + -  p~ = 1, (27) 
n . .  n . 
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,o r  

m 
y + n p z  = 1, (28) 

where r 2 is the mean predictability of the n unique-factors, while p2 is the 
mean predictability of the m common factors. When m/n is small, the average 
predictability of the common factors cannot influence greatly the average 
predictability of the unique factors: r 2 must be close to unity.  A further 
consequence is that ,  if both r 2 and p2 tend to  unity as n --+ ¢o, i t  must  be tha t  
m/n ~ O. This does not require m to remain finite, of course, bu t  only to  
increase at  a less rapid pace than does n. 

VI. Increase in Information with n 

A desirable proper ty  of estimates of communatities is tha t  they  should 
improve in general as n increases. Any n variables studied empirically by  a 
factor analysis are usually regarded as but  a sample of a far larger universe 
of variables. The communalities sought are those of the universe. 

Of the four approaches to estimates outlined in Par t  I above, the only 
one which has its estimates va ry  explicitly with n is tha t  of lower bounds. 
In  this sense, it is the only one not tied to algebraic artifacts tha t  may  arise 
in data  due to the finiteness of n of the observed sample of variables' (of. 
3 and 4). 

For  fixed j ,  07 must  increase with n - - o r  a t  worst remain constant - - for  a 
multiple-correlation cannot become worse as the number of predictors 
increases. If hl is defined as for the universe of variables (n = co), then o,2 
must  improve in general as an estimate of hl-as n increases, considering (3). 
The lower bounds improve as estimates as n increases, taking advantage of 
the increased information. 

Similarly, if the j t h  unique-factor scores are defined uniquely as for the 
universe of observed variables, r~ must in general increase with n. From (5), 
this again makes a~ an increasingly bet ter  estimate of the fixed u~ as n in- 
creases. 

Thus, the lower bounds automatically take advantage of whatever 
new information is brought in with increased n, without making any as- 
sumptions at all. In broad classes of cases, as we have seen, this new infor- 
mation can make p~ -~ hl for all or almost all j. 

VII. Further "Best Possible" Inequalities 

We have concentrated until now on the approximation of the ~;~ to the 
2 .u; . Related to this is another problem: the estimation of minimum rank m 

:for Gramian R - U ~. We shall show that  using the diagonal matrix S 2 of 
,(7) as an estimate of U 2 for finite n leads also to a "best  possible" inequality 
fo r  m, as well as to other important  inequalitieS. 
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With any nonsingular correlation matrix R is associated another non- 
singular correlation matrix R* defined by  

R* = SR-1S. (29) 

R* is clearly Gramian, for R -~ is Gramian and S is a diagonal matrix. The 
main diagonal elements of R* are all unity from the definition of S and the 
fact tha t  1/a~ is the j t h  diagonal element of R -1. Indeed, R* is the correlation 
matrix of the anti-images of the n variables of R (cf. 3, p. 294f). Regardless 
of the statistical meaning of R*, it  is a perfectly good correlation matrix when 
n is finite, and we can seek a diagonal Gramian matrix U* that  will leave 
R* - U *: Gramian and with minimum rank m*. This will lead to the interest- 
ing and important  inequality for the case where no a~ is a uniqueness nor 
equals unity:  

m -b m* ->_ n (u~ ,~ a~ < 1 ; j  -- 1, 2, - . .  ; n). (30) 

The  restrictions tha t  S 2 - U 2 and I -- S 2 be nonsingular are essential here 
(consider the counter-example where S = R = R* = I).  Tha t  a~ ~ 1 (I  -- S 2 
be nonsingular) implies tha t  each variable in R has a t  least one nonzero 
correlation with some other variable. 

According to (30), if m/n  is small, then m*/n must be large. Conversely, 
if m*/n is small, m/n  must be large. This is rather  paradoxical in view of the 
fact tha t  R* can always be reduced to rank m by subtracting out the diagonal 
matrix SU-2S (--- S2U-~). This follows by  pre- and post-multiplying (18) 
through by  S, remembering (29), and noting tha t  the second term on the 
right is of rank m. Conversely, R can always be reduced to rank m* by sub- 
tracting out S*2U *-~, where S *~ is the diagonal matrix defined by the main 
diagonal of R *-1. Thus, if all diagonal-free submatrices of R have rank less 
than n/2, so must those of R*, and conversely. Regardless, (30) holds. 

2 In  effect, then, (30) implies tha t  to every R for which a~ ~ ui or 1 for 
all j and where m < n/2, there corresponds an R* which is a generalized 
"Heywood"  case (cf. 4, 159f). Although all diagonal-free matrices have 
small rank in R*, no communalities can be found to make R -- U 2 of equally 
small rank and yet  be Gramian. I t  must  be tha t  m* _~ n -- m. This again 
emphasizes tha t  the case m < n/2 may be the exception, rather than the 
rule, for correlation matrices. And it  is interesting that  this paradox arises 

2 precisely for those cases where no a~ equals the corresponding u; . 
To  establish (30), we first reeall the theorem (4, 157f) tha t  if S 2 -- U 2 

is nonsingular, and if s is the non-negative index of R -- S 2, then 

s ~ u ([ S ~ - -  U 2 [  > 0).  (31) 

Now, the proof of (31) in (4) can be modified to take care of the case where 
S 2 -- U ~ is possibly singular, to  establish the weaker but  more universal 
inequality p _<_ m, where p is the positive index of R - S 2. We shall not take 
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space to prove this modification here, but  shall merely state it in terms of 
our needs for R*: 

p* _-< m*, (32) 

where p* is the positive index of R* -- S .2, and we do n o t  necessarily assume 
S .2 - U .2 to be nonsingular. 

Now, from (29), R * - I  = S - ~ R S  -~, or since the main diagonal elements 
of R are all unity, 

S . 2 =  S 2. (33) 

I t  is interesting to note tha t  (33) and (29) imply tha t  (R*)* = R, or R is 
to R* as R* is to R. 

Statistically, (33) implies tha t  the relative predictability of the j t h  anti- 
image from the n - 1 remaining anti-images is the same as fo r  the j t h  original 
variable from the n - 1 remaining original variables. From (29) and (33) 
we can write the identi ty 

R *  - S .2  = S ( R  -~ - -  I ) S .  (34) 

Sylvester 's "law of inert ia" (cf. 4, p. 152) applied to (34) shows tha t  
p* equals the positive index of R -~ -- I ,  which in turn clearly equals the 
number of latent  roots of R -~ greater than unity. Hence p* equals the number  
of latent  roots of R itself which are less  than unity. But  it  has been shown in 
(4) tha t  s is not less than the number of latent roots of R which are greater 
than or equal to unity whenever I - S" is nonsingular. Since R has n latent  
roots all told, it  follows that  

s q - p *  => n ( [ I -  S 2 [ > 0). (35) 

Inequal i ty  (30) follows from (31), (32), and (35). 
To prove tha t  (30) is a "best  possible" inequality, we must show that  

matrices R exist f o r  which the equality sign holds. I t  suffices to consider an 
R which has only two distinct latent  roots, say ~ > 1 with multiplicity f 
and ha < 1 with multiplicity f*  = n -- f .  Then i t  must  be that  

m ~ f ,  m $ 

For  m ~ f by inequality (39) of (4, 159), 
tha t  R - h2I is Gramian and of rank f ;  
on R -1. Since f @ f *  = n ,  (36) provides 
in (30) holds. 

-- f* .  (36) 

and hence m = f by considering 
m *  = f *  by  analogous reasoning 
a special case where the equality 

Inequali ty (31) by itself is similarly a "best  possible" one. Consider the 
case where R* has two distinct latent  roots, say ~1 < 1 with multiplicity p* 
and X2 < 1 with multiplicity p = n - p*. Since R *-~ - -  I = S - r R S  -~ - 

I = S -1 ( R  - $ 2 ) S  -1, p is  the positive index of R - S 2 while p* is tha t  of 
R* - S *~. Also, since no root vanishes, p = s or the positive and non-negative 



LOUIS GUTTMAN 2 8 5  

indices coincide. Since R *-1 - ~ 1 I  = S - 1 R S  -~ - k ;~ I  is Gramian  and of 
rank p = s, so mus t  R - k;~S 2 be, or the equali ty in (31) must  hold for this 
case. 

V I I I .  Relation to Image Ana lys i s  
2 2 The ratio of u; to a, indicates the relative predictabili ty of t h e . j t h  

unique-factor scores f rom the n observed variables of R, according to (5). 
Closely related is another  paramete r  developed in image theory and denoted 
by  ~ ,  namely,  the variance of the difference between the respective scores on 
the j t h  anti- image and the j t h  unique factor. I t  turns out (3, 293) tha t  ~ 
can be computed as the simple difference 

6~ = a~ - u~ ( j  = 1, 2, . . .  , n ) .  (37) 

Hence, a necessary and sufficient condition tha t  ~ --+ u~ as n -*  ~ is tha t  
~ -*  0. This implies tha t  the unique-factor scores must  be essentially the 
total  anti- image scores from the universe of content. Here we have  the 
individual anti-images themselves as increasingly bet ter  est imates of the 
unique-factor scores as n -~ co. This problem of estimating scores is perhaps 
even more basic than  tha t  of estimating only over-all parameters,  such as 
uniquenesses, which are based on the scores. Es t imat ing  U s by  S ~- has the 
impor tan t  proper ty  of tying in directly with the score est imation problem 
via image analysis. 
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