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CHARLOTTE H. MASON and WILLIAM D. PERREAULT, JR.* 

Multiple regression analysis is one of the most widely used statistical procedures 
for both scholarly and applied marketing research. Yet, correlated predictor vari- 
ables-and potential collinearity effects-are a common concern in interpretation 
of regression estimates. Though the literature on ways of coping with collinearity 
is extensive, relatively little effort has been made to clarify the conditions under 
which collinearity affects estimates developed with multiple regression analysis-or 
how pronounced those effects are. The authors report research designed to address 
these issues. The results show, in many situations typical of published cross-sectional 
marketing research, that fears about the harmful effects of collinear predictors often 
are exaggerated. The authors demonstrate that collinearity cannot be viewed in 
isolation. Rather, the potential deleterious effect of a given level of collinearity 
should be viewed in conjunction with other factors known to affect estimation ac- 

curacy. 

Collinearity, Power, and Interpretation of 

Multiple Regression Analysis 

Multiple regression analysis is one of the most widely 
used statistical procedures for both scholarly and applied 
marketing research. Its popularity is fostered by its ap- 
plicability to varied types of data and problems, ease of 
interpretation, robustness to violations of the underlying 
assumptions, and widespread availability. 

Multiple regression is used in marketing research for 
two related, but distinct, purposes. One is simply for 
prediction per se. In such applications, the researcher is 
interested in finding the linear combination of a set of 
predictors that provides the best point estimates of the 
dependent variable across a set of observations. Predic- 
tive accuracy is calibrated by the magnitude of the R2 
and the statistical significance of the overall model. 

The second purpose-conditional on statistically sig- 
nificant overall prediction-is to draw conclusions about 
individual predictor variables. In such applications, the 

focus is on the size of the (standardized) regression coef- 
ficients, their estimated standard errors, and the asso- 
ciated t-test probabilities. These statistics are used to test 
hypotheses about the effect of individual predictors on 
the dependent variable or to evaluate their relative "im- 
portance." 

Problems may arise when two or more predictor vari- 
ables are correlated. Overall prediction is not affected, 
but interpretation of and conclusions based on the size 
of the regression coefficients, their standard errors, or 
the associated t-tests may be misleading because of the 
potentially confounding effects of collinearity. This point 
is well known among researchers who use multiple 
regression, and it is discussed in almost every text treat- 
ment of multiple regression. Moreover, an extensive 
technical literature-in marketing, statistics, and other 
quantitative fields-suggests various ways of diagnosing 
or coping with multicollinearity (e.g., Belsley, Kuh, and 
Welsh 1980; Farrar and Glauber 1967; Green, Carroll, 
and DeSarbo 1978; Krishnamurthi and Rangaswamy 
1987). 

Study Purpose and Contributions 

Though much has been written about coping with col- 
linearity, relatively little research has been done to clar- 
ify the conditions under which collinearity actually af- 
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fects estimates developed with multiple regression 
analysis-and how serious its effect really is. Extreme 
collinearity is known to be problematic; the specific im- 
pact of moderate to severe collinearity is less well under- 
stood. Because of the common use of regression in mar- 
keting and the frequent occurrence of collinear predictors, 
this gap in our knowledge is of major concern. 

We report the results of a Mont6 Carlo simulation ex- 
periment designed to address these issues. Using simu- 
lated data reflecting a wide range of situations typical of 
cross-sectional research, we show how different levels 
of collinearity among predictors affect the accuracy of 
estimated regression coefficients and their standard er- 
rors, and the likelihood of Type II errors (i.e., failure to 
detect a "significant" predictor). In particular, we com- 
pare the effects- and interactions-of collinearity with 
the effects of other factors known to influence accuracy, 
such as the sample size on which estimates are based, 
the strength of the true population relationship (R2), and 
the pattern of regression coefficients. 

We show that widely voiced caveats about the harmful 
effects of collinear predictors often are exaggerated. Most 
important, we demonstrate that collinearity cannot be 
viewed in isolation. Rather, the effect of a given level 
of collinearity can be evaluated only in conjunction with 
the other factors of sample size, R2, and magnitude of 
the coefficients. For example, bivariate correlations as 
high as .95 have virtually no effect on the ability to re- 
cover "true" coefficients and to draw the correct infer- 
ences if the sample size is 250 and the R2 is at least .75. 
In contrast, a bivariate correlation of .95 in conjunction 
with a sample size of 30 and an R2 of .25 results in Type 
II error rates of 88% or more. Thus, the interactions of 
collinearity with the other factors known to affect ac- 
curacy are both significant and important. 

In the next section, we briefly review literature rele- 
vant to collinearity and its effect on multiple regression 
estimates. Then we describe the methods used in our 
study, including a parsimonious approach for generating 
samples of data that conform, within sampling variance, 
to a wide variety of cross-sectional regression models. 
Next, we discuss the design of the simulation experiment 
itself and the specification of the factors that were varied 
to represent 288 different cross-sectional regression sit- 
uations. We then report the results of the study, which 
are based on 28,800 simulated samples. We conclude 
with a summary of the study's limitations and a discus- 
sion of the implications of our findings for the design 
and analysis of marketing studies. 

COLLINEARITY AND MULTIPLE REGRESSION 
ANALYSIS 

The Nature of Collinearity and Its Effects 

Though "no precise definition of collinearity has been 
firmly established in the literature" (Belsley, Kuh, and 
Welsh 1980), collinearity is generally agreed to be pres- 
ent if there is an approximate linear relationship (i.e., 

shared variance) among some of the predictor variables 
in the data. In theory, there are two extremes: perfect 
collinearity and no collinearity. In practice, data typi- 
cally are somewhere between those extremes. Thus, col- 
linearity is a matter of degree. Though some collinearity 
is almost always present, the real issue is to determine 
the point at which the degree of collinearity becomes 
"harmful." 

The econometric literature typically takes the theoret- 
ical position that predictor variable constructs are not 
collinear in the population. Hence, any observed collin- 
earity in empirical data is construed as a sample-based 
"problem" rather than as representative of the underly- 
ing population relationship (cf. Kmenta 1986). In many 
marketing research situations, however, it is unrealistic 
to assume that predictor variables will always be strictly 
orthogonal at the population level (especially when one 
is working with behavioral constructs). In fact, that is 
one reason why many researchers argue for the use of 
path analysis procedures, including LISREL-type models, 
that explicitly focus on and model the whole covariance 
structure among variables. 

Regardless of whether collinearity in data is assumed 
to be a sampling artifact or a true reflection of population 
relationships, it must be considered when data are ana- 
lyzed with regression analysis because it has several po- 
tentially undesirable consequences: parameter estimates 
that fluctuate dramatically with negligible changes in the 
sample, parameter estimates with signs that are "wrong" 
in terms of theoretical considerations, theoretically "im- 
portant" variables with insignificant coefficients, and the 
inability to determine the relative importance of collinear 
variables. All of these consequences are symptoms of 
the same fundamental problem: "near collinearities in- 
flate the variances of the regression coefficients" (Stew- 
art 1987). 

That effect can be seen clearly in the formula for the 
variances and covariances of the estimated coefficients. 
The variance-covariance matrix for the vector of coef- 
ficients, 03, is given by 

(1) var(1) 
= 

a2(X'X)-, 
where U2 is the variance of the error term for the overall 
model and X is the matrix of predictor variables. The 
variance of a specific coefficient 13k is given by 

(2) var(k) = /(x2, -xk)(1 Y- 

where Ri is the coefficient of determination for a regres- 
sion with Xk as the dependent variable and the other XA's, 
j k, as predictor variables. R may increase because 

the kh predictor is correlated with one other predictor or 
because of a more complex pattern of shared variance 
between Xk and several other predictors. Either way, as 
the collinearity between Xk and one or more other pre- 
dictor variables increases, Ri becomes larger and that 
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increases the variance of jk. Thus, collinearity has a di- 
rect effect on the variance of the estimate. 

However, it is important to see in equation 2 that RE 
is only one of several factors that influence var(pk). Spe- 
cifically, a lower R2 for the overall model as a result of 
an increased ar2 also increases the variances of 1k and the 
other coefficients. In addition, the variability or range of 
Xk, as reflected in >(Xki - k)2, is related inversely to 
var(pk). Thus, with other factors held constant, increas- 
ing the sample size reduces var(Pk)-as long as the new 

Xki's are not equal to Xk. 
In summary, equation 2 shows that collinear predic- 

tors may have an adverse effect on the variance of 3Pk. 
It also shows that a potential collinearity effect-and how 
prominent it might be in influencing var(Pk)-does not 
operate in isolation. There are also effects due to sample 
size, the overall fit of the regression model, and the in- 
teractions between those factors and collinearity. 

Detecting Collinearity 
The literature provides numerous suggestions, ranging 

from simple rules of thumb to complex indices, for di- 
agnosing the presence of collinearity. Reviewing them 
in detail is beyond the purpose and scope of our article. 
Several of the most widely used procedures are exam- 
ining the correlation matrix of the predictor variables, 
computing the coefficients of determination, RE, of each 
Xk regressed on the remaining predictor variables, and 
measures based on the eigenstructure of the data martix 
X, including variance inflation factors (VIF), trace of 
(X'X)-', and the condition number. 

The presence of one or more large bivariate correla- 
tions-.8 and .9 are commonly used cutoffs-indicates 
strong linear associations, suggesting collinearity may be 
a problem. However, the absence of high bivariate cor- 
relations does not imply lack of collinearity because the 
correlation matrix may not reveal collinear relationships 
involvinu more than two variables. 

The Rk from regressing each predictor variable, one at 
a time, on the other predictor variables is an approach 
that can detect linear relationships among any number of 
variables. A common rule of thumb suggests that col- 
linearity is a problem if any of the Ri's exceed the R2 of 
the overall model. A related approach relies on the vari- 
ance inflation factors (VIF) computed as (1 - R2)-1. A 
maximum VIF greater than 10 is thought to signal harm- 
ful collinearity (Marquardt 1970). 

Belsley, Kuh, and Welsh (1980) proposed a "condi- 
tion number" based on the singular value decomposition 
of the data matrix X. The condition number for X is 
defined as the ratio of the largest and smallest singular 
values. Associated with each singular value is a regres- 
sion coefficient variance decomposition. It decomposes 
the estimated variance of each regression coefficient into 
a sum of terms, each of which is associated with a sin- 
gular value. Collinearity is potentially serious if a sin- 
gular value with a high condition index is associated with 
a high variance decomposition proportion for at least two 

estimated regression coefficient variances. On the basis 
of their empirical simulations, Belsley, Kuh, and Welsh 
suggest that condition indices of 5 through 10 indicate 
weak dependencies and indices greater than 30 indicate 
moderate to strong dependencies. 

Coping With Collinearity 
Numerous approaches have been proposed for coping 

with collinearity-none entirely satisfactory. Like the 
procedures for detection, the procedures for coping with 
collinearity vary in level of sophistication. We briefly 
review several of the most commonly used ones. 

One of the simplest responses is to drop one or more 
of the collinear variables. This approach may sidestep 
the collinearity problem, but it introduces new compli- 
cations. First, unless the true coefficient(s) of the dropped 
variable(s) is zero, the model will be misspecified, re- 
sulting in biased estimates of some coefficients. Second, 
dropping variables makes it impossible to identify the 
relative importance of the predictor variables. Even if 
the researcher disregards these limitations, the practical 
problem of deciding which variable to drop remains. 

Another remedy is to transform the raw-data X to cre- 
ate a new, orthogonal matrix. Such techniques include 
Gram-Schmidt orthogonalization (Farebrother 1974), 
principal components or factor analysis (Massy 1965), 
and singular value decomposition. Boya (1981) dis- 
cusses the limitations and advantages of these ap- 
proaches. The most common of them in marketing stud- 
ies is the principal components or factor analysis approach. 
However, this remedy also sidesteps the question of the 
relative importance of the original variables. In addition, 
as there is no guarantee that the new composite variables 
will have some useful interpretation, the final results may 
have little meaning. Though the collinearity problem has 
been resolved, the results may be uninterpretable. 

Another class of approaches involves biased esti- 
mators such as ridge regression (e.g., Hoerl and Ken- 
nard 1970; Mahajan, Jain, and Bergier 1977; Vinod 1978). 
These models attempt to produce an estimator with lower 
mean square error (MSE) than the OLS estimator by 
trading off a "small" amount of bias in return for a sub- 
stantial reduction in variance. Though these estimators 
have some desirable theoretical properties, in practice 
there is no way to confirm that a reduction in MSE has 
been achieved or to know how much bias has been in- 
troduced. 

Some simulation studies have explored ways to choose 
among the different biased estimators (e.g., Delaney and 
Chatterjee 1986; Krishnamurthi and Rangaswamy 1987; 
Wichern and Churchill 1978). A review of such studies 
uncovers some apparent contradictions. For example, 
Krishnamurthi and Rangaswamy conclude that, though 
no estimator completely dominates OLS, "biased esti- 
mators do better than OLS on all criteria over a wide 
range of the sample statistics that we consider." Yet in 
the studies by Wichern and Churchill and by Delaney 
and Chatterjee, OLS performed unexpectedly well. Spe- 
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cifically, Delaney and Chatterjee found that increasing 
the condition number from two to 100 had a "negligible 
impact" on the performance measures for the OLS es- 
timator. At least some of the discrepancies may be ex- 
plained by the different conditions among the studies. 
For example, Krishnamurthi and Rangaswamy focused 
on levels of collinearity substantially higher than those 
considered by Delaney and Chatterjee. Regardless of such 
differences, the fact remains that implementing any of 
the biased estimation methods requires some complex 
and subjective decisions. 

Yet another approach to coping with collinearity is to 
develop alternative measures of predictor variable im- 
portance. One such measure is 

J,2, proposed by Green, 
Carroll, and DeSarbo (1978, 1980).' The desirable prop- 
erties of 5j2 include the fact that the individual measures 
of importance are non-negative and sum to the R2 for the 
regression. The authors conclude that 5j2 symmetrically 
partials out the variance accounted for among a set of 
correlated predictor variables in as "equitable" a way as 
possible. Jackson (1980) and Boya (1981), however, have 
raised concerns about 82.2 

In summary, reviewing the literature on ways to cope 
with collinearity reveals several points. First, a variety 
of alternatives are available and may lead to dramatically 
different conclusions. Second, what might be gained from 
the different alternatives in any specific empirical situ- 
ation is often unclear. Part of this ambiguity is likely to 
be due to inadequate knowledge about what degree of 
collinearity is "harmful." In much of the empirical re- 
search on coping with collinearity, data with extreme 
levels of collinearity are used to provide rigorous tests 
of the approach being proposed. Such extreme collin- 
earity is rarely found in actual cross-sectional data. The 
typical level of collinearity is more modest, and its im- 
pact is not well understood. Surprisingly little research 
has been done to identify systematically the detrimental 
effects of various degrees of collinearity-alone and in 
combination with other factors. 

MONTE CARLO SIMULATION EXPERIMENT 

Data-Generating Framework 

The core of our simulation model is a simple, but flex- 
ible, approach for generating data that are-within sam- 
pling variance-consistent with parameters set a priori 
by the researcher. Our approach makes it possible to 
specify in advance the sample size (n), the number of 
predictor variables (p), the structure of the correlations 
among those predictors, the strength of the true popu- 
lation relationship between the predictor variable com- 
posite function and the dependent variable (R2), and the 

structure of the model (i.e., the true coefficients for the 
predictors). Each sample results in a data matrix of mul- 
tivariate normal variables. 

A sampling of previous simulation research reveals 
various approaches for generating a data matrix X. Hoerl, 
Schuenemeyer, and Hoerl (1986) begin with arbitrary 
empirical data matrices, which then are modified to ob- 
tain the desired sample size and degree of collinearity as 
determined by the trace of (X'X)-'. A more common 
approach is to use randomly generated X matrices. De- 
laney and Chatterjee (1986) use singular value decom- 
position of randomly generated matrices to create data 
matrices with varying condition numbers. Krishnamurthi 
and Rangaswamy (1987) randomly select a covariance 
matrix, then generate the X data matrix from a multi- 
normal distribution consistent with the specified covari- 
ances. McIntyre et al. (1983) use the same approach, 
with the exception that the pattern of correlations (rather 
than covariances) is not random, but is specified by the 
researchers. We use the same approach, whereby the 
sample size, the number of predictor variables, and the 
pattern of true (i.e., population) correlations among those 
predictors are specified. Then a matrix of predictor vari- 
able values consistent with those specifications is gen- 
erated. The computational procedure we use is the 
GGNSM subroutine, which is described and imple- 
mented in the International Mathematical Subroutine Li- 
brary (IMSL). 

Once the predictor variable values have been gener- 
ated, the dependent variable value is computed for each 
observation. The value for the dependent variable Y is 
computed as a linear combination of p predictor vari- 
ables (Xk) plus an error term, or 

(3) Y= E kXk + E, 
k 

where: 

1k 
= the true population coefficient for the kh predic- 

tor and 
E = a variable drawn randomly from a normal dis- 

tribution with mean 0 and a variance that is con- 
sistent with the specified model R2 for the whole 
population. 

By selecting different variances for the error term, we 
vary the R2 of the model. With other things held con- 
stant, as the variance of the error term increases, the R2 
decreases. Specifically, we set the variance of E equal 
to f2 * s2, where s2 is the variance of the linear combi- 
nation of the predictor variables, which is 

(4) s2= 3 var(Xk)+ > 33k cov(X,, Xk), 
k J k 

jfk 

and where 

(5) f= 

'The first step in computing delta squared (8,2) is to replace the 
original predictors (X) by a best-fitting orthonormal set (Z). Then the 
criterion variable (y) is regressed on Z to obtain the vector of betas. 
These betas are decomposed into the contributions made by the orig- 
inal variables. 



272 JOURNAL OF MARKETING RESEARCH, AUGUST 1991 

As implied by equation 5, f is simply an adjustment 
factor that is a function of the R2 for the population. By 
definition, we know that R2 is the ratio of the variance 
explained in (the vector) Y by the linear combination of 
predictors to the total variance in Y. We also know, from 
equation 4, that the explained variance in Y must be equal 
to the variance of the linear combination, s2. Further, 
given a value of s2, we can specify the unexplained vari- 
ance in Y as the product of our adjustment factor, f, and 
the explained variance, s2. Specifically, if we define f 
so that the unexplained variance in Y is f2s2, the total 
variance in Y must be 

(6) var(Y) = s2 + f22 = (1 + f2)S2. 

Then, because R2 is 

S2 1 
(7) R2 

= 
S 

(s2 + f2S2) (1 + f2)' 

we can rearrange terms and show that 

f= R -2 

Design Factors for the Experiment 
We designed the simulation study to span conditions 

typical of those in published cross-sectional marketing 
research studies in which regression is used. Factors that 
varied were the degree of collinearity, the values of the 
true regression coefficients, the number of observations 
in the sample, and the model R2. The number of pre- 
dictor variables was fixed at four. 

To simulate different levels of collinearity, we varied 

the pattern of correlations among the independent vari- 
ables. Four different patterns of correlations, reflecting 
increasing levels of collinearity, are shown in Table 1A 
(Table lB contains four additional correlation matrices 
that are discussed subsequently). For comparison, the ta- 
ble also includes the condition number and trace of 
(X'X)-y associated with the given collinearity levels. 
Collinearity level I involves a moderate correlation (.5) 
between X, and X2. Both predictors are weakly corre- 
lated (.2) with X3. In this and the other collinearity lev- 
els, X4 is specified as uncorrelated with any of the other 
predictors. Correlations between predictors in the .2 to 
.5 range are common in behavioral studies in marketing, 
especially when the predictors are multi-item composite 
scales. 

Collinearity level II in Table 1A involves a stronger 
correlation (.65) between the first two predictors, and 
also a higher correlation (.4) between those variables and 
the third predictor. Collinearity level III continues in the 
same direction, and level IV is the most extreme. It 
specifies a correlation of .95 between the first two pre- 
dictors and a correlation of .8 between each of them and 
the third predictor. We characterize a correlation of .95 
as "extreme" because at that level two predictors that 
are viewed as different constructs are, for practical pur- 
poses, the same within the limits of typical measurement 
error. 

These four patterns of correlations are typical of those 
found in actual cross-sectional marketing data and reflect 
common rules of thumb as to the seriousness of collin- 
earity. For example, Green, Tull, and Albaum (1988) 
argue that .9 generally is thought to indicate "serious" 
collinearity. In contrast, Tull and Hawkins (1990) warn 

Table 1 
CORRELATION MATRICES 

A. Collinearity levels I through IV 
Level I Level II Level III Level IV 

x, X2 x3 x4 x, x2 x3 x4 x, x2 x3 x4 x, x2 x3 x4 
X1 1.0 1.0 1.0 1.0 
X2 .5 1.0 .65 1.0 .80 1.0 .95 1.0 
X3 .2 .2 1.0 .4 .4 1.0 .6 .6 1.0 .8 .8 1.0 
X4 .0 .0 .0 1.0 .0 .0 .0 1.0 .0 .0 .0 1.0 .0 .0 .0 1.0 

Trace (X'X)-' 4.761 5.849 8.593 25.403 
Condition number 1.804 2.377 3.419 7.351 

B. Collinearity levels IlIa through IId 
Level IIIa Level IIIb Level IIlIc Level IlId 

x, X2 x3 x4 x, x2 x3 x4 x, x2 x3 x4 x, x2 x3 x4 
X, 1.0 1.0 1.0 1.0 
X2 .83 1.0 .86 1.0 .89 1.0 .92 1.0 
X3 .64 .64 1.0 .68 .68 1.0 .72 .72 1.0 .76 .76 1.0 
X4 .0 .0 .0 1.0 .0 .0 .0 1.0 .0 .0 .0 1.0 .0 .0 .0 1.0 

Trace (X'X)-' 9.682 11.201 13.478 17.318 
Condition number 3.766 4.212 4.820 5.733 
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of potential problems if bivariate correlations exceed .35 
and serious problems if correlations are substantially above 
.5. Lehmann (1989) states that correlations greater than 
.7 are considered large. Our matrices span these con- 
ditions. Moreover, the fourth predictor in each matrix is 
uncorrelated with the others-hence estimation accuracy 
and Type II errors associated with this variable provide 
a baseline for comparison because it is unaffected by 
collinearity. 

As noted previously, specifying the pattern of bivar- 
iate correlations is not the only way to control the level 
of collinearity. However, manipulation of bivariate cor- 
relations is a sufficient and direct way to induce collin- 
earity. Further, for our purposes, manipulating collin- 
earity at a bivariate level makes it easy for a reader to 
make direct, intuitive comparisons of the overall patterns 
of relationships in our covariance matrices with those 
found in actual marketing analysis situations. 

The second factor varied was the structure of the model, 
that is, the values of true population coefficients to be 
estimated by regression, or betas. The two sets of true 
coefficients used are shown in Table 2. Though the pat- 
terns of coefficients for the two models are different, 
note that the vector lengths are equal in the two models: 

(13'P1) = 
(iI'in). 

The predictor variable values were 
generated from a distribution with a mean of 0 and a 
variance of 1; thus, standardized and unstandardized es- 
timates of these coefficients will be approximately the 
same. 

In each model, X4-which is uncorrelated with the other 
predictors-is associated with a true coefficient of .25. 
Further, one variable, X3, is misspecified-that is, it is 
associated with a true coefficient of zero. This misspe- 
cified predictor is a potential source of confusion be- 
cause it is correlated with X1 and X2. In both models, X1 
and X2 are associated with nonzero betas. In model I, 
the coefficient for X, (.5) is about twice as large as the 
coefficient for X2 (.265)-which is potentially problem- 
atic because the two predictors are correlated. In model 
II, the coefficients for the two predictors are equal (.40). 
This estimation situation may be more complex because, 
given the common variance between the two variables, 
different combinations of estimated coefficients yield 
reasonably good prediction. 

We also varied the strength of the true (population) 
relationship between the predictors and the dependent 
variable. The three levels for R2 were .25, .50, and .75, 
reflecting a range of R2 values that are typical of weak, 
moderate, and strong relationships found in behavioral 
studies in marketing.2 

The final design factor was the sample size, which 
ranged from 30 to 300 with intermediate values of 100, 
150, 200, and 250. A sample size of 30 is small by stan- 
dards of marketing research practice. A sample size of 

Table 2 
TRUE COEFFICIENTS FOR MODELS I AND II 

3 32 (33 (34 Intercept 
Model I .50 .265 .0 .25 2 
Model II .40 .40 .0 .25 2 

150 is moderate, and was the mean sample size in a sur- 
vey of 90 recently published studies. A sample of 300 
is large in relation to the number of predictors, especially 
because there is no concern here about the representa- 
tiveness of the sample. 

The full factorial design for the simulation results in 
144 different combinations of the design factors. For each 
combination of collinearity level, model structure, R2, 
and sample size, 100 samples were generated. For each 
sample, ordinary least squares (OLS) estimates of the 
betas and the standard errors of the betas were com- 
puted. 

Measures of Estimation Accuracy and Inaccuracy 
The estimated coefficients from OLS, Pj, are com- 

pared with the true values to assess estimation accuracy. 
For each regression coefficient the absolute value of the 
OLS estimation error is given by jP, - P3j. Unlike the 
coefficients, the true values of the standard errors of the 
estimates are not specified in advance.3 However, a rea- 
sonable approximation of the true standard error can be 
derived empirically (e.g., Srinivasan and Mason 1986). 
Specifically, the standard error of the sample of esti- 
mated coefficients can be computed for the 100 samples 
in each cell of the design. For example, consider 31. 
Each sample yields an estimated P, and standard error, 
s?,. Over the 100 samples, the average P, can be com- 
puted. From the estimates P1,, i = 1, ..., 100, an esti- 
mate of the true standard error of P, is given by 

(1001/2 

So. 
100 - 1 

With this approximation of the true standard error for 
the pk, we can estimate the accuracy of the estimated 
standard errors as IS , - 

S•l. Finally, for each estimated coefficient and standard er- 
ror, there is an associated t-value and probability level 
for the (statistical) null hypothesis that the estimated 
coefficient is zero, within sampling variance. By com- 
paring these probability values with the critical value of 
.05, we can determine the number of Type I and Type 
II errors of inference that would have been made in each 
estimation situation for the coefficients. 

2Because of sampling variation, the realized values of R2 for each 
sample may deviate slightly from the specified, or target, value. 

3If the true X matrix were known a priori, the standard errors of 
the estimated coefficients could be obtained analytically as (X'X)-' 
T2 or 
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RESULTS 

Accuracy of Estimated OLS Regression Coefficients 
Table 3 gives the results of five analysis of variance 

models that assess how the OLS estimation error is af- 
fected by the four design factors and their interactions. 
Two columns of statistics are provided for each ANOVA 
model. First is the percentage of variance in the esti- 
mation error that is explained by the main effect or in- 
teraction for the corresponding row of the table. In other 
words, this percentage is the ANOVA sum of squares 
attributable to the row factor divided by the total sum of 
squares. These percentages provide a simple and intui- 
tive basis for comparing the effects on accuracy of the 
different design factors. Further, the top row of the table 
gives the percentage of the variance explained by the 
combination of all main effects and interactions-and 
(within rounding) the other percentages sum to this value. 
The second column of statistics for each ANOVA model 
gives the probability levels for the ANOVA F-test for 
the statistical null hypothesis that the effect of a design 
factor (or interaction among design factors) is zero. 

The top row reveals that each of the overall ANOVA 
models is statistically significant and that in combination 
the design factors explain from 36 to 45% of the vari- 
ance in the estimation error for the five coefficients. Our 
discussion focuses primarily on the analyses for the first 
two coefficients. Table 3 shows a statistically significant 
main effect for collinearity for all five coefficients, but 

the percentage variance explained is small for 13, 4,9 
and p3. 

Key points from the results for P13 and 12 are: 

-In total, main effects account for approximately 75% of 
the unexplained variance. The percentage of explained 
variance is 28% for sample size, 26% for collinearity, 
and 21% for R2. 

-The variance explained by the model factor is statistically 
significant for 32, but in both an absolute and a relative 
sense is inconsequential. 

-The two-way interactions of collinearity x R2, collinear- 
ity x sample size, and R2 X sample size are significant 
and together account for about 21% of the explained vari- 
ance. 

-The three-way interaction of collinearity x R2 X sample 
size is significant and accounts for about 3% of the ex- 
plained variance. 

To understand better the nature and magnitude of these 
effects, we plotted the three graphs in Figure 1 showing 
the mean estimation error for 13 for different levels of 
collinearity and sample size for each of the three levels 
of R2. Though the model factor is statistically signifi- 
cant, the variance it explains is not consequential and 
incorporating it in the plots would not alter the basic re- 
lationships. 

For comparison, the vertical axes of the three graphs 
in Figure 1 are on the same scale. Higher scores indicate 
more inaccuracy in recovering parameters whereas lower 
scores indicate better recovery. Figure 1A is a plot of 

Table 3 
VARIANCE EXPLAINED IN ACCURACY OF ESTIMATED COEFFICIENTS BY SIMULATION DESIGN FACTORS 

AND THEIR INTERACTIONSa 

Accuracy 
Accuracy of (3, Accuracy of (32 Accuracy of (33 Accuracy of (34 of intercept 

% F- % F- % F- % F- % F- 
variance ratio variance ratio variance ratio variance ratio variance ratio 

Source of variance explainedb prob.c explained prob. explained prob. explained prob. explained prob. 
Overall model .454 .001 .449 .001 .387 .001 .380 .001 .365 .001 
Collinearity level .119 .001 .118 .001 .040 .001 .002 .001 .002 .001 
R2 .097 .001 .092 .001 .119 .001 .142 .001 .146 .001 
Model .000 .097 .000 .041 .000 .006 .000 .017 .000 .004 
Sample size (n) .123 .001 .128 .001 .160 .001 .189 .001 .176 .001 
Collinearity x R2 .026 .001 .025 .001 .010 .001 .001 .001 .000 .685 
Collinearity x model .000 .535 .000 .420 .000 .332 .000 .065 .000 .428 
Collinearity x n .039 .001 .039 .001 .016 .001 .001 .128 .001 .010 
R2 X model .000 .921 .000 .847 .000 .642 .000 .072 .000 .635 
R2 X n .032 .001 .029 .001 .031 .001 .046 .001 .036 .001 
Model x n .000 .193 .001 .010 .000 .718 .000 .390 .000 .931 
Collinearity x R2 x model .000 .287 .000 .370 .000 .289 .000 .089 .000 .579 
Collinearity x R2 x n .016 .001 .014 .001 .007 .001 .003 .001 .001 .980 
Collinearity x model x n .001 .103 .001 .009 .001 .382 .001 .587 .001 .166 
R2 X model x n .000 .851 .000 .512 .000 .943 .000 .984 .000 .937 
Collinearity x R2 x model x n .001 .902 .001 .671 .001 .981 .001 .846 .001 .609 

"Accuracy measure is the absolute value of the difference between the OLS estimated coefficient and the true value for the coefficient specified 
in the simulation model. 

bRatio of the sums of squares due to an effect to the total sums of squares. Thus, the entry for the overall model is the R2 for the overall 
analysis and the other entries sum (within rounding) to that total. 

cUpper limit of the probability level associated with the F-test for mean differences among levels of the design factor. 
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Figure 1 
MEAN ABSOLUTE OLS ESTIMATION ERROR FOR 31 FOR DIFFERENT LEVELS OF COLLINEARITY ACROSS DIFFERENT 

SAMPLE SIZES FOR R2 LEVELS .75, .50, AND .25 
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the mean absolute error for the OLS estimate of 01 for 
different levels of collinearity across the different sample 
sizes for the highest (.75) level of R2. As suggested by 
the graph, at an R2 of .75 the level of the mean absolute 
error is low and very similar for the three lowest levels 
of collinearity; for sample sizes larger than 100 the lines 
for these collinearity levels overlap. In contrast, across 
all sample sizes, the mean absolute error is higher for 
collinearity level IV. Further, at the smallest sample sizes 
there is a marked increase in the mean error-regardless 
of the collinearity level-though the differential slope of 
the line for the highest collinearity level reflects the sam- 
ple size by collinearity interaction noted previously. 

Comparing the "collinearity curves" in Figure 1A with 
comparable curves in B and C shows how collinearity 
level and sample size effects on mean error vary at the 
lower R2 levels of .50 and .25, respectively. As in Figure 
1A, the curves for collinearity levels I, II, and III across 
different sample sizes are very similar in Figure 1B and 
C-and the higher error associated with collinearity level 
IV is again set apart. The main effect of R2 is clear: with 
an R2 of only .25, mean absolute error is significantly 
higher across each sample size and each level of collin- 
earity. Further, comparing the graphs makes the inter- 
action of R2, sample size, and collinearity level apparent: 
at the lowest sample sizes and at lower levels of R2, mean 
error is substantially higher, and that effect is accen- 
tuated at the highest collinearity level. 

In combination, the graphs in Figure 1 suggest that 
the three lower levels of collinearity have relatively little 
effect on mean absolute error when the R2 is large or 
when the sample size is large (n > 150). However, even 
at the lowest levels of collinearity the mean absolute er- 
ror increases significantly when the sample size is small 
or the R2 is low. At the highest level of collinearity, this 
sample size by R2 by collinearity interaction effect is ex- 
acerbated and is reflected in a high mean absolute error. 

The graphs in Figure 1 show only the mean estimation 
error for ,1. As the results for 32 are nearly identical, 
they are not presented here. Further, plots for the other 
estimates would not provide much incremental infor- 
mation. 

In summary, our results confirm the well-known facts 
that sample size, collinearity, and the overall strength of 
the model relationship all affect estimation accuracy. Of 
greater interest, however, are the interactions that the 
results reveal. Specifically, higher collinearity interacts 
with a small sample or low R2 to produce substantial 
inaccuracies in estimated coefficients. These findings 
reinforce the point that concerns about collinearity are 
perhaps less critical than broader concerns about the 
overall power of the analysis. 

In this analysis, we have focused on the estimation 
error for the coefficients-looking at the coefficients as 
point estimates. However, it is also useful to consider 
how the design factors affect the accuracy of the esti- 
mated standard errors about those point estimates. 

Accuracy of the Estimated Standard Errors 

Table 4 summarizes the ANOVA results for the ac- 
curacy of the standard error estimates for the different 
coefficients. The format is identical to that of Table 3. 
In comparison with the results for coefficient estimates 
(Table 3), there are stronger relationships between the 
design factors and accuracy of the estimated standard er- 
rors. For each of the ANOVA models, the percentage 
of variance explained is very high-about .91 for the 
first and second predictors. Because the main effect and 
the interactions for collinearity play a minor role for the 
third and fourth predictors and for the constant term, here 
again we focus on the first two predictors. 

All of the main effects and most of the two-way in- 
teractions-including all of those involving collinear- 
ity-are statistically significant. Main effects account for 
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Table 4 
VARIANCE EXPLAINED IN ACCURACY OF ESTIMATED STANDARD ERRORS OF COEFFICIENTS 

BY SIMULATION DESIGN FACTORS AND THEIR INTERACTIONSa 

S.E. (3i S.E. 632 S.E. 33 S.E. 364 S.E. intercept 
% F- % F- % F- % F- % F- 

variance ratio variance ratio variance ratio variance ratio variance ratio 
Source of variance explainedb prob.c explained prob. explained prob. explained prob. explained prob. 

Overall model .913 .001 .913 .001 .884 .001 .878 .001 .912 .001 
Collinearity level .260 .001 .259 .001 .091 .001 .003 .001 .003 .001 
R2 .207 .001 .208 .001 .292 .001 .344 .001 .362 .001 
Model .000 .001 .000 .001 .000 .001 .001 .001 .001 .001 
Sample size (n) .274 .001 .273 .001 .385 .001 .447 .001 .460 .001 
Collinearity x R2 .048 .001 .049 .001 .017 .001 .000 .001 .000 .001 
Collinearity x model .000 .001 .000 .001 .000 .002 .000 .970 .000 .111 
Collinearity x n .061 .001 .061 .001 .021 .001 .000 .001 .000 .001 
R2 X model .000 .042 .000 .055 .000 .002 .000 .002 .000 .001 
R2 X n .050 .001 .052 .001 .074 .001 .081 .001 .085 .001 
Model x n .000 .037 .000 .107 .000 .015 .000 .001 .000 .001 
Collinearity x R2 X model .000 .348 .000 .228 .000 .499 .000 .136 .000 .177 
Collinearity x R2 X n .011 .001 .012 .001 .004 .001 .000 .822 .000 .463 
Collinearity x model x n .000 .908 .000 .998 .000 .688 .000 .998 .000 .659 
R2 X model x n .000 .569 .000 .927 .000 .729 .000 .920 .000 .159 
Collinearity x R2 X model x n .000 .460 .000 .884 .000 .944 .000 .002 .000 .004 

"Accuracy measure is the absolute value of the difference between the OLS estimated standard error and the standard error computed from the 
actual within-cell replications. 

bRatio of the sums of squares due to an effect to the total sums of squares. Thus, the entry for the overall model is the R2 for the overall 
analysis and the other entries sum (within rounding) to that total. 

cUpper limit of the probability level associated with the F-test for mean differences among levels of the design factor. 

81% of the explained variance and two-way interactions 
account for 18%. As before, the sample size, collinear- 
ity, and R2 effects explain the largest shares of the vari- 
ance-.30, .28, and .23, respectively. Though the model 
factor is statistically significant, its effect is not conse- 
quential in comparison, as reflected by the explained 
variance of less than .001. There are also statistically 
significant interactions between collinearity, sample size, 
and R2. 

The graphs in Figure 2 show the mean absolute error 
of the OLS standard error estimates for 1. We do not 
present the results for 32, but the patterns and conclu- 
sions are nearly identical to those for 31. The pattern of 
results is very similar to that in Figure 1. Differences 
between the three lower levels of collinearity are minor 
except for small sample sizes and low R2. In all cases, 
there is a marked increase in error at the highest level 
of collinearity. Finally, again we see the interaction ef- 

Figure 2 
MEAN ABSOLUTE OLS ESTIMATION ERROR FOR STANDARD ERROR OF i (Sp1) FOR DIFFERENT LEVELS OF COLLINEARITY 

ACROSS DIFFERENT SAMPLE SIZES FOR R2 LEVELS .75, .50, AND .25 
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fect of high collinearity with small sample size or low 
R2, which leads to substantial estimation error. 

The conclusion from these results is straightforward. 
Though the much-discussed effect of collinearity on es- 
timates of standard errors of the coefficients is real and 
can be substantive, it is a problem only when intercor- 
relations among predictors are extreme-and even then 
the effect is largely offset when the analysis is based on 
a large sample, a model specification that results in a 
high R2, or a combination of the two. 

Calibrating Effects on Inference Errors 

The difference between collinearity levels III and IV 
spans a substantial range, yet the preceding analyses re- 
veal that it is in the higher range that the direct effects 
of collinearity are most likely to be problematic. To cal- 
ibrate more accurately the level at which collinearity be- 
comes particularly problematic, we performed additional 
analyses using collinearity levels between III and IV while 
keeping the levels for R2, sample size, and model un- 
changed. The new collinearity levels, reported in Table 
IB, were created by incrementing, in four equal size steps, 
the correlations from the values in level III to those of 
level IV. The four new levels (designated IIIa through 
IIId) have correlations between X, and X2 of .83, .86, 
.89, and .92, respectively. Similarly, the correlations 
between X, and X3 and between X2 and X3 are .64, .68, 
.72, and .76. For each of these 144 new combinations 
of design factors, 100 replicates were generated and ana- 
lyzed. 

Marketing researchers often rely on t-tests for indi- 
vidual coefficients to draw inferences about the signifi- 
cance of predictors in contributing to the variance ex- 
plained by the overall multiple regression model. A 
common criticism of this approach is that such t-tests are 
not independent (and may lead to erroneous conclusions) 
when predictors are correlated. In practical terms, how- 
ever, how big a problem is this? Is the impact of cor- 
related predictors any more a concern than other design 
considerations, such as the sample size for the analysis 
or a weak overall fit for the model? 

Results from both the original data and the extended 
collinearity level data were tabulated to find the per- 
centage of Type II errors for the various combinations 
of design factors. Figure 3 shows the percentage of Type 
II errors for X1 and X2 for all eight levels of collinearity 
and each combination of sample size, R2, and model. 
The results for X4 are given in Figure 4. Because, by 
design, X4 is uncorrelated with the other predictors and 
has the same true coefficient in both models, the results 
are collapsed across the different collinearity levels and 
model factors. The cells in the figures are shaded to pro- 
vide a quick visual overview of the pattern of results. 
Cells without shading or numbers indicate no Type II 
errors in the 100 sample; darker shading indicates more 
Type II errors. Statistics for X3 are omitted because its 
true coefficient is zero (and by definition there could be 
no Type II errors). Note that the error rates vary dra- 
matically-from zero (for cases of low collinearity, a 

large sample, and a high R2) to .95 (for the highest level 
of collinearity, the smallest sample, and the weakest R2). 
It is disconcerting that the likelihood of a Type II error 
is high not only in the "worst case" condition, but also 
in situations typical of those reported in the marketing 
research literature. 

The patterns in Figures 3 and 4 confirm and further 
calibrate the well-known effects of sample size, R2, and 
collinearity. First, as the model R2 decreases, the per- 
centage of errors increases. For example, in model I with 
a sample size of 100 and collinearity level III, the per- 
centage of Type II errors for P13 increases from .00 to 
.47 as the R2 decreases from .75 to .25. Second, the 
results show that smaller sample sizes are associated with 
more Type II errors. Third, we see that collinearity has 
a clear effect. For example, with a sample size of 200 
and an R2 of .50, the error rate for the first predictor is 
zero at the lowest level of collinearity and is .21 at the 
highest level of collinearity. Also, the results show the 
interaction effect of the different factors. In particular, 
the negative effects of a smaller sample size, high col- 
linearity, or lower R2 are accentuated when they occur 
in combination. 

Comparison of the top and bottom of Figure 3 shows 
that the model has a substantial effect on Type II errors. 
In model I, for any combination of sample size, R2, or 
collinearity, the percentage of Type II errors is greater 
for 32 than for 13i. However, in model II, the percentages 
of Type II errors are approximately equal for 3, and 

32 
for any given combination of sample size, R2, and col- 
linearity. Furthermore, though the vector lengths for the 
two different models are the same, the combined prob- 
ability of Type II errors for both 3, and 32 is generally 
higher for model I (i.e., when one of the coefficients is 
substantially larger than the other). 

In absolute terms, the percentage of Type II errors is 
alarmingly high for many combinations of the design 
factors. In particular, 30% of the numbers reported in 
Figure 3 are .50 or higher. Hence, in 30% of the situ- 
ations analyzed, there were more incorrect inferences than 
correct ones. A conclusion important for marketing re- 
search is that the problem of Type II errors and mis- 
leading inference is severe-even when there is little 
collinearity-if the sample size is small or the fit of the 
overall model is not strong. In contrast, potential prob- 
lems from high collinearity can be largely offset with 
sufficient power. Further, though collinearity is a poten- 
tial problem in drawing predictor variable inference, the 
emphasis on the problem in the literature is out of pro- 
portion in relation to other factors that are likely to lead 
to errors in conclusions. Any combination of small sam- 
ple size, low overall model fit, or extreme intercorre- 
lation of predictors precludes confidence in inference. 

DISCUSSION 

Putting the Results in Perspective 
In summary, both our theoretical framework and the 

results of simulations across 288 varied situations show 
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Figure 3 
PERCENTAGE OF TYPE II ERRORS FOR P1 AND P2 FOR DIFFERENT LEVELS OF COLLINEARITY ACROSS DIFFERENT 

SAMPLE SIZES, DIFFERENT LEVELS OF R2, AND DIFFERENT MODEL SPECIFICATIONS 
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Figure 4 
PERCENTAGE OF TYPE II ERRORS FOR N4 FOR 

DIFFERENT LEVELS OF R2 ACROSS DIFFERENT SAMPLE 
SIZES 
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that collinearity among predictor variables should not be 
viewed in isolation, but rather must be viewed within 
the broader context of power. The simulation results re- 
confirm the well-known main effects of the design fac- 
tors, but also calibrate and call attention to important 
interaction effects. The effect of collinearity on the ac- 
curacy of estimates and the likelihood of Type II errors 
is real-as is its interaction with the sample size, the 
size of the "true" coefficients, and the overall fit of the 
model. 

Our study differs from most of those reported in the 
literature on collinearity, which have focused on either 
detecting or coping with collinearity. Such studies-par- 
ticularly those pertaining to estimation methods appro- 
priate for use with collinear data-tend to focus on ex- 
treme, sometimes near-perfect, collinearity. In contrast, 
our approach has been to investigate and begin to cali- 
brate the impact of collinearity levels typically found in 
cross-sectional behavioral research in marketing. Such 
data are characterized by more moderate, but still po- 
tentially troublesome, collinearity. 

On the basis of our results, we recommend caution in 
relying on available diagnostics and rules of thumb for 
what constitutes high or low levels of collinearity. Di- 
agnostics that do not assess collinearity within the broader 
context of power are likely to be misleading. High levels 
of shared variance among predictors may not have much 
differential effect on accuracy if power is sufficient. 
Conversely, a low or moderate index that does not con- 
sider power may provide a false sense of security. If 

sufficient power is lacking, collinearity may aggravate 
the problem but be trivial in comparison with the more 
fundamental issue. 

The interaction of collinearity and other factors that 
affect power highlights an opportunity for future re- 
search. Research is needed to assess how various collin- 
earity diagnostics are affected by the other power-related 
factors noted here. For example, by using simulation, 
one could generate synthetic data under known condi- 
tions and then evaluate the relationships among the dif- 
ferent collinearity diagnostics as well as estimation ac- 
curacy and the likelihood of Type II errors. 

Limitations 

In our study, we systematically varied the levels of 
key design factors. The levels were selected to span dif- 
ferent situations typical of those in published behavioral 
research in marketing. In combination, these factors en- 
able us to consider a wide array of interactions among 
factors. The relative effects of the different design fac- 
tors depend on the levels chosen-had sample size ranged 
from 100 to 150, or R2 from .5 to .6, the effects of those 
factors would be less. Clearly, it is possible to simulate 
more extreme levels for each design factor, or to add 
more intermediate levels. However, Figures 1, 2, and 3 
show that the nature of the effects and how they vary 
over the levels of the design factors are systematic and 
consistent. 

In selecting the levels of the factors, we focused on 
situations typical of those in published cross-sectional 
research. In time-series data, it is not uncommon to have 
fewer than 30 observations, R2 greater than .75, or cor- 
relations more extreme than the ones we considered. 
Further, some applied cross-sectional market research may 
involve conditions different from those we studied. Hence, 
the levels of the factors we studied limit the ability to 
generalize our results to time-series situations, or to other 
situations outside of the bounds we considered. 

We varied collinearity by altering bivariate relation- 
ships among four predictor variables. In some situations 
there might be more predictor variables and collinearity 
may arise from more complex (and subtle) patterns of 
shared variance among predictors. Such empirical real- 
ities would make it more difficult to "spot" or diagnose 
collinearity. However, shared variance among predictors 
and the power for developing estimates are the basic un- 
derlying causes of accuracy problems. Our design cap- 
tures these effects and thus the fundamental conclusions 
generalize to more complex situations. 

It is beyond the scope of our study to evaluate the 
effect of collinearity or other power-related factors when 
the statistical assumptions of multiple regression are vi- 
olated. These problems include missing data values; pre- 
dictors with measurement errors, or non-normal error 
terms. Though regression estimates are in general robust 
to such problems, these issues-alone or in combination 
with the factors we varied-may affect the accuracy of 
estimates. 
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Conclusion 

Our research takes a needed first step toward cali- 
brating the conditions under which collinearity, power, 
and their interaction affect the interpretation of multiple 
regression analysis. The specific results are important 
because they provide marketing researchers who use 
multiple regression a baseline against which to evaluate 
empirical results from a given research situation. How- 
ever, what is perhaps more important is the broader pat- 
tern of results that emerges. Collinearity per se is of less 
concern than is often implied in the literature; however, 
the problems of insufficient power are more serious than 
most researchers recognize. Hence, at a broader con- 
ceptual level our results demonstrate that issues of col- 
linearity should not be viewed in isolation, but rather in 
the broader context of the power of the overall analysis. 
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