DILEMMA DEL PRIGIONIERO RIPETUTO
Si conriteri il dilemme bel prigioniero, in cui z ladri vengono catturati, ma non vi sono sufficienti prove per condannarl: Vengono rinchiesi in celle separete e devono decidere se contesare (C) on non confersare (NC). La, truttura del gioeo è la seguente:

A| | | | |
| :--- | :--- | :--- | :--- |
| | $N C$ | C | |
| $N C$ | 1,1 | 5,0 | |
| C | 0,5 | 4,4 | |
| | | | |

1 mumeri covrippondano xi mes bi prijione

Se il girco viene giocato una sola volta, l'equilibrio di Nash è (C, C).
Si suppouga ora che lo sterso gioco venga giocato 2 volife. Il gioco vienc zinolts a zitroso.
Al tempo $t=2$ la soluzione del gioco $e^{\prime}(c, c)$. Data questa soluzione, al tempo $t=1$ la matrice dii pouvoff diventa:

$B C$		
N 5,5	9,4	
C	4,9	8,8

e l'equilitrio di Nah nel primo periodo é (C, C).
Pertento, in un dilemme del prigiomiero ripetuto la volurione del gioes e'confessare in oquipersodrs, anche se won confersare gaviantialibe una pena minore.

DECISIONI DI PRODUZIONE RIPETUTE UN NUMERO ${ }^{(2)}$ FNITO DI VOLTE.
Si supponga che due imprese debbano decislere quanto produrrea $t=1$ e $t=2$. In ogni periolo le decisioni sowo simultanee. Ogui imprese puo' decidere se produrre una quantità alta (A) 0 basse (B) del benc. La metrice dei payoff è la seguente:

Al tempo $t=2$ la whzions di questo gioco é (A, A). Dato questo equilibrio it Nash wel rottogisco $t=2$, La matrice dei payoff al tempro $t=1$ diventa:

Pertento, in entrembi i periodi le i-prese producona una quentita' alte del bene.
Si supponga ore che ciascuna impresa abbia la potibitite' di produrre anche un livello vedio del bene.
Le matrice bei payoff diventa:

Se (A, A) e' l'equilibrio scelto $a \quad t=2$, al tempo $t=1$ la matrice dei prayoff diventa:

		A	B	M
A	2,2	6,1	1,1	
B	1,6	5,5	1,1	
M	1,1	1,1	4,4	

e l'equilitino nel pmino perioch e^{\prime} anche (A, A) e (M, M).

Se (M,M) é l'equilibrio scelto nel secondo persodo, a $t=1$ la matrice dei prayoff diventa:

e enche in questo caso a $t=1$ l'equilitrio e' (A, A) ed (M, M).

Come scegliere tre questi equilibri multipli?
Una, trategia potrebibe essere: oceghiere (M, M) nel primo periodo se anche (M,M) è seelts nel secondo periodo; attrimenti verrai celto il livello di produzione alto wel recundo periodo.
Data questa otrategia, la matrice der payoff nel primo periodo diventa:
imprere 2

		A	B	M
A	2,2	6,1	1,1	
	1,6	5,5	1,1	
	1,1	1,1	6,6	

che ha due equilibri: (A, A) ed (M, M).

Si suppouga che a $t=1$ sia celto l'equilibrio (A, A). Ma e' credipile la trategia che auche a $t=2$ verrà icelto (A, A) ?
Dato che a $t=2$ è disporibile la otrategia (M, M), le imprese a $t=2$ potrebbero sinegoziare e seghiere (M, M), ohe garantice un profitto maggiore, anche se nel primo periodo éitato, celto (A, A).
In tal caso, ba matrice dei prayoft a $t=1$ diventa! Impresaz 2

che ha 2 equibbi: (A, A) e (M, M)

Quindi, gli equilibri di questo gioco ripetute somo:

$$
\begin{aligned}
& (A, A) \text { a } t=1 \text { ed }(M, M) \text { a } t=2 ;(M, M) \text { a } t=1 \text { ed } \\
& (M, M) \text { a } t=2 \text {. }
\end{aligned}
$$

La strategia di giocare (A, A) a $t=2$ u non si gioca (M, M) a $t=1$ non e^{\prime} qui-di credilit Si noti che se le imprese potersero cooperare nel primo periodo anche la trategia:
"giocare (M, M) nel recondo peribho se (B, B) viene salto wel pimo periodo; ma giocare (A, A) a $t=2$ se una scelta diversa da (B, B) vemisse effeltacata nel primo periado! sarebbe disponitile.
Ma anche questa strutegia non sarebbe credibile, per le stesse zagioni spiegate in precederza-
Si noti che in grest'ultimo caso a $t=1$ sarebbe suelto (B, B), che non e' un eqpilibrio diNash del rottogioco.
G $10 C O$ RIPETUTO UN NUMERO INFINITO DI VOLTE
Si supponga che il precedente gioco:
impresa 2
Impresa. $\frac{\left.\begin{array}{l|l|l|l} & A & B & \\ \hline A & 1,1 & 5,0 & \\ \hline B & 0,5 & 4,4 & \\ \hline & & & \end{array}\right]}{}$
sia i ipetuto un numero infinito di volte.
Il vabre attuale (V) di una sequenza intimite bi proger menti $\pi_{1}, \pi_{2} \ldots e^{i}$.

$$
\pi_{1}+\delta \pi_{2}+\delta^{2} \pi_{3}+\ldots=\sum_{t=1}^{\infty} \delta^{t-1} \pi_{t}
$$

dove δi il fattore di, conto che viene usato per riportare ol presente ipragomenti futur:.
Si noti che Spmo'essere interpretato anche come
il taltore di sconto quando il gises pro' finire dopo un numero casuate di volte. In tal caso.

$$
\delta=\frac{1-p}{1+r} \quad \text { dove } 1-p \text { è la probabilité che }
$$

il gioco contimi il periodo Iuccessiv

Si consideri la seguente strategià:
"Cooperare nel pimo periodo. (B) Otenendo un profitte ti 4, e contimare a cooperare nei periodi unccessivi a condizione che anche l'altra impresa cooperi. Se accate che in qualche periodo l'altre in-prese ceghie A, giocare A all'infimito." (Trigger strategy).
Questa trategia e'un equilibrio?
Se i giocatore cooperano nel primo periodo e contimano a cooperare nei periodi ruccessivi, il valore attude della requenza dei pagamenti e^{\prime} :

$$
4+\delta 4+\delta^{2} 4+\cdots=\frac{4}{1-\delta}
$$

Se un giocatore decidesse di produrse A nel primo periodo otterrebbe 5 in questo periodo ma 1 in tult i periodi rucassivi. Il valore atuole di questi pagamenti sarebbe:

$$
5+\delta 1+\delta^{2} 1+\cdots=5+\delta(1+\delta+\cdots) 1=5+\frac{\delta}{1-\delta}
$$

$$
\left[\text { Si zicozh che } 1+\delta+\delta^{2}+\cdots \cdot=\frac{1}{1-\delta}\right]
$$

Alloza conviene cooperare se:

$$
\frac{4}{1-\delta} \geqslant 5+\frac{\delta}{1-\delta}
$$

cial se $\delta \geq 1 / 4$.
Quindi de il fattore di sconto e^{\prime} alto conviene giocare (B, B) in oqui periodo, anche ue cio' non i' un eqquilitio di Nash del sottogioco.
Il faltore di xunto è alto se ir attribuisce motta importanza ai progomenti futuri e si pensa che la probebilità che il gioco contimi hia alta.

Expected profit then becomes $2 e^{*}-2 U_{a}-2 g\left(e^{*}\right)$, so the boss wishes to choose wages such that the induced effort, e^{*}, maximizes e^{*} $g\left(e^{*}\right)$. The optimal induced effort therefore satisfies the first-order condition $g^{\prime}\left(e^{*}\right)=1$. Substituting this into (2.2.6) implies that the optimal prize, $w_{H}-w_{L}$, solves

$$
\left(w_{H}-w_{L}\right) \int_{\varepsilon_{j}} f\left(\varepsilon_{j}\right)^{2} d \varepsilon_{j}=1,
$$

and (2.2.8) then determines w_{H} and w_{L} themselves.

2.3 Repeated Games

In this section we analyze whether threats and promises about future behavior can influence current behavior in repeated relationships. Much of the intuition is given in the two-period case; a few ideas require an infinite horizon. We also define subgameperfect Nash equilibrium for repeated games. This definition is simpler to express for the special case of repeated games than for the general dynamic games of complete information we consider in Section 2.4.B. We introduce it here so as to ease the exposition later.

2.3.A Theory: Two-Stage Repeated Games

Consider the Priseners' Ditenmafy fiven in normal form in Figure 2.3.1. Suppose two players play this simultaneous-move game twice, observing the outcone of the first play before the second play begins, and suppose the payoff for the entire game is simply the sum of the payoffs from the two stages (i.e., there is no

Dimum 121

Dilemma is (L_{1}, L_{2}) in the first stage, followed by (L_{1}, L_{2}) in the second stage. Cooperation-that is, $\left(R_{1}, R_{2}\right)$-cannot be achieved in either stage of the subgame-perfect outcome.

This argument holds more generally. (Here we temporarily depart from the two-period case to allow for any finite number of repetitions, T.) Let $G=\left\{A_{1}, \ldots, A_{n} ; u_{1}, \ldots, u_{n}\right\}$ denote a static game of complete information in which players 1 through n simultaneously choose actions a_{1} through a_{n} from the action spaces A_{1} through A_{n}, respectively, and payoffs are $u_{1}\left(a_{1}, \ldots, a_{n}\right)$ through $u_{n}\left(a_{1}, \ldots, a_{n}\right)$. The game G will be called the stage game of the repeated game.

Definition Given a stage game G, let $G(T)$ denote the finitely repeated game in which G is played T times, with the outcomes of all preceding plays observed before the next play begins. The payoffs for $G(T)$ are simply the sum of the payoffs from the T stage games.

Proposition If the stage game G has a unique Nash equilibrium then, for any finite T, the repeated game $G(T)$ has a unique subgame-perfect outcome: the Nash equilibrium of G is played in every stage. ${ }^{13}$

We now return to the two-period case, but consider the possibility that the stage game G has multiple Nash equilibria, as in Figure 2.3.3. The strategies labeled L_{i} and M_{i} mimic the Prisoners' Dilemma from Figure 2.3.1, but the strategies labeled R_{i} have been added to the game so that there are now two pure-strategy Nash equilibria: $\left(L_{1}, L_{2}\right)$, as in the Prisoners' Dilemma, and now also $\left(R_{1}\right.$, R_{2}). It is of course artificial to add an equilibrium to the Prisoners' Dilemma in this way, but our interest in this game is expositional rather than economic. In the next section we will see that infinitely repeated games share this multiple-equilibria spirit even if the stage game being repeated infinitely has a unique Nash equilibrium, as does the Prisoners' Dilemma. Thus, in this section we

[^0]

Figure 2.3.3.
analyze an artificial stage game in the simple two-period framework, and thereby prepare for our later analysis of an economically interesting stage game in the infinite-horizon framework.

Suppose the stage game in Figure 2.3.3 is played twice, with the first-stage outcome observed before the second stage begins. We will show that there is a subgame-perfect outcome of this repeated game in which the strategy pair $\left(M_{1}, M_{2}\right)$ is played in the first stage. ${ }^{14}$ As in Section 2.2.A, assume that in the first stage the players anticipate that the second-stage outcome will be a Nash equilibrium of the stage game. Since this stage game has more than one Nash equilibrium, it is now possible for the players to anticipate that different first-stage outcomes will be followed by different stage-game equilibria in the second stage. Suppose, for example, that the players anticipate that $\left(R_{1}, R_{2}\right)$ will be the second-stage outcome if the first-stage outcome is $\left(M_{1}, M_{2}\right)$, but that $\left(L_{1}, L_{2}\right)$ will be the second-stage outcome if any of the eight other first-stage outcomes occurs. The players' first-stage interaction then amounts to the one-shot game in Figure 2.3.4, where $(3,3)$ has been added to the $\left(M_{1}, M_{2}\right)$-cell and $(1,1)$ has been added to the eight other cells.

There are three pure-strategy Nash equilibria in the game in Figure 2.3.4: $\left(L_{1}, L_{2}\right),\left(M_{1}, M_{2}\right)$, and $\left(R_{1}, R_{2}\right)$. As in Figure 2.3.2,

[^1]

\qquad

 \square \square

[^2]

[^3] \square

To suggest a solution to this renegotiation problem, we con-
sider the game in Figure 2.3 .5 , which is sider the game in Figure 2.3.5, which is even more artificial than the game in Figure 2.3.3. Once again, our interest in this game is expositional rather than economic. The ideas we develop here to address renegotiation in this artificial game can also be applied to
renegotiation in infinitely repeated games; see Farrell and Maskin address renegotiation in this artificial game can also be applied to
renegotiation in infinitely repeated games; see Farrell and Maskin (1989), for example.

[^4] the one-shot game in which the payoff $(3,3)$ has been added to each cell of the stage game in Figure 2.3.3, so L_{i} is player i^{\prime} 's best response to M_{j}.
-

This stage game adds the strategies P_{i} and Q_{i} to the stage game in Figure 2.3.3. There are four pure-strategy Nash equilibria of the stage game: $\left(L_{1}, L_{2}\right)$ and $\left(R_{1}, R_{2}\right)$, and now also $\left(P_{1}, P_{2}\right)$ and (Q_{1}, Q_{2}). As before, the players unanimously prefer $\left(R_{1}, R_{2}\right)$ to (L_{1}, L_{2}). More importantly, there is no Nash equilibrium (x, y) in Figure 2.3.5 such that the players unanimously prefer (x, y) to $\left(P_{1}, P_{2}\right)$, or $\left(Q_{1}, Q_{2}\right)$, or $\left(R_{1}, R_{2}\right)$. We say that $\left(R_{1}, R_{2}\right)$ Paretodominates $\left(L_{1}, L_{2}\right)$, and that $\left(P_{1}, P_{2}\right),\left(Q_{1}, Q_{2}\right)$, and $\left(R_{1}, R_{2}\right)$ are on the Pareto frontier of the payoffs to Nash equilibria of the stage game in Figure 2.3.5.

Suppose the stage game in Figure 2.3 .5 is played twice, with the first-stage outcome observed before the second stage begins. Suppose further that the players anticipate that the second-stage outcome will be as follows: $\left(R_{1}, R_{2}\right)$ if the first-stage outcome is $\left(M_{1}, M_{2}\right) ;\left(P_{1}, P_{2}\right)$ if the first-stage outcome is $\left(M_{1}, w\right)$, where w is anything but $M_{2} ;\left(Q_{1}, Q_{2}\right)$ if the first-stage outcome is $\left(x, M_{2}\right)$, where x is anything but M_{1}; and $\left(R_{1}, R_{2}\right)$ if the first-stage outcome is (y, z), where y is anything but M_{1} and z is anything but M_{2}. Then $\left(\left(M_{1}, M_{2}\right),\left(R_{1}, R_{2}\right)\right)$ is a subgame-perfect outcome of the repeated game, because each player gets $4+3$ from playing M_{i} and then R_{i} but only $5+1 / 2$ from deviating to L_{i} in the first stage (and even less from other deviations). More importantly, the difficulty in the previous example does not arise here. In the two-stage repeated game based on Figure 2.3.3, the only way to punish a player for deviating in the first stage was to play a Pareto-dgninated equilibrium in the second stage, thereby also punishming the punisher. Here, in contrast, there are three equilibria on the Pareto frontierone to reward good behavior by both players in the first stage, and two others to be used not only to pyuish a player who deviates in the first stage but also to reward the punisher. Thus, if punishment is called for in the secondstage, there is no other stage-game equilibrium the punisher would prefer, so the punisher cannot be persuaded to renegotiate the punishment.

2.3.B Theory: Infinitely Repeated Games

We now tlern to infinitely repeated games. As in the finite-horizon case, the main theme is that credible threats or promises about future behavior can influence current behavior. In the finite-horizon case we saw that if there are multiple Nash equilibria of the stage
game G then there may be subgame-perfect outcomes of the repeated game $G(T)$ in which, for any $t<T$, the outcome of stage t is not a Nash equilibrium of G. A stronger result is true in infinitely repeated games: even if the stage game has a μ hique Nash equilibrium, there may be subgame-perfect outeomes of the infinitely repeated game in which no stage's outcome is a Nash equilibrium of G.

We begin by studying the infinitely repeated Prisoners' Dilemma. We then consider the class of infinitely repeated games analogous to the class of finitely repeated games defined in the previous section: a static game of complete information, G, is repeated infinitely, with the \varnothing atcomes of all previous stages observed before the current stage begins. For these classes of finitely and infinitely repeated gumes, we define a player's strategy, a subgame, and a subgame-perfect Nash equilibrium. (In Section 2.4.B we define these concepts for general dynamic games of complete information, not just for these classes of repeated games.) We then use these definitions to state and prove Friedman's (1971) Theorem (also called the Folk Theorem). ${ }^{16}$

Suppose the Prisoners' Dilemma in Figure 2.3.6 is to be repeated infinitely and that, for each t, the outcomes of the $t-1$ preceding plays of the stage game are observed before the $t^{\text {th }}$ stage begins. Simply summing the payoffs from this infinite sequence of stage games does not provide a useful measure of a player's payoff in the infinitely repeated game. Receiving a payoff of 4 in every period is better than receiving a payoff of 1 in every period, for example, but the sum of the payoffs is infinity in both cases. Recall (from Rubinstein's bargaining model in Section 2.1.D) that the discount factor $\delta=1 /(1+r)$ is the value today of a dollar to be received one stage later, where r is the interest rate per stage. Given a discount factor and a player's payoffs from an infinite

[^5]
[^0]: ${ }^{13}$ Analogous results hold if the stage game G is a dynamic game of complete information. Suppose G is a dynamic game of complete and perfect information from the class defined in Section 2.1.A. If G has a unique backwards-induction outcome, then $G(T)$ has a unique subgame-perfect outcome: the backwardsinduction outcome of G is played in every stage. Similarly, suppose G is a twostage game from the class defined in Section 2.2.A. If G has a unique subgameperfect outcome, then $G(T)$ has a unique subgame-perfect outcome: the subgameperfect outcome of G is played in every stage.

[^1]: ${ }^{14}$ Strictly speaking, we have defined the notion of a subgame-perfect outcome only for the class of games defined in Section 2.2.A. The two-stage Prisoner's Dilemma belongs to this class because for each feasible outcome of the firststage game there is a unique Nash equilibrium of the remaining second-stage game. The two-stage repeated game based on the stage game in Figure 2.3.3 does not belong to this class, however, because the stage game has multiple Nash equilibria. We will not formally extend the definition of a subgame-perfect outcome so that it applies to all two-stage repeated games, both because the change in the definition is minuscule and because even more general definitions appear in Sections 2.3.B and 2.4.B.

[^2]:[^3]:

[^4]: ${ }^{15}$ This is loose usage because "renegotiate" suggests that communication (or even bargaining) occurs between the first and second stages. If such actions are possible, then they should be included in the description and analysis of the possible, then they should be included in the description and analysis of the
 game. Here we assume that no such actions are possible, so by "renegotiate" we have in mind an analysis based on introspection.

[^5]: ${ }^{16}$ The original Folk Theorem concerned the payoffs of all the Nash equilibria of an infinitely repeated game. This result was called the Folk Theorem because it was widely known among game theorists in the 1950s, even though no one had published it. Friedman's (1971) Theorem concerns the payoffs of certain subgame-perfect Nash equilibria of an infinitely repeated game, and so strengthens the original Folk Theorem by using a stronger equilibrium concept-subgame-perfect Nash equilibrium rather than Nash equilibrium. The earlier name has stuck, however: Friedman's Theorem (and later results) are sometimes called Folk Theorems, even though they were not widely known among game theorists before they were published.

