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DYNAMIC GAMES OF COMPLETE INFORMATION

Expected profit then becomes 2e* -2Ua -2g(e*), so thè boss wishes
to choose wages such that thè induced effort, e*, maximizes e* -
g(e*}. The optimal induced effort therefore satisfies thè first-order
condition g'(e*) = I . Substituting this into (2.2.6) implies that thè
optimal prize, WH — wi, solves

/• 2
(WH-WL) / f(£j) de, = i,

Jei

and (2.2.8) then determines WH and WL themselves.

2.3 Repeated Games

In this section we analyze whether threats and promises about
future behavior can influence current behavior in repeated rela-
tionships. Much of thè intuition is given in thè two-period case;
a few ideas require an infinite horizon. We also define subgame-
perfect Nash equilibrium for repeated games. This definition is
simpler to express for thè special case of repeated games than for.
thè generai dynamic games of complete information we consider
in Section 2.4.B. We introduce it here so as to case thè
later.
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2.3.A Theory: Two-Stage Repeatec

Consider thè Prisorrc-fs'- Dilemma>gìven in normal form in Fig-
ure 2.3.1. Suppose two playersxplay this simultaneous-move game
twice, observing thè outcpme of thè first play before thè second
play begins, and suppose thè payoff for thè entire game is sim-
ply thè sum of thexpayoffs from thè two stages (i.e., there is no

Player 1 R

Player 1

discounting). We wUUcall this repeated game thè two-stage Pris-
oners' Dilemma^Jf belongs to thè class of games analyzed in Sec-
tion 2.2.A. Hefe players 3 and 4 are identical to players 1 and 2,
thè actkH-T'spaces A? and A/i are identical to A\ and AI, and thè
pay0ffs W;(f l ] , f l2 !03 , f l4) are simply thè sum of thè payoff from thè

-stage outcome (a\,a-ì) and thè payoff from thè second-stage
outcome ((23,^4). Furthermore, thè two-stage Prisoners' Dilemma
satisfies thè assumption we made in Section 2.2.A: for each fea-
sible outcome of thè first-stage game, (ai,a2), thè second-stage
game that remains between players 3 and 4 has a unique Nash
equilibrium, denoted by (a^(a\,«2),«4(«i,«2))- In fact, thè two-
stage Prisoners' Dilemma satisfies this assumption in thè following
stark way. In Section 2.2.A we allowed for thè possibility that thè
Nash equilibrium of thè remaining second-stage game depends on
thè first-stage outcome—hence thè notation (a^(a-[,a2),a\(a\,a-i))
rather than simply (a^,a\}. (In thè tariff game, for example, thè
firms' equilibrium quantity choices in thè second stage depend
on thè governments' tariff choices in thè first stage.) In thè two-
stage Prisoners' Dilemma, however, thè unique equilibrium of thè
second-stage game is (L1; L2), regardless of thè first-stage outcome.

Following thè procedure described in Section 2.2.A for comput-
ing thè subgame-perfect outcome of such a game, we analyze thè
first stage of thè two-stage Prisoners' Dilemma by taking into ac-
count that thè outcome of thè game remaining in thè second stage
will be thè Nash equilibrium of that remaining game—namely,
(Li, L2) with payoff (1,1). Thus, thè players' first-stage interac-
tion in thè two-stage Prisoners' Dilemma amounts to thè one-shot
game in Figure 2.3.2, in which thè payoff pair (1,1) for thè second
stage has been added to each first-stage payoff pair. The game in
Figure 2.3.2 also has a unique Nash equilibrium: (Li, L?). Thus,
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Dilemma is (Li, L2) in thè first stage, followed by (L\, L2) in thè
second stage. Cooperation—that is, (R\, R2)—cannot be achieved
in either stage of thè subgame-perfect outcome.

This argument holds more generally. (Here we temporarily
depart from thè two-period case to allow for any finite number
of repetitions, T.) Let G = {Ai , . . . , An; ui,...,un} denote a static
game of complete information in which players 1 through n si-
multaneously choose actions a\ through an from thè action spaces
AI through AH, respectively, and payoffs are MI (a\,... ,an) through
«„(#! , . . . ,«„) . The game G will be called thè stage game of thè
repeated game.

Definition Given a stage game G, lei G(T) denote thefinitely repeated
game in which G is played T times, with thè outcomes ofall preceding plays
observed before thè next play begins. The payoffs for G(T) are simply thè
sum of thè payoffs from thè T stage games.

Proposition If thè stage game G has a unique Nash equilibrium then,
for any finite T, thè repeated game G(T) has a unique subgame-perfect
outcome: thè Nash equilibrium of G is played in every stage.™

We now return to thè two-period case, but consider tne/p"os-
sibility that thè stage game G has multiple Nash equilitp>icC as in
Figure 2.3.3. The strategies labeled L,- and M,- mimic thè Prisoners'
Dilemma from Figure 2.3.1, but thè strategies labeJéd R,- have been
added to thè game so that there are now twjxpure-strategy Nash
equilibria: (Li, L2), as in thè Prisoners' Dilemma, and now also (Ri,
R2). It is of course artificial to add anequilibrium to thè Prisoners'
Dilemma in this way, but our inte#ést in this game is expositional
rather than economie. In th^next section we will see that in-
finitely repeated games sh^fe this multiple-equilibria spirit even if
thè stage game being repeated infinitely has a unique Nash equi-
librium, as does the-'Prisoners' Dilemma. Thus, in this section we

13Analogousxresults hold if thè stage game G is a dynamic game of complete
informatkjjrfbuppose G is a dynamic game of complete and perfect information
from tkéclass defined in Section 2. LA. If G has a unique backwards-induction
ou+rome, then G(T) has a unique subgame-perfect outcome: thè backwards-
induction outcome of G is played in every stage. Similarly, suppose G is a two-
stage game from thè class defined in Section 2.2.A. If G has a unique subgame-
perfect outcome, then G(T) has a unique subgame-perfect outcome: thè subgame-
perfect outcome of G is played in every stage.
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L2 M2 R2

Li
Ml

Ki

1,1

0,5

0,0

5,0

4,4

0,0

0,0

0,0

3,3/

Figure

analyze an artificial stagé"game in thè simple two-period frame-
work, and therebv^pfepare for our later analysis of an economi-
cally interesting^ètage game in thè infinite-horizon framework.

Suppostene stage game in Figure 2.3.3 is played twice, with
thè fir^stage outcome observed before thè second stage begins.
We^will show that there is a subgame-perfect outcome of this re-

'peated game in which thè strategy pair (Mi, M2) is played in thè
first stage.14 As in Section 2.2.A, assume that in thè first stage thè
players anticipate that thè second-stage outcome will be a Nash
equilibrium of thè stage game. Since this stage game has more
than one Nash equilibrium, it is now possible for thè players
to anticipate that different first-stage outcomes will be followed
by different stage-game equilibria in thè second stage. Suppose,
for example, that thè players anticipate that (Ri, R2) will be thè
second-stage outcome if thè first-stage outcome is (Mi, M2), but
that (Li, L2) will be thè second-stage outcome if any of thè eight
other first-stage outcomes occurs. The players' first-stage inter-
action then amounts to thè one-shot game in Figure 2.3.4, where
(3,3) has been added to thè (Mi,M2)-cell and (1,1) has been added
to thè eight other cells.

There are three pure-strategy Nash equilibria in thè game in
Figure 2.3.4: (La, L2), (Mi, M2), and (Rlf R2). As in Figure 2.3.2,

14Strictly speaking, we have defined thè notion of a subgame-perfect outcome
only for thè class of games defined in Section 2.2.A. The two-stage Prisoner's
Dilemma belongs to this class because for each feasible outcome of thè first-
stage game there is a unique Nash equilibrium of thè remaining second-stage
game. The two-stage repeated game based on thè stage game in Figure 2.3.3
does not belong to this class, however, because thè stage game has multiple
Nash equilibria. We will not formally extend thè definition of a subgame-perfect
outcome so that it applies to ali two-stage repeated games, both because thè
change in thè definition is minuscule and because even more generai definitions
appear in Sections 2.3.B and 2.4.B.
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M2 R2

MI

2,2

1,6

1,1

6,1

7,7

1,1

1,1

1,1

4,4

Figure 2.3.4.

Nash equilibria of this one-shot game correspond to subgame-
perfect outcomes of thè originai repeated game. Let ( ( w , x ] , (y,z))
denote an outcome of thè repeated game—(w, x) in thè first stage
and (y,z) in thè second. The Nash equilibrium (Li, L2) in Fig-
ure 2.3.4 corresponds to thè subgame-perfect outcome ((Li ,L2) ,
(Li ,La)) in thè repeated game, because thè anticipated second-
stage outcome is (Li, L2) following anything but (Mi, M2) in thè
first stage. Likewise, thè Nash equilibrium (R\, R2) in Figure 2.3.4
corresponds to thè subgame-perfect outcome ((Ri,R2) , (^1,^2)) in

thè repeated game. These two subgame-perfect outcomes of thè
repeated game simply concatenate Nash equilibrium outcomes
from thè stage game, but thè third Nash equilibrium in Figure 2.2
yields a qualitatively different result: (Mi, M2) in Figure 2.3^"cor-
responds to thè subgame-perfect outcome ((Mi,M2), (R>(fR2)) in
thè repeated game, because thè anticipated second-stage outcome
is (Ri, R2) following (Mi, M2). Thus, as claimeu earlier, coop-
eration can be achieved in thè first stage afa subgame-perfect
outcome of thè repeated game. This is an^example of a more gen-
erai point: if G — {Ai, . . . , An; u\,... j*£} is a static game of com-
plete information with multiple Nstsn equilibria then there may be
subgame-perfect outcomes oLtKe repeated game G(T) in which,
for any t < T, thè outcome'm stage t is not a Nash equilibrium
of G. We return to this/idea in thè infinite-horizon analysis in thè
next section.

The main paini to extract from this example is that credible
threats or pramises about future behavior can influence current

second point, however, is that subgame-perfection
may n0f embody a strong enough definition of credibility. In de-

thè subgame-perfect outcome ((Mi,M2), (Ri,R2)), for ex-
ample, we assumed that thè players anticipate that (Ri, R2) will
be thè second-stage outcome if thè first-stage outcome is (Mi, M2)

Repeated Gantes

L2 M2 R2 P2 Q2

Il
MI
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Pi
Qi
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0,0

0,0

0,0
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0,0
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0,0

0,0
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prf

0,0

0,0

0,0

prf
M
0,0

0,0

prf
0,0

0,0

M
Figure 2.3.5.

and that (Lj/Xa) will be thè second-stage outcome if any of thè
eight otjaér first-stage outcomes occurs. But playing (Li, L2) in thè

stage, with its payoff of (1,1), may seem silly when (Ri,
f, with its payoff of (3,3), is also available as a Nash equilib-

rium of thè remaining stage game. Loosely put, it would seem
naturai for thè players to renegotiate.15 If (Mi, M2) does not occur
as thè first-stage outcome, so that (Li, L2) is supposed to be played
in thè second stage, then each player might reason that bygones
are bygones and that thè unanimously preferred stage-game equi-
librium (Ri, R2) should be played instead. But if (Ri, R2) is to
be thè second-stage outcome after every first-stage outcome, then
thè incentive to play (Mi, M2) in thè first stage is destroyed: thè
first-stage interaction between thè two players simply amounts to
thè one-shot game in which thè payoff (3,3) has been added to
each celi of thè stage game in Figure 2.3.3, so L/ is player i's best
response to My.

To suggest a solution to this renegotiation problem, we con-
sider thè game in Figure 2.3.5, which is even more artificial than
thè game in Figure 2.3.3. Once again, our interest in this game is
expositional rather than economie. The ideas we develop here to
address renegotiation in this artificial game can also be applied to
renegotiation in infinitely repeated games; see Farrell and Maskin
(1989), for example.

15This is loose usage because "renegotiate" suggests that communication (or
even bargaining) occurs between thè first and second stages. If such actions are
possible, then they should be included in thè description and analysis of thè
game. Here we assume that no such actions are possible, so by "renegotiate" we
have in mind an analysis based on introspection.
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This stage game adds thè strategies P,- and Q, to thè stage
game in Figure 2.3.3. There are four pure-strategy Nash equilibria
of thè stage game: (Li, L2) and (Rìr R2), and now also (Pi, P2)
and (Qi, Q2). As before, thè players unanimously prefer (Ri, R2)
to (Li, L2). More importantly, there is no Nash equilibrium (x,y)
in Figure 2.3.5 such that thè players unanimously prefer (x,y) to
(Pi, P2), or (Ql7 Q2), or (Rlr R2). We say that (Rlt R2) Pareto-
dominates (Li, L2), and that (Pi, P2), (Qi, Q2), and (Ri, R2) are on
thè Faveto frontier of thè payoffs to Nash equilibria of thè stage
game in Figure 2.3.5.

Suppose thè stage game in Figure 2.3.5 is played twice, with
thè first-stage outcome observed before thè second stage begins.
Suppose further that thè players anticipate that thè second-stage
outcome will be as follows: (Ki, R2) if thè first-stage outcome is
(Mi, M2); (Pi, P2) if thè first-stage outcome is (Mi, w), where w
is anything but M2; (Qi, Q2) if thè first-stage outcome is (x,M2),
where x is anything but MI; and (Ri, R2) if thè first-stage outcome
is (y, z), where y is anything but MI and z is anything but M2. Then
((Mi,Ma), (R-[,R2}) is a subgame-perfect outcome of thè repeated
game, because each player gets 4 + 3 from playing M, and then Rj
but only 5 + 1/2 from deviating to L/ in thè first stage (and ever
less from other deviations). More importantly, thè difficulty in^fie
previous example does not arise here. In thè two-stage repeated
game based on Figure 2.3.3, thè only way to punish a^5layer for
deviating in thè first stage was to play a Pareto-doifanated equi-
librium in thè second stage, thereby also punisjjmg thè punisher.
Here, in centrasi, there are three equilibria ormie Parete frontier—
one to reward good behavior by both players in thè first stage, and
two others to be used not only to pinush a player who deviates
in thè first stage but also to rewan^The punisher. Thus, if punish-
ment is called for in thè secord^tage, there is no other stage-game
equilibrium thè punisher would prefer, so thè punisher cannot be
persuaded to renegotiatème punishment.

2.3. B : Infinitely Repeated Games

We now turn to infinitely repeated games. As in thè finite-horizon
case, thè main theme is that credible threats or promises about fu-
ture behavior can influence current behavior. In thè finite-horizon
case we saw that if there are multiple Nash equilibria of thè stage
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game G then there may be subgame-perfect outcomes of thè re-
peated game G(T) in which, for any i < T, thè outcome^l stage i is
not a Nash equilibrium of G. A stronger result is tare in infinitely
repeated games: even if thè stage game has a irfuque Nash equi-
librium, there may be subgame-perfect oujeomes of thè infinitely
repeated game in which no stage's outcpme is a Nash equilibrium
ofG.

We begin by studying thè inf>rfitely repeated Prisoners' Dilem-
ma. We then consider thè clas-sof infinitely repeated games analo-
gous to thè class of finite^repeated games defined in thè previous
section: a static gamexfjf complete information, G, is repeated in-
finitely, with thè cxitcomes of ali previous stages observed before
thè current stage begins. For these classes of finitely and infinitely
repeated sames, we define a player's strategy, a subgame, and
a subgame-perfect Nash equilibrium. (In Section 2.4.B we define
thege concepts for generai dynamic games of complete informa-
fon, not just for these classes of repeated games.) We then use
these definitions to state and prove Friedman's (1971) Theorem
(also called thè Folk Theorern).16

Suppose thè Prisoners' Dilemma in Figure 2.3.6 is to be re-
peated infinitely and that, for each i, thè outcomes of thè t - 1
preceding plays of thè stage game are observed before thè tth stage
begins. Simply summing thè payoffs from this infinite sequence
of stage games does not provide a useful measure of a player's
payoff in thè infinitely repeated game. Receiving a payoff of 4 in
every period is better than receiving a payoff of 1 in every period,
for example, but thè sum of thè payoffs is infinity in both cases.
Recali (from Rubinstein's bargaining model in Section 2.1.D) that
thè discount factor 6 = 1/(1 + r) is thè value today of a dollar to
be received one stage later, where r is thè interest rate per stage.
Given a discount factor and a player's payoffs from an infinite

16The originai Folk Theorem concerned thè payoffs of ali thè Nash equilibria
of an infinitely repeated game. This result was called thè Folk Theorem be-
cause it was widely known among game theorists in thè 1950s, even though
no one had published it. Friedman's (1971) Theorem concerns thè payoffs of
certain subgame-perfect Nash equilibria of an infinitely repeated game, and so
strengthens thè originai Folk Theorem by using a stronger equilibrium concept—
subgame-perfect Nash equilibrium rather than Nash equilibrium. The earlier
name has stuck, however: Friedman's Theorem (and later results) are sometimes
called Folk Theorems, even though they were not widely known among game
theorists before they were published.


