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DYNAMIC GAMES OF COMPLETE INFORMATION

Expected profit then becomes 2¢* —2U, —2g(e*), so the boss wishes
to choose wages such that the induced effort, ¢*, maximizes e* —
g(e*). The optimal induced effort therefore satisfies the first-order
condition g’(e*) = 1. Substituting this into (2.2.6) implies that the
optimal prize, wy — wr, solves

(wy — wy,) /E f(sj)zdﬁ'i =1,

and (2.2.8) then determines wy and w; themselves.

2.3 Repeated Games

In this section we analyze whether threats and promises about
future behavior can influence current behavior in repeated rela-
tionships. Much of the intuition is given in the two-period case;
a few ideas require an infinite horizon. We also define subgame-
perfect Nash equilibrium for repeated games. This definition is
simpler to express for the special case of repeated games than fo

later.

2.3.A Theory: Two-Stage Repeated

Consider the Pri . ven in normal form in Fig-
ure 2.3.1. Suppose two playersyplay this simultaneous-move game
twice, observing the outcprfie of the first play before the second
play begins, and suppeSe the payoff for the entire game is sim-
ply the sum of theayoffs from the two stages (i.e., there is no

Player 2

L R

Ly | 1,1 15,0

Player 1 R | 0,544

Eimirwa 721
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Player 2
Ly Ry 7
L [22]61] 7

Player 1
Ry | 1,6 | 5,8

o
Figure 2,.3—.2/.

discounting). We wi
oners’ Dilemma.
tion 2.2.A.

all this repeated game the two-stage Pris-
elongs to the class of games analyzed in Sec-
e players 3 and 4 are identical to players 1 and 2,
spaces Az and A4 are identical to A; and A,, and the
ui(ay,az,a3,a4) are simply the sum of the payoff from the
tst-stage outcome (a1,a;) and the payoff from the second-stage

~ outcome (a3,a4). Furthermore, the two-stage Prisoners’ Dilemma

satisfies the assumption we made in Section 2.2.A: for each fea-
sible outcome of the first-stage game, (41,a3), the second-stage
game that remains between players 3 and 4 has a unique Nash
equilibrium, denoted by (a3(ay,ay),a;(a1,az)). In fact, the two-
stage Prisoners’ Dilemma satisfies this assumption in the following
stark way. In Section 2.2.A we allowed for the possibility that the
Nash equilibrium of the remaining second-stage game depends on
the first-stage outcome—hence the notation (a3(ai,a;),a;(a;,az))
rather than simply (a3,a;). (In the tariff game, for example, the
firms" equilibrium quantity choices in the second stage depend
on the governments’ tariff choices in the first stage.) In the two-
stage Prisoners’ Dilemma, however, the unique equilibrium of the
second-stage game is (L1, Ly), regardless of the first-stage outcome.

Following the procedure described in Section 2.2.A for comput-
ing the subgame-perfect outcome of such a game, we analyze the
first stage of the two-stage Prisoners’ Dilemma by taking into ac-
count that the outcome of the game remaining in the second stage
will be the Nash equilibrium of that remaining game—namely,
(Ly, L) with payoff (1,1). Thus, the players’ first-stage interac-
tion in the two-stage Prisoners’ Dilemma amounts to the one-shot
game in Figure 2.3.2, in which the payoff pair (1,1) for the second
stage has been added to each first-stage payoff pair. The game in
Figure 2.3.2 also has a unique Nash equilibrium: (L;, L>). Thus.
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Dilemma is (Ly, L) in the first stage, followed by (L, L) in the
second stage. Cooperation—that is, (R;, Ry)—cannot be achieved
in either stage of the subgame-perfect outcome.

This argument holds more generally. (Here we temporarily
depart from the two-period case to allow for any finite number
of repetitions, T.) Let G = {A1,...,Ay;u1,...,uy} denote a static
game of complete information in which players 1 through n si-
multaneously choose actions a; through a, from the action spaces
A; through A,, respectively, and payoffs are u;(ay,...,a,) through
un(ay,...,a,). The game G will be called the stage game of the
repeated game.

Definition Given a stage game G, let G(T) denote the finitely repeated
game in which G is played T times, with the outcomes of all preceding plays
observed before the next play begins. The payoffs for G(T) are simply the
sum of the payoffs from the T stage games.

Proposition If the stage game G has a unique Nash equilibrium then,
for any finite T, the repeated game G(T) has a unique subgame-perfect
outcome: the Nash equilibrium of G is played in every stage."

We now return to the two-period case, but consider the pos-
sibility that the stage game G has multiple Nash equilibefa, as in
Figure 2.3.3. The strategies labeled L; and M; mimic Prisoners’
Dilemma from Figure 2.3.1, but the strategies labgléd R; have been
added to the game so that there are now two-pure-strategy Nash
equilibria: (Ly, Ly), as in the Prisoners’ Dilefima, and now also (R,
Ry). It is of course artificial to add an equilibrium to the Prisoners’
Dilemma in this way, but our intgz€st in this game is expositional
rather than economic. In the“hext section we will see that in-
finitely repeated games share this multiple-equilibria spirit even if
the stage game being pepeated infinitely has a unique Nash equi-
librium, as does t risoners’ Dilemma. Thus, in this section we

informatiga” Suppose G is a dynamic game of complete and perfect information
from class defined in Section 2.1.A. If G has a unique backwards-induction
owt€ome, then G(T) has a unique subgame-perfect outcome: the backwards-
induction outcome of G is played in every stage. Similarly, suppose G is a two-
stage game from the class defined in Section 2.2.A. If G has a unique subgame-
perfect outcome, then G(T) has a unique subgame-perfect outcome: the subgame-
perfect outcome of G is played in every stage.
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cally interesting-Stage game in the infinite-horizon framework.

Suppo e stage game in Figure 2.3.3 is played twice, with
the first“Stage outcome observed before the second stage begins.
We-will show that there is a subgame-perfect outcome of this re-
peated game in which the strategy pair (M;, My) is played in the
first stage.'* As in Section 2.2.A, assume that in the first stage the
players anticipate that the second-stage outcome will be a Nash
equilibrium of the stage game. Since this stage game has more
than one Nash equilibrium, it is now possible for the players
to anticipate that different first-stage outcomes will be followed
by different stage-game equilibria in the second stage. Suppose,
for example, that the players anticipate that (R, Rp) will be the
second-stage outcome if the first-stage outcome is (M;, M), but
that (L1, L) will be the second-stage outcome if any of the eight
other first-stage outcomes occurs. The players’ first-stage inter-
action then amounts to the one-shot game in Figure 2.3.4, where
(3,3) has been added to the (M7, M3)-cell and (1, 1) has been added
to the eight other cells.

There are three pure-strategy Nash equilibria in the game in
Figure 2.3.4: (L1, Lp), (M1, My), and (R;, Ry). As in Figure 2.3.2,

"Strictly speaking, we have defined the notion of a subgame-perfect outcome
only for the class of games defined in Section 2.2.A. The two-stage Prisoner’s
Dilemma belongs to this class because for each feasible outcome of the first-
stage game there is a unique Nash equilibrium of the remaining second-stage
game. The two-stage repeated game based on the stage game in Figure 2.3.3
does not belong to this class, however, because the stage game has multiple
Nash equilibria. We will not formally extend the definition of a subgame-perfect
outcome so that it applies to all two-stage repeated games, both because the
change in the definition is minuscule and because even more general definitions
appear in Sections 2.3.B and 2.4.B.
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L, M, R
Ly | 2,2.] 61| %1
M |1,6]77|1,1
Ry [1,1]1,1]4,4

Figure 2.3.4.

Nash equilibria of this one-shot game correspond to subgame-
perfect outcomes of the original repeated game. Let ((w,x), (¥,2))
denote an outcome of the repeated game—(w, x) in the first stage
and (y,z) in the second. The Nash equilibrium (L;, L) in Fig-
ure 2.3.4 corresponds to the subgame-perfect outcome ((L;,L3),
(Ly,Ly)) in the repeated game, because the anticipated second-
stage outcome is (L;, Lp) following anything but (M;, M) in the
first stage. Likewise, the Nash equilibrium (Ry, R;) in Figure 2.3.4
corresponds to the subgame-perfect outcome ((Ry,Rz), (L1, L)) in
the repeated game. These two subgame-perfect outcomes of the
repeated game simply concatenate Nash equilibrium outcomes
from the stage game, but the third Nash equilibrium in Figure 2.3
yields a qualitatively different result: (My, M3) in Figure 2.3,4/Cor-
responds to the subgame-perfect outcome ((My,Mz), (Br7Rz)) in
the repeated game, because the anticipated second-stage outcome
is (Ry, Ryp) following (My, M;). Thus, as clai earlier, coop-
eration can be achieved in the first stage gf#7a subgame-perfect
outcome of the repeated game. This is ap€xample of a more gen-
eral point: if G = {Ay,..., Ay uy,... M5} is a static game of com-
plete information with multiple equilibria then there may be
subgame-perfect outcomes of the repeated game G(T) in which,
for any t < T, the outcome”in stage t is not a Nash equilibrium
of G. We return to this idea in the infinite-horizon analysis in the
next section.

The main pgiit to extract from this example is that credible
threats or prefnises about future behavior can influence current
behavior. second point, however, is that subgame-perfection
may embody a strong enough definition of credibility. In de-
riving the subgame-perfect outcome ((Mi, M), (Rq,R;)), for ex-
affiple, we assumed that the players anticipate that (Ry, Rp) will
be the second-stage outcome if the first-stage outcome is (M;, M3)
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L My Ry, P,
Ly [1,1]5,0 0,00,01|0,0
M; 0,5]4,4(0,0 0,0

Ry |0,0]0,0(3,3|0/]0,0

Py |0,0{0,0 |0/ [4,1]0,0

Q10,0 0,000 1,4
Figure 2.3.5.

a_nd that (Ly7Ly) will be the second-stage outcome if any of the
eight other first-stage outcomes occurs. But playing (L, L,) in the
second stage, with its payoff of (1,1), may seem silly when (R,

), with its payoff of (3,3), is also available as a Nash equilib-
rium of the remaining stage game. Loosely put, it would seem
natural for the players to renegotiate.'® If (M;, M,) does not occur
as the first-stage outcome, so that (Ly, L,) is supposed to be played
in the second stage, then each player might reason that bygones
are bygones and that the unanimously preferred stage-game equi-
librium (R, R;) should be played instead. But if (R;, R,) is to
be t}.'te second-stage outcome after every first-stage outcome, then
t!'ne incentive to play (M;, My) in the first stage is destroyed: the
first-stage interaction between the two players simply amounts to
the one-shot game in which the payoff (3,3) has been added to
each cell of the stage game in Figure 2.3.3, so L; is player i’s best
response to M;.

~To suggest a solution to this renegotiation problem, we con-
sider the game in Figure 2.3.5, which is even more artificial than
the game in Figure 2.3.3. Once again, our interest in this game is
expositional rather than economic. The ideas we develop here to
address renegotiation in this artificial game can also be applied to

renegotiation in infinitely repeated games; see Farrell and Maskin
(1989), for example.

5This is loose usage because “renegotiate” suggests that communication (or
even bargaining) occurs between the first and second stages. If such actions are
possible, then they should be included in the description and analysis of the
game. Here we assume that no such actions are possible, so by “renegotiate” we
have in mind an analysis based on introspection. '
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This stage game adds the strategies P; and Q; to the stage
game in Figure 2.3.3. There are four pure-strategy Nash equilibria
of the stage game: (L;, Lp) and (Ry, Rz), and now also (P, Py)
and (Q;, Q7). As before, the players unanimously prefer (Ry, Ry)
to (L1, Lz). More importantly, there is no Nash equilibrium (x,y)
in Figure 2.3.5 such that the players unanimously prefer (x,y) to
(P1, Py), or (Q1, Q2), or (Ry, Ry). We say that (Ry, Rp) Pareto-
dominates (L, L;), and that (Pq, P2), (Q1, Q2), and (Ry, Ry) are on
the Pareto frontier of the payoffs to Nash equilibria of the stage
game in Figure 2.3.5.

Suppose the stage game in Figure 2.3.5 is played twice, with
the first-stage outcome observed before the second stage begins.
Suppose further that the players anticipate that the second-stage
outcome will be as follows: (R, Ry) if the first-stage outcome is
(My, Mp); (Py, Py) if the first-stage outcome is (M;, w), where w
is anything but Ma; (Q1, Qo) if the first-stage outcome is (x,My),
where x is anything but M;; and (Ry, Ry) if the first-stage outcome
is (v, z), where y is anything but M; and z is anything but M. Then
((My,M,),(R1,R;)) is a subgame-perfect outcome of the repeated
game, because each player gets 4+ 3 from playing M; and then R;
but only 5+ 1/2 from deviating to L; in the first stage (and eve
less from other deviations). More importantly, the difficulty i

game based on Figure 2.3.3, the only way to punish gflayer for
deviating in the first stage was to play a Pareto-dg

rn to infinitely repeated games. As in the finite-horizon
case, the main theme is that credible threats or promises about fu-
ture behavior can influence current behavior. In the finite-horizon
case we saw that if there are multiple Nash equilibria of the stage
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game G then there may be subgame-perfect outcomes of the re-
peated game G(T) in which, for any t < T, the outcome of stage t is
not a Nash equilibrium of G. A stronger result is tpu@ in infinitely
repeated games: even if the stage game has a ufiique Nash equi-
librium, there may be subgame-perfect outedmes of the infinitely
repeated game in which no stage’s outcofhe is a Nash equilibrium
of G.

We begin by studying the infj

itely repeated Prisoners’ Dilem-
ma. We then consider the classof infinitely repeated games analo-
gous to the class of finitelyfepeated games defined in the previous
section: a static gamg/6f complete information, G, is repeated in-
finitely, with the pdtcomes of all previous stages observed before
the current stagge begins. For these classes of finitely and infinitely
repeated es, we define a player’s strategy, a subgame, and
a subgame-perfect Nash equilibrium. (In Section 2.4.B we define
#€ concepts for general dynamic games of complete informa-
on, not just for these classes of repeated games.) We then use
these definitions to state and prove Friedman’s (1971) Theorem
(also called the Folk Theorem).'®

Suppose the Prisoners’ Dilemma in Figure 2.3.6 is to be re-
peated infinitely and that, for each ¢, the outcomes of the t — 1
preceding plays of the stage game are observed before the ' stage
begins. Simply summing the payoffs from this infinite sequence
of stage games does not provide a useful measure of a player’s
payoff in the infinitely repeated game. Receiving a payoff of 4 in
every period is better than receiving a payoff of 1 in every period,
for example, but the sum of the payoffs is infinity in both cases.
Recall (from Rubinstein’s bargaining model in Section 2.1.D) that
the discount factor 6 = 1/(1 + r) is the value today of a dollar to
be received one stage later, where r is the interest rate per stage.
Given a discount factor and a player’s payoffs from an infinite

"*The original Folk Theorem concerned the payoffs of all the Nash equilibria
of an infinitely repeated game. This result was called the Folk Theorem be-
cause it was widely known among game theorists in the 1950s, even though
no one had published it. Friedman's (1971) Theorem concerns the payoffs of
certain subgame-perfect Nash equilibria of an infinitely repeated game, and so
strengthens the original Folk Theorem by using a stronger equilibrium concept—
subgame-perfect Nash equilibrium rather than Nash equilibrium. The earlier
name has stuck, however: Friedman’s Theorem (and later results) are sometimes
called Folk Theorems, even though they were not widely known among game
theorists before they were published.



