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Università della Calabria

agotar@unical.it
Via Pietro Bucci, cubo 1C, Rende (CS) - Italy
Tel.: +39-0984-492465, Fax:+39-0984-492421

february 2009



Classification of short time series

Abstract: Many time series are of short duration because data acquisition has,
of necessity, proceeded for but a brief term. Such data have previously often been
analyzed by methods that either do not explicitly take into account time related
changes or that are designed for long time series. In this paper, we consider sev-
eral ways of assigning a dissimilarity between univariate time series in short term
behavior. In particular, we have defined a measure that works irrespective of diffe-
rent baselines and scaling factors and its effectiveness has been evaluated on real
and synthetic data sets.

Keywords: Time trajectories; Distances; PAM clustering; Representative trends.

1 Introduction
Short time series may be all there is available when data are acquired by an in-
frequent survey due to experimental factors or high costs. For instance, many
economic series are internally comparable for very few periods and statistical es-
timates from such short series tend to be biased. The same is true for micro array
data since technical equipment and methods of measurement change from time to
time. This type of data is obviously undersampled, and some important features
of the temporal pattern can be obscured by the stochastic noise.

Similarity-based mining of time-varying data has attracted an increasing at-
tention in recent years. Applications where short time series occur range from
biomedicine through macroeconomics, psycology statistics, to scientific disci-
pline such us archeology, seismology and astronomy (?). Classic problems in
handling short time series involve the clustering of such series into similar cat-
egories and the classification of new observed series into two or more known
categories. These two problems, of course, are very common and there exists a
vast literature on methods of discriminant and cluster analysis as applied to time
independent observations. The basic idea is to extract distinctive features from
the data, compare them and perform the grouping of the units into distinct cate-
gories. The clustering is satisfactory if the distance between units within clusters
is relatively small compared with distances between clusters. Once the structure
and the required number of clusters have been established, the cluster represen-
tatives can be employed to classify the old and new units using, for example, the
nearest-centroid method.
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Clustering methods can identify meaningful patterns even in time dependent
observations; however, they have some limitations if standard algorithms are blin-
dly applied measuring the closeness of the observed values, but ignoring the tem-
poral dimension. The question of distance between short time series has been
addressed previously in ??. In this case, one wants to assign a value to the dis-
tance between individual time series rather than quantify the strength of relation-
ship between the stochastic processes that generate the observations. For instance,
dimensionality reduction techniques such as autoregressive and spectral represen-
tations, decomposition methods, discrete wavelet transforms and so forth are not
useful in case of modest length sequences.

It must be considered that cluster analysis heavily relies on the concept of dis-
tance to map each comparison into a numerical value that quantifies the degree
of proximity between two units. To address this issue, we have developed a sim-
ple computational technique to compare and classify relatively short time series
(less than 25 time points). In Section 2, we will propose a distance function that
takes into account both the observed values and the proximity between the tem-
poral behavior of the sequences. As an illustrative example, a partitioning around
medoids method is used to compare and cluster the relative consumer price index
of OECD countries and the results are discussed in Section 3. In Section 4 we have
compared our method with that of literature known methods. The procedures are
assessed by a Monte Carlo simulation study. Conclusions and future research are
then presented in Section 5.

2 A new metric for short time series
To analyze a set of time series S =

{
X1,X2, · · · ,Xp

}
and to determine homology

among them, we need to define an appropriate distance measure to describe quan-
titatively how closely the two sequences simulate each other. In this section we
introduce a new method for performing distance search over time-varying data.

To present our approach, we consider time series in which the values have been
standardized to have a mean of zero and a standard deviation of one. This type of
invariance is useful for dealing with heterogeneity of scales and/or baseline shift
when one considers meaningless to compare sequences with different levels and
oscillations. Moreover, we restrict ourselves to deal with p different time series of
equal length, that is, each element of Xi = (xi,t , t = 1,2, · · · ,n) has a corresponding
element in the matched sequence X j =

(
x j,t , t = 1,2, · · · ,n

)
for i, j = 1,2, · · · , p

and the time points are equally spaced.
A time series Xi is represented as a continuous and non-self-intersecting po-

lygonal curve linking n neighboring vertices (t,xi,t) , t = 1,2, · · · ,n. Our method
is based on the observation that similar sequences will have a small area enclosed
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between the polygonal curves representing them. Figure (1) illustrates the idea.

Figure 1: Area between two polygonals
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The corresponding formula is

DA
(
Xi,X j

)
= ∑

n
t=1 Ai

n
(1)

where Ai is the area between the two polygons in the time interval [t, t +1]. The
function essentially is an average of separation distances between two intervals. It
could be seen that Ai is made of trapezoids or triangles. These are formed when
the two polygons intersect and the intersection point belongs to [t, t +1]. In this
case, the local contribution to the general distance is obtainted by summing the
area of the two triangles (computed with the Erone’s formula). On the other hand,
the trapezoids are not necessarily cyclic so that their area can be computed with
the Breithschneider’s formula.

? shows that, since the lines forming the two polygons have their left and right
end points on a vertical line, the area between them is a metric and this implies
that DA satisfies the properties of reflexivity: DA

(
Xi,X j

)
= 0 iff Xi = X j, and

triangle inequality: DA
(
Xi,X j

)
+DA

(
X j,Xk

)
≥ DA(Xi,Xk) for any Xk.

The sum in (1) is commutative and, consequently, DA will not be able to dis-
tinguish between trajectories that have the same area distributed in a different way
over the time domain (on this, see ?). This is not always a drawback. For in-
stance, there is no special reason to measure the resemblance between two time
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series starting from the first vertex and ending to n-th, so that the distance should
be the same both for start-to-finish sequences and from finish to start. The norm
DA fulfils this requirement. However, for a distance function to be useful in the
context of time series, it should be driven by the relative change of intensity in a
given interval as well as the time order of observations (?).
To incorporate both, a time weighted distance function is described below

WDA
(
Xi,X j

)
= ∑

n
t=1 wtAt

∑
n
t=1 wt

(2)

where

wt = 0.5
(
min

{
|xi,t− x j,t |, |xi,t+1− x j,t+1|

}
+

max
{
|xi,t− x j,t |, |xi,t+1− x j,t+1|

})
(3)

for t = 1,2, · · · ,n−1. Each boxes in Figure (1) represents a time-varying weight
assigned to what happens in the interval [t, t +1]; the larger is a box, the more
important is the role of the corresponding local distance within the global distance
function, while irrelevant differences have virtually zero weight. Of course, the
weights in (2) are normalized by dividing them for the total area so that they are
non negative and sum to one. The range of WDA spans from a minimum of zero to
the max Ai. Practically, the smaller the value of WDA the greater is the similarity
between the time sequences under comparison.

It can be easily shown that the function introduced in (2) is a metric by using
the theorem given in the appendix of ?.

3 Cluster analysis
The aim is to partition a set of objects into groups C1,C2, · · · ,Ck in such a way
that objects (in our case, time series) in the same cluster are near and similar,
whereas objects in different clusters are distinct and distant. Thus, the distance
function that quantifies the dissimilarity between units, is crucial in determining
the outcome of any cluster analysis. A large majority of techniques for cluster
analysis are designed for units that are described by means of numerical feature
vectors. On the other hand, applications to time-varying data require the clustering
of items that are defined by the relationships between individual data (distances).

Over the years, many methods have been devised to find groups within ob-
served time series. We chose the partitioning around medoids method (PAM)
proposed by ? for several reasons. First, the typical representative of each group
(the cluster medoid) is the most centrally located item in a cluster, that is, the item
in the cluster whose average dissimilarity to all other items in the same cluster
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is minimal. In practice, the medoid is one of the observed time series and, as
such, it is not an artificial object created in the virtual environment of the algo-
rithm. Second, it can operate directly on a distance matrix as long as it is metric
in the sense of ?. In fact, the computation of cluster medoids does not require the
presence of feature vectors, but can be done for a distance matrix. Third, it is a
partitional algorithm that does not impose a hierarchical structure, which is not
necessarily present in the underlying hypothetical population. Fourth, rather than
selecting starting centers at random, PAM evaluates all possible starting centers
and chooses the best centers to start cluster building. This gives consistent results
when clustering is repeated. Finally, PAM has been shown to be both more robust
to inclusion of outliers than the popular k-means method (?) because it uses the
most centrally located object in a cluster

The PAM procedure is based on the search of k representative time series
(medoids) that minimize the overall sum of distances of the sample units to their
closest representative unit ? (in this method, the analyst has to decide in ad-
vance the number of clusters). More specifically, the method starts by choosing
k medoids such that the total distance of all units to their nearest medoid is mini-
mal, i.e., the algorithm finds a subset {M1,M2, · · · ,Mk} ∈ S which minimizes the
function

p

∑
i=1

min
j=1,··· ,k

WDA
(
Xi,M j

)
(4)

Each Xiis then assigned to the category corresponding to the nearest medoid. That
is, the time trajectory Xi is assigned to cluster C j whose associated medoid, M j,
is nearest to Xi

WDA
(
Xi,M j

)
≤ WDA(Xi,Mr) for all r = 1,2, · · · ,k (5)

The result of PAM is a partition of the original set in k categories each formed by
time sequences with similar dynamics, and each guided by a leading sequence that
explains how the group is shaped, how it evolves over time and what sequences
we are to expect to be included in the group. In addition, PAM returns for each
unit a silhouette width that reflects how well the particular unit is clustered.

3.1 Case study
To demonstrate the efficiency of the proposed method in clustering of short-run
dynamics, we performed experiments using a real data set. In particular, we
used the relative consumer price index, 2000 = 100 (downloadable from http:
//webnet.oecd.org/wbos/index.aspx). This dataset is a collection of
time series presenting the relative CPI of p = 31 states for the period of 1993–2008
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(n = 16). We have applied the metrics (2) combined with the PAM algorithm avail-
able in the R-package cluster to the standardized data. The number of clusters
was selected based on the average silhouette width. The following groups have
been established

Cluster 1 = {AUS,CAN,DNK,GRC, IRL,KOR,LUX ,NLD,NZD,ESP,EUR}
Cluster 2 = {AUT,BEL,FIN,FRA,DEU,JAP,SWE,CHE}
Cluster 3 = {CZE,HUN, ICE, ITA,NOR,POL,PRT,SV K,TUR}
Cluster 4 = {MEX ,GBR,USA}

Figure (2) shows the patterns

Figure 2: Temporal patterns of RCPI for OECD countries

Clusters 1 groups together sequences that oscillate steadily with time; cluster 2
consists mainly of the states showing a decreasing trend whereas most of the se-
quences belonging to cluster 3 exhibit an overall tendency to increase; cluster 4
is distinct from the others by grouping three states that have a slowly increasing
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behavior over the full range of measurements. The leading indicators or represen-
tative trends of the various clusters are the time series of IRE (C1), AUT (C2),
HUN (C3) and USA (C4) and are indicated with a more marked line.

4 Alternative metrics for short time series
In ? it is advocated the comparison of a new proposal to other existing techniques.
Many other measures of similarity between time series have have been introduced
in literature. To undertake this task we have examined some distance functions
that have assumed a definite and independent form.

The simplest distance function can be expressed by the Minkowsky formula

Ma
(
Xi,X j

)
=

{
n

∑
t=1

(
xi,t− x j,t

)a

}1
a

(6)

where a > 1 is a parameter to be given (Manhattan for a = 1, Euclidean for a = 2
, Tchebycheff for a→ ∞, putting different emphasis on large deviations). The
function (6) has the advantage of being easy to compute and interpret. How-
ever, the Minkowky metrics ignore the temporal structure of the values as resem-
blance is only based on the differences between the values, independently of the
increase/decrease behavior before and after these values. As a consequence, if we
believe that two profiles should be considered more similar if they have the same
temporal pattern, then the use of Ma

(
Xi,X j

)
will waste some important informa-

tion.
It can be noted that if the variables are standardized then the Euclidean metric,

obtained from (6) for a = 2, is functionally related to the correlation metric

M2
(
Xi,X j

)
=
√

2n
[
1− r

(
Xi,X j

)]
(7)

where r
(
Xi,X j

)
is the Pearson’s cross-product correlation coefficient. The more

series are linearly related, the smaller is the Euclidean distance between them
after the standardization. The logcorrelation metric − log

(
0.5
[
1+ r

(
Xi,X j

)])
,

common in biological studies, can be derived from (7). It is unlikely, however, that
clusterings obtained by these methods will show readily observable differences
between them.

The strength of monotonic association between two set of values can be mea-
sured by a rank-based measure of correlation: the Kendall’s concordance coeffi-
cient

τ
(
Xi,X j

)
= 1−

2dk
(
Xi,X j

)
n(n−1)

(8)
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where dk
(
Xi,X j

)
can be interpreted as the symmetric difference distance between

the ordered values of Xi and X j and used as a metric to classify time series. The
Kendall’s τ gives the probability that any two corresponding pairs of values in the
two vectors are identically ordered. Of course, the order taken into account by
τ is the ranking of values in relation to other values and clearly not in relation
to the temporal characteristics. Whereas the Person’s correlation coefficient is
appropriate mainly for indicating linear association, the Kendall’s τ is invariant
under increasing monotone transformations.

To overcome the problems of the existing measure of association in different
a priori unknown situations, ? proposed the order statistics correlation coeffifient

2ρk
(
Xi,X j

)
=

∑
n
t=1
[
xi,(t)− xi,(n+1−t)

]
x j,[t]

∑
n
t=1
[
xi,(t)− xi,(n+1−t)

]
x j,(t)

+
∑

n
t=1
[
x j,(t)− x j,(n+1−t)

]
xi,[t]

∑
n
t=1
[
x j,(t)− x j,(n+1−t)

]
xi,(t)

(9)

where xi,(t) is the t-th order statistics of Xi and x j,[t] is the corresponding value of
X j, that is, the value in the t-th position of X j when the pairs

(
Xi,X j

)
is sorted

with respect to the magnitude of Xi. The coefficient ρk
(
Xi,X j

)
has the basic

properties ofa correlation coefficient, but it is more robust against noise than the
Pearson’s, and more sensitive than the Kendall’s (see ?). A distance function
based on (9) can be calculated using

√
2
[
1−ρk

(
Xi,X j

)]
.

The resemblance between polygonals can also be measured by a discrete ver-
sion of the Fréchet distance (?). The discrete Fréchet distance is similar to the
dynamic time warping distance (DTW). It must be observed that, in our context,
the Fréchet distance coincides with M∞

(
Xi,X j

)
so that we could expect results

similar to the Euclidean metrics.
One shortcoming of (6) is that it ignores sequential or temporal characteristics.

To improve its ability to assess the proximity between dynamics ?? added to
Ma (X,Y) the distance between the first differences (velocities) and the distance
between the second differences (accelerations). This idea can slightly be extended
if we incorporate knowledge about higher differences

Va,q
(
Xi,X j

)
=

1
q

q

∑
k=1

n

∑
t=k

Ma

[
X(k)

i ,X(k)
j

]
M(k)

a,max−M(k)
a,min

 (10)

where Ma,q

[
X(k)

i ,X(k)
j

]
for k = 1,2, · · · ,q is the Minkowky distance for the origi-

nal values (k = 0), first differences (k = 1) of two consecutive time points, second
difference (k = 2), and so on. Symbols M(k)

a,max and M(k)
a,min denote, for each k,

the Minkowky distance of the furthest and closest pair of sequences, respectively.
Thus, Va,q has values between zero and one. For a = 2,q = 3 expression (10)
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yields the distance function proposed by ? and for a = 2,q = 2 the distance func-
tion used by ?. The measure considered by ? can easily be derived from (10).

? present a simple metric able to exploit the temporal structure of time series:

Lp
(
Xi,X j

)
=

[
n

∑
t=1

(Bt−1 +Bt+1)
p

] 1
p

(11)

with

2Bt−1 =


∆

(t)
i, j i f ∆

(t)
i, j ∆

(t−1)
i, j ≤ 0

∆
(t)
i, j

∆
(t)
i, j +∆

(t−1)
i, j

otherwise
(12)

2Bt+1 =


∆

(t)
i, j i f ∆

(t)
i, j ∆

(t+1)
i, j ≤ 0

∆
(t)
i, j

∆
(t)
i, j +∆

(t+1)
i, j

otherwise
(13)

where ∆
(t)
i, j = xi,t−x j,t . This norm involves the area of the triangles located on the

left and right sides of each coordinate.
? observed that two time series that are non-linearly related to each other will

result distant in terms of a correlation based distance measure, regardless of their
similarity. In this sense they suggested using a qualitative difference between Xi
and X j by summing up the scores

QD =
0.5

n(n−1) ∑
r<s

δr,s (X,Y) (14)

where

δi, j (X,Y) =
{

0 if wr,s (X) = wr,s (Y)
|wr,s (X)|+ |wr,s (X)| otherwise (15)

with wr,s (X) = sign(xs− xr) and wr,s (Y) = sign(ys− yr).
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4.1 Comparison of the procedures
We have evaluated the performance of the proposed technique by considering ar-
tificially generated sample time sequences. The test data has been designed spe-
cially for this purpose so as to include a variety of curves to demonstrate the ef-
fectiveness of the new distance function. In particular, the data sets were created
using a random time series generator that produces p = 48 sequences belong-
ing to a predefined number k ∈ K = {4,8,12} clusters C1,C2, · · · ,Ck of length
n ∈ N = {11,17,23}. Each cluster includes a number of 48/k sequences given by
the following expressions

1 : (φ1t +φ2)sin(2πt)+ e 2 : (φ1t +φ2)cos(2πt)+ e
3 : (φ1t +φ2)sin(2πt−π/4)+ e 4 : (φ1t +φ2)cos(2πt−π/4)+ e
5 : (φ1t +φ2)sin(4πt)+ e 6 : (φ1t +φ2)cos(4πt)+ e
7 : (φ1t +φ2)sin(2πt− t)+ e 8 : (φ1t +φ2)cos(2πt− t)+ e
9 : (φ1t +φ2)sin(4πt− t)+ e 10 : (φ1t +φ2)cos(4πt− t)+ e
11 : (φ1t +φ2)sin(4πt−π/4)+ e 12 : (φ1t +φ2)cos(4πt−π/4)+ e

where t ∈ [−0.4,0.4,by 0.8/(n−1)]. The parameter φ1 is obtained randomly
from U (0.1,0.5), φ2 randomly from U (1.1,1.5), and e is a vector of random
errors form N (0,σ = 1.5). All the quantities φ1,φ2, and e varies across time se-
ries.

To compare the stability of the above algorithms, we repeated the data gener-
ation 1000 times with this organization for each k and for each n. Since we know
the cluster that each sequence belongs to, we can use the true clustering member-
ship and assess the quality of the agreement between the true and the resulting
cluster membership. The Adjusted Rand Index (ARI) has been used as cluster
validation measure (??). As it is well known, the ARI takes values on [−1,1]
with one indicating a perfect concordance between the known and produced par-
tition and values near zero or negative corresponding to cluster agreement found
by chance. The numerical summaries are given in Table 1.

Each entry shows the average ARI of the true clustering with clusters using
the various metrics. A high average adjusted Rand index means that clusters de-
termined by the algorithm are in strict agreement with clusters from the original
data. A low value of the standard deviation of ARI indicates stability across the
simulations.
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Table 1: Summary of ARI from 1000 simulations for some metrics

k n WAD Eucl. V2,2 V2,3 τ ρk QD L2
4 11 Mean 0.928 0.915 0.723 0.655 0.838 0.906 0.837 0.662

11 Std.Dev. 0.062 0.068 0.123 0.134 0.091 0.074 0.092 0.116

17 Mean 0.992 0.991 0.883 0.815 0.965 0.984 0.965 0.890
17 Std.Dev. 0.020 0.022 0.086 0.117 0.046 0.032 0.046 0.078

23 Mean 0.999 0.998 0.943 0.883 0.994 0.996 0.993 0.977
23 Std.Dev. 0.009 0.010 0.060 0.089 0.020 0.015 0.020 0.037

8 11 Mean 0.662 0.656 0.589 0.573 0.621 0.638 0.621 0.506
11 Std.Dev. 0.051 0.054 0.074 0.078 0.060 0.055 0.062 0.077

17 Mean 0.716 0.707 0.681 0.662 0.694 0.700 0.695 0.633
17 Std.Dev. 0.041 0.037 0.065 0.078 0.047 0.038 0.045 0.063

23 Mean 0.745 0.726 0.732 0.725 0.721 0.722 0.721 0.695
23 Std.Dev. 0.051 0.039 0.061 0.076 0.043 0.034 0.043 0.035

12 11 Mean 0.596 0.577 0.508 0.485 0.530 0.566 0.530 0.430
11 Std.Dev. 0.059 0.060 0.073 0.076 0.066 0.056 0.066 0.073

17 Mean 0.677 0.646 0.608 0.588 0.633 0.644 0.632 0.553
17 Std.Dev. 0.053 0.045 0.062 0.072 0.052 0.048 0.051 0.060

23 Mean 0.726 0.682 0.665 0.658 0.676 0.683 0.673 0.610
23 Std.Dev. 0.059 0.046 0.058 0.067 0.051 0.046 0.050 0.037

All Av. Mean 0.782 0.766 0.704 0.672 0.741 0.760 0.741 0.662
Av. St.Dev. 0.045 0.042 0.074 0.087 0.053 0.044 0.053 0.064

All the calculations are carried out by the statistical language R, ?, and the programs are available
by the authors.

The following facts emerge from Table 1:

1. The mean ARI increases and the standard deviation of ARI decreases as
the length of the sequences increases. This is in line with the principle
that longer sequences allow progressively more detailed description of the
underlying dynamics.

2. The mean ARI decreases as the standard deviation of ARI increases as the
number of clusters increases. Such a result should not be considered as a
surprising one; in fact, more groups imply higher chances of misclassifica-
tion.
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3. Our method, WDA (Weighted Area Distance) has the best performance
among the eight alternatives; in fact, the average of the mean ARI is 0.782
(the highest) and the average of the standard deviations is 0.045 (the second
lowest-level). However, its results are very similar to those of the Euclidean
distance; in practice, WAD does not bring massive improvement over the
current State of the Art. At the very least, one should wonder if it just makes
sense to introduce a product if it is only slightly better than the current best.

4. Many distance functions currently in use, perform worse than the Euclidean
distance. Perhaps, empirical evaluations in the past have often been in-
adequate (?); however, more discussions regarding the relative merits and
demerits among of these approaches can be found in the referred articles.

5 Conclusions and Future Work
Dissimilarity search in short time series data is a rich and rapidly growing re-

search field prevailingly devoted to the methods of cluster and discriminant anal-
ysis applied to dated information. The problem of distance quantification in time-
varying data is extensively studied and various pairwise distance function have
been proposed in the literature.

In this paper, a new metric was designed in the hope that it would be able to
detect similarities in the dynamic of short time series where conventional statisti-
cal time series analysis methods are not applicable. The metric is sensible both to
the observed values and to the rate of change. Group of sequences where searched
by means of the PAM algorithm. A case study on relative consumer price index
of OECD countries has been undertaken. Also, it has been verified by the help
of test data that the proposed technique has a good performance with short time
series, although, the quality of the results it is not significantly superior to that
achievable by using the simple Euclidean distance between the observed data. We
have also discussed different propositions for a distance measure between short-
run sequences concluding that

In this paper we have assumed that a time series comprises of samples of
a single measured variable against time. In future work, we intend to broaden
its scope so that it can handle multivariable time sequences. Another desirable
generalization of the approach taken in this paper is to allow a smooth change
between dynamical systems considered similar. However, the construction of a
reliable measure of distance with that property is still an open problem and subject
to ongoing research
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