
1 Pro�t maximization

Behavioral assumption:

maxR(a1; a2; :::an)� C(a1; a2; :::an)

an optimal set of actions

a� = (a�1; :::a
�
n)

is characterized by the conditions:

@R(a�)

@ai
=
@C(a�)

@ai

The �rm�s pro�t maximization problem reduces to choice of the price of
outputs (or price of inputs) and levels of output (or inputs).
The �rm faces:

� Technological Constraints: feasibility of the production plan.

� Market constraints: e¤ect of actions of other agents on the �rm.

For competitive �rms we assume price taking behavior.

1.1 Description of technology

Suppose the �rm has n possible goods to serve as inputs and/or outputs. We
represent a speci�c production plan by a vector y in Rn where yi is negative if
the ith good serve as a net input and positive if it serves as a net output. Such a
vector is called a net output or netput vector. The set of all feasible production
plans (netput vectors) is called production possibilities set (Y a subset of Rn).
In the short run: Restricted or short-run production possibilities Y (z) con-

sists of all feasible netput bundles compatible with the constraint z.

1. A �rm produces one output with vector of inputs x.

V (y) =
�
x in Rn+: (y,...� x) is in Y

	
2. For the case above we can de�ne the isoquant:

Q(y) =
�
x in Rn+: x is in V (y), x is not in V (y

0) for y0 > y
	

the isoquant gives all input bundles that produce exactly y.

3. If the �rm has only one output we can de�ne the production function:

f(x) = fy in R: y is the maximum output associated with � x in Y g
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4. A production plan y in Y is called e¢ cient if there is no such y0 such
that y0 = y, i.e. if there is no way to produce more output with the same
inputs or to produce the same output with less inputs. We describe the set
of e¢ cient production plans by some function T :Rn ! R where T (y) = 0
only if y is e¢ cient.

� Example 1: Cobb-Douglas

Y =
�
(y;�x1;�x2) in R3: y 5 x�1 x1��2

	
0 < � < 1

V (y) =
�
(x1; x2) in R2+:y 5 x�1x1��2

	
Q(y) =

�
(x1; x2) in R2+:y = x

�
1x

1��
2

	
Y (z) =

�
(y;�x1;�x2) in R3: y 5 x�1 x1��2 , x2 = z

	
T (y; x1; x2) = y � x�1x1��2

f(x1; x2) = x
�
1x

1��
2

� Leontief technology

Y =
�
(y;�x1;�x2) in R3: y 5 min (ax1; bx2)

	
V (y) = (x1; x2) in R2+: y 5 min (ax1; bx2)

Q(y) =
�
(x1; x2) in R2+:y = min (ax1; bx2)

	
T (y; x1; x2) = y �min (ax1; bx2)

f(x1; x2) = min (ax1; bx2)

1.2 Description of Production Sets and Input Require-
ment Sets

The input set is monotonic if:
Monotonicity:

x is in V (y) and x0 = x, then x0 is in V (y)
The input set is convex if:
Convexity:
if x is in V (y) and x0 is in V (y) then tx+(1�t)x0 is in V (y) for all 0 5 t 5 1.

That is V (y) is a convex set.
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1.3 The technical rate of substitution

Consider xn(x1;...xn�1) the (implicit) function that tell us how much of xn it
takes to produce y if we are using x1;...xn�1 of the other factors. Then the
function xn(x1;...xn�1) has to satisfy the identity:

f(x1; :::xn�1; xn(x1; :::xn�1) � y

We are interested for an expression for @xn(x�1;...x
�
n�1)=@x1. Di¤erentiating

the above identity we �nd:

@f(x�)

@x1
=
@f(x�)

@xn

@xn(x
�
1; :::x

�
n�1)

@x1
= 0

or

@xn(x
�
1; :::x

�
n�1)

@x1
= � @f(x

�)=@x1
@f(x�)=@xn

Example: Technical rate of Substitution in a Cobb-Douglas Technology.
f(x1; x2) = x

�
1x

1��
2

@f(x)

@x1
= �x��11 x1��2

@f(x)

@x2
= (1� �)x�1 x��2

@x2(x1)

@x1
=

�x��11 x1��2

(1� �)x�1x��2
= � �

(1� �)
x2
x1

1.4 Returns to Scale

Constant Return to Scale. A technology exhibits constant return to scale if any
of the following are satis�ed:

1. y is in Y implies ty is in Y for all t > 0.

2. x is in V (y) implies tx is in V (ty) for all t > 0.

3. f(tx) = tf(x) for all t > 0 i.e. f(x)is homogeneous of degree 1.

Increasing Return to Scale. A technology exhibits increasing return to scale
if f(tx) > tf(x) for all t > 1.
Decreasing Return to Scale. A technology exhibits increasing return to scale

if f(tx) < tf(x) for all t > 1.
Restricted Production Possibility sets may exhibits decreasing return to

scale.
Consider what happens if we increase all inputs by some small amount t.

This is given by:

3



@f(tx)

@t

We convert this into an elasticity:

@f(tx)

@t

t

f(tx)

We evaluate this at t = 1 to see what elasticity of scale is at t = 1:

e(x) =
@f(tx)

@t

t

f(tx)
jt=1

The elasticity of scale measures the percent increase in scale. We say that
the technology exhibits increasing, constant or decreasing return to scale if e(x)
is greater, equal or less than 1.

1.5 The Competitive Firm

Consider the problem of a �rm that takes prices as given in both its output and
its factor markets. Let p be a vector of prices for inputs and outputs of the �rm
The pro�t maximization problem of the �rm can be stated as:

�(p) = maxpy

s:t:y is in Y

Since output are positive numbers and inputs are negative numbers, this
problem give us the maximum of revenue minus costs. The �(p) is the pro�t
function of the �rm.
In a short-run maximization problem we may de�ne the short-run or re-

stricted pro�t function:

�(p; z) = maxpy

s:t:y is in Y (z)

If the �rm produces only one output it may be written as:

�(p;w) = max pf(x)�wx

where p is now the scalar price of output and w is the vector of factor prices.
In this case we can also write a variant of the restricted pro�t function, the

cost function:

c(w;y) = minwx

s:t:x is in V (y)
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In the short-run we want to consider the restricted or short-run cost function:

c(w;y; z) = minwx

s:t:(y;�x)is in Y (z)

The cost function gives the minimum cost of producing a level of output y
when factor prices are w.
Pro�t-maximizing and cost-minimizing behavior may be calculated.
The �rst-order conditions for the single output pro�t maximization problem

are:

pDf(x�) = w

or

p
@f(x�)

@xi
= wi

These conditions say that the value marginal product of each factor must be
equal to its price.
The second-order condition for pro�t maximization is that the matrix of sec-

ond order derivatives of the production function must be negative semide�nite
at the optimum point, that is:

D2f(x�) =

�
@2f(x�)

@xi@xj

�
satis�es the condition that hD2f(x�)h � 0 for all vectors h. Geometrically

this means that the production function must be locally concave in the neigh-
borhood of an optimum.
For each vector of prices (p;w) there will in general be some optimal choice

of factors x�. The function x(p;w) that gives us the optimal choice of inputs
as a function of the prices is called the demand function of the �rm. Similarly,
y(p;w) = f(x(p;w)). is called the supply function of the �rm.
We consider the problem of �nding a cost-minimizing way to produce a given

level of output:

minwx

s:t:f(x) = y

The Lagrangian expression for cost minimization is:

L(x;�) = wx� �(f(x)� y)

The �rst-order conditions characterizing an interior solution to this problem
are:
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w = �Df(x�)

where � is the lagrange multiplier of the constraint
and the second order conditions :

hD2f(x�)h � 0 for all h satisfying wh = 0

or:

@2L(x�; �)

@xi@xj
= ��

�
@2f(x�)

@xi@xj

�
Algebraically, this means that D2f(x�) must be negative semide�nite for

all directions h orthogonal to w. The production function should be locally
quasi-concave which is another way of saying that the input requirement sets
must be locally convex.
From the �rst order conditions (since � = 1

wi

@f(x�)
@xi

for all i) we have that:

wi
wj

=

@f(x�)
@xi

@f(x�)
@xj

i; j = 1; :::n

The term @f(x�)
@xi

n@f(x
�)

@xj
represents the technical rate of substitution at what

rate factor j can be substituted for factor i while maintaining a constant level of
output. The term winwj represents the economic rate of substitution at what
rate factor j can be substituted for factor i.
For each choice of w and y there will be some choice of x�that minimizes the

cost of producing y units of output. We will call the function that gives us this
optimal choice the conditional factor demand function and write it as x(w; y).
That conditional demand depends on the level of output produced and on the
factor prices.
We can combine the problem of cost minimization and pro�t maximization

for a price-taking �rm by writing the pro�t maximization problem in the fol-
lowing way:

max py � c(w; y)

Here the �rst term gives revenue and the second term the minimum cost of
achieving that revenue. The �rst order conditions for pro�t maximization are:

p =
@c(w; y�)

@y

or price equals marginal costs. The second order condition is @2c(w; y�)=@y2 =
0 or that marginal cost must be increasing at the optimal level of output.
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1.6 Average and Marginal Costs

The cost function is our primary means of describing the economic possibilities
of a �rm.
The cost function can always be expressed as the value of the conditional

factor demands:

c(w; y) � wx(w; y)
In the short-run some of the factors of production are �xed at predetermined
levels. Let xf be the vector of �xed factors, and break up w into w = (ww;wf )
the vector of prices of the variables and the �xed factors. The short-run condi-
tional factor demand functions will generally depend on xf so we write them as
xv(w; y;xf ):Then the short-run cost function may be written as:

c(w; y;xf ) � wvxv(w; y;xf ) +wfxf
The term wvx(w; y;xf ) is called the short-run variable costs and the term

wfxf is �xed costs. We can de�ne various derived cost concepts from these
basic units:

SAC =
c(w; y;xf )

y

SAV C =
wvxv(w; y;xf )

y

SAFC =
wfxf
y

STC = wvx(w; y;xf ) +wfxf = c(w; y;xf )

SMC =
@c(w; y;xf )

@y

When all factors are variable the �rm will optimize in the choice of xf . The
long-run cost function only depends on the factor prices and the level of output.
Let xf (w; y) be the optimal choice of the �xed factors and let xv(w; y) =

xv(w; y;xf (w; y)) be the optimal choice of the variable factors. Then the long-
run cost function may be written as:

c(w; y) = wvxv(w; y) +wfxf (w; y) = c(w; y);xf (w; y))

The long-run cost function can be used to de�ne:

LAC =
c(w; y)

y

LMC =
@c(w; y)

@y
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1.7 The Geometry of Costs

In the short-run the cost function has two components: �xed costs and variable
costs. We can write:

SAC =
c(w; y;xf )

y
=
wfxf
y

+
wvxv(w; y;xf )

y

= SAFC + SAV C

1.8 Long Run and Short Run Cost Curves

Let us write the long-run cost function as c(y) = c(y; z(y)). Here we have
omitted the factor prices since they are assumed �xed, and we let z(y) be the
cost-minimizing demand for the �xed factors. Let y� be some level of output
and let z� = z(y�) be the associated demand for the �xed factors. The short-run
cost c(y; z�) must be at least as greater as the long-run cost c(y; z(y)) for all
levels of output, and the short run cost will equal the long-run costs at output
y� : c(y�; z�) = c(y�; z(y�)). Hence the long run and the short run cost curves
must be tangent at y�. The slope of the long-run cost curve at y�is:

dc(y�; z(y�))

dy
=
@c(y�; z�)

dy
+
P
i

@c(y�; z�)

dyi

@zi(y
�)

@y

But since z� is the optimal choice of the �xed factors at the output level y�,
we must have:

@c(y�; z�)

dyi
= 0 all i

Thus the long run marginal costs at y� equal short-run marginal costs at
(y�; z�).

1.9 Cost and Pro�t Function with Variable Factor Prices

Properties of the Cost Function:

1. (nondecreasing in w)If w
0
> w then c(w

0
; y) > c(w; y)

2. (homogeneous of degree 1 in w) c(tw; y) = tc(w; y) for t > 0

3. (concave in w) c(tw + (1� t)w0; y) > tc(w; y) + (1� t)c(w0; y)

4. continuous in w) c is continuous as a function ofw for w� 0t:

Properties of the Pro�t Function:

1. (nondecreasing in p,nondecreasing in w )If p
0 > p and w0 � w then

�(p0w0) > �(p;w)

2. (homogeneous of degree 1 in (p;w)) �(tp; tw) = t�(p;w) for t > 0
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3. (convex in p;w) Let (p00;w00) = (tp+ (1� t)p0; tw + (1� t)w0)

Then:

�(p00;w00) � t�(p;w) + (1� t)�(p0w0) for 0 � t � 1

4. (continuous in (p;w)) at least when p > 0 and w� 0.

1.10 Properties of Demand and Supply Functions

These functions give the optimal choices of inputs and outputs as a function of
the prices are known as demand and supply functions.
The factor demand function xi(p;w)must satisfy the restriction that:

xi(tp; tw) = xi(p;w)

so they must be homogeneous of degree zero.
A function f : Rn

+ ! R is homogeneous of degree k if f(tx) = tkf(x) for
all t > 0. In particular f is homogeneous of degree 0 if f(tx) = f(x) and it is
homogeneous of degree 1 if f(tx) = tf(x).
Euler�s law: If f is a di¤erentiable function homogeneous of degree 1 then:

f(x) =
nX
i=1

@f(x)

@xi
xi

If f(x) is homogeneous of degree 1 then @f(x)
@xi

is homogeneous of degree 0.

1.11 The Relationship between Demand Function and Pro�t
Function

Hotelling�s Lemma:
Let y(p;w) be the �rm�s supply function and let xi(p;w) be the �rm�s

demand function for factor i. Then:

y(p;w) =
@�(p;w)

@p

xi(p;w) = �
@�(p;w)

@w

when the derivative exists and when w�0 p� 0.
When a price of a factor changes in�nitesimally, there will be two e¤ects.

First, there is a direct e¤ect on pro�ts of d� = �dwixi(p;w) because if the price
of a factor changes by 1 euro and the �rm is employing 100 units of that factor ,
the pro�ts will go down of 100 euros. Second, there is an indirect e¤ect in that
the �rm will �nd in its interests to change its production plan . But the impact
on pro�ts of any in�nitesimal change in the production plan must be zero since
we are already at the optimum production plan. Hence, the total impact of the
indirect e¤ect is zero, and we are left only with the direct e¤ect.
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Shephard�s lemma:
Let xi(w;y) be the �rm�s conditional factor demand for input i. Then if c is

di¤erentiable at (w;y), and w�0

xi(w;y) =
@c(w; y)

@wi

If we are operating at a cost-minimizing point and the price wi increases,
there will be a direct e¤ect, in that the expenditure on the �rst factor will
increase. There will also be an indirect e¤ect, in that we will want to change
the factor mix. But since we are operating at a cost-minimizing point, any such
in�nitesimal change must yield zero additional pro�ts.
We have shown that cost function have certain properties that follow from

the structure of the cost minimization properties; we have shown above that
the demand function are simply the derivatives of the cost function. Hence, the
properties we have found concerning the cost function will translate into certain
restriction on its derivatives, the factor demand functions.

1. The cost function is increasing in factor prices. Therefore, @c(w;y)
@wi

=
xi(w;y) > 0.

2. The cost function is homogeneous of degree 1 in w. Therefore, the deriv-
ative of the cost function, the factor demands, are homogeneous of degree
0 in w.

3. The cost function is concave in w.

Reminder:
A function f : Rn ! R is concave if f(tx+ (1� t)y) = tf(x) + (1� t)f(y)

for all 0 5 t 5 1. If f is twice di¤erentiable we have equivalent criteria:
The function f is concave if f(y) 5 f(x) + Df(x)(y � x) for all x and y

in Rn. The function f is concave if the matrix of second derivatives D2f(x) is
negative semide�nite at all x.

1.12 Duality

We have seen if we are given a speci�cation of the technology, say, as a pro-
duction function, and if this technology satis�es certain stated properties, we
can obtain its cost function under certain conditions. Could the exercise be
carried out in reverse? That is, if we knew the cost function, could we infer the
production technology that might have generated this cost function?
The answer is "yes, provided the technology is convex and monotonic." given

the cost function, we can obtain a special form of the input requirement set as
follows:

V �(y) = fxjwx � wx(w; y) = c(w; y) for all w � 0g
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where the asterisk indicates that it is a special kind of input requirement
set. We can now try and relate this input-requirement set, constructed on cost
considerations, to the usual technologically de�ned input-requirement set, V (y).
The claim is, if V (y) represents a convex and monotonic technology, V �(y) =

V (y). Further, if the technology is non-convex or non-monotonic, V �(y) will be
a convexi�ed, monotonized version of V �(y). The overall implication is that the
cost function summarises all the economically relevant aspect of the underlying
technology.
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