METODI MATEMATICI PER L'ECONOMIA 16/01/2019 Compito A Corso di Laurea in Economia A-L (Prof. Emilio Russo) e aula M-Z (Prof. Alessandro Staino)

Cognome	Nome	Matricola _ _ _ _
	FASE 1	
Domanda 1: determinare il domin	nio della funzione $f(x) = \frac{x}{\sqrt{ x -1+x}}$	
Domanda 2: calcolare il seguente	e integrale definito $\int_{-1}^{0} \frac{x^2 - 1}{x + 2} dx$	
Domanda 3: calcolare il seguente	$\lim_{x \to +\infty} x e^{1/x} - x$	
Domanda 4: dimostrare attravers $-1/x^2$ per ogni $x \neq 0$.	o la definizione di derivata che pe	er la funzione $f(x) = 1/x$ vale $f'(x) =$

<u>Domanda 5</u> : Data la funzione $f(x) = e^{x-2}$, calcolare il punto $c \in [1,2]$ che soddisfa l'uguaglianza contenuta nella tesi del teorema del valor medio per il calcolo integrale.		
Domanda 6: dimostrare che se la funzione F è un infinito di ordine superiore a f e la funzione G è un		
infinito di ordine superiore a g , per $x \to P$, allora (se i limiti indicati esistono) $\lim_{x \to P} \frac{f(x) + F(x)}{g(x) + G(x)} = \lim_{x \to P} \frac{F(x)}{G(x)}$.		
Demondo 7, 1,1,1, 1, 1, [3]		
Domanda 7: stabilire se il vettore $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ può essere espresso come combinazione lineare dei due vettori $\begin{bmatrix} -1 \\ -3 \end{bmatrix}$ e $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$ e, in caso affermativo, indicare i coefficienti della combinazione lineare.		
<u>Domanda 8</u> : calcolare l'area della regione di piano delimitata dalla parabola di equazione $y_1 = x^2$ e la retta di equazione $y_2 = 4$.		

1. Studiare la seguente funzione¹

$$f(x) = \frac{x}{\sqrt{|x| - 1 + x}}$$

¹ Il dominio della funzione è la risposta alla domanda 1 nella fase 1.

2. Si risolva il seguente esercizio:

Diva il seguente esercizio. Immatricolati antecedenti 2017-2018 Determinare, se esistono, i valori dei parametri $a,b \in \mathbb{R}$ per cui la funzione $f(x) = \begin{cases} -ax^2 - x + b, & x \geq 0 \\ a\log(1-x), & x < 0 \end{cases}$

$$f(x) = \begin{cases} -ax^2 - x + b, & x \ge 0 \\ a\log(1 - x), & x < 0 \end{cases}$$

Immatricolati dal 2017-2018 in poi Rappresentare le curve di livello per z=1, z=2 e z=4 della funzione $z=\frac{2}{x-y}$.