METODI MATEMATICI PER L'ECONOMIACorso di Laurea in Economia A-L (Prof. Emilio Russo) e aula M-Z (Prof. Alessandro Staino)

Cognome	Nome	_Matricola _ _ _
1 Studioro lo coguento fu	nziana	
Studiare la seguente fui	nzione	
	$f(x) = \sqrt{ x - 1 - x + 2} e^{\frac{1}{3 - 2x}}$	
Insieme di definizione.		
Limiti agli estremi dell'intervallo d	li definizione.	
Equazioni degli eventuali asintoti o	orizzontali, verticali ed obliqui.	
Insieme di definizione della derivat	ta prima e sua espressione analitica.	
Discutere l'esistenza di eventuali p	unti di minimo e/o di massimo.	

Indicare in quali intervalli la funzione è crescente o decrescente.
Insieme di definizione della derivata seconda e sua espressione analitica.
Indicare in quali intervalli la funzione è concava o convessa.
Grafico.

2. Risolvere il seguente integrale definito

$$\int_{0}^{1} \frac{x^3 + 2x^2 - x - 2}{x^2 + x - 6} dx$$

3. Dati i due vettori $v_1 = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$ e $v_2 = \begin{bmatrix} -2 \\ 6 \\ -4 \end{bmatrix}$, stabilire se il vettore $v_3 = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$ è una loro combinazione lineare e, in caso affermativo, trovare i relativi coefficienti.

4. Trovare i punti critici della seguente funzione definita su \mathbb{R}^2 e stabilire, per ogni punto critico trovato, se si tratta di un massimo locale, un minimo locale oppure un punto di sella: $f(x,y) = x^4 - x^2 - 2xy + y^2$ In alternativa, gli immatricolati antecedentemente al 2017 devono svolgere il seguente esercizio:

$$f(x,y) = x^4 - x^2 - 2xy + y^2$$

Determinare, se esistono, i valori dei parametri $a,b\in\mathbb{R}$ per cui la funzione

$$f(x) = \begin{cases} -x^2 - ax - b, & x < -1\\ \frac{x^2 - 1}{x - 3}, & -1 \le x \le 2 \end{cases}$$

sia continua e derivabile in $(-\infty, 2]$.