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a b s t r a c t

In this paper we describe an algorithm based on the Least Squares Monte Carlo method
to price life insurance contracts embedding American options. We focus on equity-linked
contracts with surrender options and terminal guarantees on benefits payable upon death,
survival and surrender. The framework allows for randomness in mortality as well as
stochastic volatility and jumps in financial risk factors. We provide numerical experiments
demonstrating the performance of the algorithm in the context of multiple risk factors and
exercise dates.
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1. Introduction

The main characteristic of life insurance contracts is to provide benefits contingent on survival or death of individuals.
While the provision of protection against the risk of death is certainly important, the savings component plays a crucial
role in many life policies. In the last decades, the competition with alternative investment vehicles offered by the financial
industry has generated substantial innovation in the design of life products and in the range of benefits provided. In particu-
lar, equity-linked policies have becomemore and more popular, offering policyholders exposure to financial indices as well
as different ways to consolidate investment performance over time. While the introduction of more appealing (and exotic)
guarantees has ensured a satisfactory take-up of insurance products, at the same time the management of life policies has
become increasingly complex, requiring the proper understanding and analysis of integrated financial and insurance risks.

One of the most common options available in policies with a considerable savings component1 is the possibility to
exit (surrender) the contract before maturity and to receive a lump sum (surrender value) reflecting the insured’s past
contributions to the policy,minus any costs incurred by the company and possibly some charges. The idea is to boost sales by
ensuring that the policyholder does not perceive insurance securities as an illiquid investment. On the other hand, surrenders
are not welcomed by insurers, as they imply a reduction in the assets under management and may generate imbalances in
the exposure to the mortality risk of remaining insureds (selective surrenders). An additional layer of risk is introduced
when surrender values allow for minimum guarantees. The objective of the present paper is to study products embedding
this type of option and guarantees.

From the point of view of asset pricing theory, surrender options are nothing else than American claims with a knock-
out feature represented by the occurrence of death. In other words, a surrender option is an American put option written
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1 An exception is represented by immediate annuities, because of high antiselection risk.
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on the residual value of the policy and canceled upon death, with a strike price given by the surrender value. A number
of approaches to American option pricing have been proposed in the literature (see [13,15, and references therein]). The
difficulty with insurance contracts is that realistic models pose formidable computational tasks for two main reasons. First,
insurance contracts are usually very long term and offer great flexibility in early termination of the contract, meaning that
we are faced with multiple exercise dates. Second, a realistic model should take into account at least the key drivers of
rational surrender decisions, which in the equity-linked case may be quite involved. Incorporating irrational or exogenous
factors as well as parameter uncertainty would make the task even more daunting.

Empirical evidence suggests that surrenders are driven by several factors including distribution channels, misselling,
financial market conditions and deterioration/improvement of policyholders’ health. In this paper, we focus on financial
and demographic drivers, namely interest rate risk, investment performance and mortality risk. High interest rates as well
as poor investment performance are usually associated with policyholders exiting the contract to enter more rewarding
investment opportunities. This generates outflows that reduce assets under management and increase per-policy costs
associated with insurance business. With regard to demographic factors, policyholders surrender policies when they
perceive there is no need for the protection offered by the policy. On the other hand, policyholders do not surrender
policies when protection is perceived valuable, even if they should or if the level of mortality protection is marginal in
the overall design of the policy. This generates antiselection risk (selective surrenders) and can lead to dramatic changes in
the demographic profile of an insurance portfolio. Mortality risk and surrender risk compound when sums at risk (death
benefits minus reserves) are large. This aspect may be relevant even for equity-linked products, for example when death
benefits are nominally fixed or provide substantial minimum guarantees. Irrespective of the specific risk factor considered,
it is usually difficult to analyze all these risks simultaneously, as some of the benefits may be linked, others nominally fixed,
and all of them may have substantial minimum guarantees.

Several simulation methods for pricing American options are available (see [15]), but they are usually not very effective
in the presence of multiple state variables and several exercise dates. Since our objective is to take into account the risk
factors described above and to allow for a range of real-world markets features (stochastic volatility, jumps in asset prices,
randomness in mortality rates, etc.), we focus on the powerful Least Squares Monte Carlo (LSMC) approach, which was
proposed in [11,18,24] in the context of purely financial American claims.

Surrender options have attracted the interest of many researchers. Starting with the seminal papers in [1,16,17], a num-
ber of studies have followed. Due to the high dimensionality of the problem, the vast majority of papers provide results in
stylized situations. Whenmoving to more realistic models, contributions become scarce. As an example, the introduction of
mortality risk is carried out in only a few papers. For instance, we mention [3–5] in the context of binomial trees, [19,22] in
the context of free boundary problems, [2,6] in the context of Monte Carlo simulation and the LSMC approach. We note that
previous models typically use deterministic (or even constant) mortality rates. This is usually justified by adopting diver-
sification arguments and invoking the law of large numbers for large enough insurance portfolios. However, the surrender
decision is made by individual policyholders, who are faced with their own time of death only. This alone would justify the
analysis of randomness in mortality rates. The issues of selective withdrawals and possibly large sums at risk make the case
for random mortality even more compelling. Finally, we note that the application of the LSMC approach in the context of
demographic risk requires care. This motivated the work in [6], which is further developed and extended in this paper.

The paper is structured as follows. Section 2 is devoted to the description of our valuation framework. In particular, we
introduce the life insurance contracts of interest, define the dynamics of financial and demographic risk factors and finally
present the valuation problem. In Section 3, we briefly describe the LSMCmethodology and present our valuation algorithm.
Section 4 offers some numerical results, while Section 5 concludes.

2. Valuation of equity linked endowments

2.1. The contract

Consider an individual aged x at time 0 when entering an endowment contract, i.e. a life policy with maturity T > 0
providing a lump sum benefit F s

T at time T upon survival or a benefit F d
t at time t ∈ (0, T ] in case t coincides with the

individual’s time of death, denoted by τ . If F s
T = 0 the contract reduces to a term assurance policy, if F d

τ = 0 the contract
reduces to a pure endowment. We will focus in particular on equity-linked products, meaning that (some of) the benefits
are linked to the performance of a reference fund. Besides providing death and survival benefits, these policies may allow
policyholders to exit the contract beforematurity. If no payment is provided uponwithdrawal, the policy is said to be lapsed.
If instead a lump sum Fw

t is paid upon withdrawal at time t , the policy is said to be surrendered against provision of the
surrender value Fw

t . Endowments can usually be surrendered, given the substantial savings component of the contract. On the
other hand, termassurances are usually lapsed, since premiums and reserves are small andmeant to provide pure protection.

Let us denote by S .
= (St)t≥0 the market value of the reference fund to which policy payments are linked. Benefits

provided by equity-linked contracts typically embed minimum guarantees. A common example is represented by terminal
guarantees of the form

F e
t = F0 max

(
St
S0

, exp(κet)
)

, (2.1)
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where e = s, d,w, depending on whether we consider survival, death or surrender benefits. In the above expression F0
represents the initial value of the reference fund,which is financed by the policyholder’s initial premium (net of any charges),
while κe represents the minimum interest guaranteed on the different benefit payments.

In this paper, we limit our attention to the case of single premium policies. We refer the reader to [4] for considerations
on multiple premium payments.

In expression (2.1) benefits depend only on the value of the reference fund at the relevant date. Some contracts are
instead characterized by path-dependent guarantees. An example is represented by ‘cliquet’ guarantees, where guaranteed
amounts are re-set regularly, possibly taking into account the performance of a reference fund at several past dates. For
instance, we may consider payoffs defined by

F e
t = F0

btc∏
u=1

max

(
1 +

η

u ∧ y

u∧y∑
j=1

(
Su−j+1

Su−j
− 1

)
, exp(κe)

)
, (2.2)

meaning that the policyholder is awarded a proportion η ∈ (0, 1] of the fund’s performance smoothed over the last y years,
subject to a minimum guarantee κe. Guarantees such as (2.2) are very common in participating contracts, i.e. policies where
S represents the insurance company’s investment portfolio rather than some external reference fund.

In this paper we focus on benefits of the type given in (2.1), although the analysis of path-dependent surrender options
would require minor modifications.

Denote now by θ the time at which the policyholder decides to terminate the contract. Early termination can clearly
occur if the individual is still alive and the policy is still in force. This poses no problem if θ < τ ∧ T , while we disregard
surrender whenever θ ≥ τ ∧ T . The time θ is in general a random variable whose law depends on the evolution of market
and demographic conditions, which at any given time make the surrender value more or less attractive with respect to
staying in the contract. We call therefore θ an exercise policy.

For given θ and fixed time t , we define the cumulated benefits paid by the contract up to that time by

Gt(θ)
.
= F s

T 1τ>T ,T≤t∧θ + F d
τ 1τ≤t∧T∧θ + Fw

θ 1θ≤t, θ<τ∧T , (2.3)

where the summands on the right hand side are contingent on the occurrence of three mutually exclusive events. Our
objective is to introduce an arbitrage-free securitiesmarket and determine a surrender policy θ∗ that is optimal for a rational
policyholder.

2.2. Valuation framework

We take as given (Ω, F , F, Q), a filtered probability space supporting all sources of financial and demographic
randomness. The filtration F .

= (Ft)t≥0 (satisfying the usual conditions of right continuity and completeness, and such
that F0 = {∅, Ω}) represents the flow of information available to the insurer and the policyholder. It is natural to assume
that both τ and θ are F-stopping times, meaning that at any time t the information carried by Ft allows us to tell whether
death or surrender have occurred or not by time t . The probability Q is a risk-neutral probability measure, meaning that
under Q the market value of any security is given by the expected value of its cumulated dividends deflated at the risk-
free rate. Under the assumption of frictionless securities markets, the existence of such Q is essentially guaranteed by the
absence of arbitrage, a minimal requirement avoiding the availability of riskless gains at zero cost (see [13] for example).

Before introducing a model for the relevant risk factors, we give more structure to the information flow F. We introduce
the death indicator processNt

.
= 1τ≤t , which equals zero as long as the individual is alive and jumps to one at death. Denoting

by H the filtration generated by (Nt)t≥0, we assume that F .
= G∨H for some filtration G not including H and such that G0 is

trivial. The intuition is thatG carries all relevant information about demographic and financial factors (in particular, security
prices and likelihood of death), but does not yield knowledge of occurrence of τ . A possible way of defining the arrival of
death is by setting

τ
.
= inf {t : Γt > ξ} , (2.4)

with (Γt)t≥0 a G-adapted nondecreasing process and ξ a random variable independent of G∞ and exponentially distributed
with parameter one. If Γ can be expressed as Γt =

∫ t
0 µsds for all t and some G-predictable nonnegative process µ, then

construction (2.4) is equivalent to the so called conditionally Poisson setup. This means that, conditionally on G∞ and under
the measure Q, τ is the first jump time of a Poisson inhomogeneous process with intensity (µt)t≥0. This setup is appealing
because it generalizes the usual formulas employed in demography, insurance or economics to a stochastic framework
(e.g., [9]). The setting also ensures that any G-martingale is an F-martingale,2 yields considerable simplifications in pricing
formulas, as will be explained in Section 2.4.

2 To see this, note that construction (2.4) implies Q(τ > t|G∞) = Q(τ > t|Gt ) = exp(−Γt ). In other words, for each t ≥ 0,Ht andG∞ are conditionally
independent, given Gt . For any G-martingale (Ms)s≥0 and T ≥ t ≥ 0 we can then write EQ

[MT |Ft ] = EQ
[MT |Ft ] = Mt .
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2.3. Financial and demographic risk factors

As explained in the introduction, empirical evidence on insurance markets suggests that surrender decisions are driven
by several factors including distribution channels, misselling, financialmarket conditions and deterioration or improvement
of policyholders’ health. Here, we focus on financial and demographic drivers of surrender decisions, in particular on interest
rate risk, stock market performance and mortality risk.

We model the term structure of interest rates by a standard Cox–Ingersoll–Ross model, a square-root process featuring
mean reverting and nonnegative rates. Its dynamics is given by

drt = ζr(δr − rt)dt + σr
√
rtdZ r

t ,

with ζr , δr , σr > 0 and Z r a standard Brownianmotion. For themarket value of the reference fund,we consider the stochastic
exponential S = exp(Y ), where Y evolves according to

dYt =

(
rt −

1
2
Kt − λYµY

)
dt +

√
Kt

(
ρSKdZK

t + ρSrdZ r
t +

√
1 − ρ2

SK − ρ2
SrdZ

S
t

)
+ dJYt .

The component JY is a compound Poisson process with jump arrival rate λY > 0 and lognormally distributed jump sizes
with mean µY and standard deviation σY > 0. The correlation coefficients ρSK and ρSr satisfy ρ2

SK + ρ2
Sr ≤ 1. The factor K

generates stochastic volatility (indeed, K is the square of the instantaneous non-jump volatility of S) with mean-reverting
dynamics

dKt = ζK (δK − Kt)dt + σK

√
KtdZK

t ,

where ζK , δK , σK > 0. We take the process (Z r , Z S, ZK ) to be a three dimensional Brownian motion independent of the
pure jump process JY . The above formulation is essentially the one studied by [8], who show that it is quite effective in
reproducing the price behavior of equity derivatives.

For the intensity of mortality, we take the left continuous version of the process

dµt = ζµ(m(t) − µt)dt + σµ

√
µtdZ

µ
t + dJµt , (2.5)

where m(·), ζµ, σµ > 0, Zµ is a standard Brownian motion and Jµ is a compound Poisson process independent of Zµ, with
jump arrival rate λµ ≥ 0 and exponential jumps of mean γµ > 0. Finally, the couple (Zµ, Jµ) is assumed to be independent
of (Z r , Z S, ZK , JY ), so that financial and demographic factors are independent.

The choice of risk factors outlined in this section is aimed at providing a realistic setup to assess the performance of the
LSMC methodology. Alternative dynamics could be analyzed, but we think that the current setup represents a valid test,
given the number of factors and the presence of multiple exercise dates. To conclude, we set X = (N, µ, r, Y , K) and denote
by X̂ = (µ, r, Y , K) the ‘reduced’ state variable process. We then take F to be the filtration generated by X and G the one
generated by X̂ . We observe that both X and X̂ are affine processes. As a result, when implementing the algorithm, we have
at least a benchmark for the case of European guarantees, since they can be readily priced in the affine setting (see [10]).

2.4. Valuation

Our financial market is characterized by the investment fund S introduced in the previous section and a money market
account yielding the instantaneous risk-free rate (rt)t≥0. For each t ≥ 0, Bt = exp(

∫ t
0 rsds) formalizes the proceeds from

investing one unit of money at time 0 in risk-free deposits and rolling over the proceeds until time t . Consider now the
insurance contract introduced in Section 2.1, where we assume that the process F e is G-predictable for e = s, d,w: this
always holds when S is defined as in Section 2.3 and we consider the left-continuous versions of (2.1) or (2.2). In the present
framework and consistentlywith the classical treatment of American options, it is natural to assume that any exercise policy
θ is an F-stopping time, meaning that the surrender decision is based on the entire information available over time.

Suppose that the contract is terminated at the random time θ : under no arbitrage, the time-t value Vt(θ) of the contract
is then given by the usual risk-neutral formula

Vt(θ) = Bt EQ
[∫

∞

t
B−1
u dGu(θ)

∣∣∣∣Ft

]
, (2.6)

where Gu(θ) is given by (2.3) and represents the cumulated benefits provided by the contract up to time u ≥ t if the exercise
policy θ is adopted.

Exploiting the structure of the filtration F, in [21, p. 370] we know that every F-stopping time θ coincides with a G-
stopping time θ̄ up to time τ . Assuming that τ coincides with the first jump of a conditionally Poisson process with intensity
µ, expression (2.6) reduces to (e.g., [14])

Vt(θ) = 1τ>t B̂t EQ
[∫

∞

t
B̂−1
u d̂Gu(θ̄)

∣∣∣∣Gt

]
, (2.7)
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with B̂. = exp(
∫ .

0(rs + µs)ds) and

Ĝu(θ) = F s
T 1T≤u∧θ +

∫ u

0
F d
s µs 1s≤T∧θ ds + Fw

θ 1θ≤u,θ<T .

As a result, everything works as in the absence of the random time of death, provided we replace both the money market
account and the death benefit with their ‘mortality risk-adjusted counterparts’ (̂Bs)s≥t and (F d

s µs)s≥t .
Let us now focus on the pricing of the contract at inception. Denoting by TF (TG) the set of finite valued F-stopping times

(G-stopping times), the initial price is given by the solution of the optimal stopping problem

V ∗

0 = V0(θ
∗) = sup

θ∈TF

V0(θ) = sup
θ̄∈TG

V0(θ̄) = sup
θ̄∈TG,θ̄≤τ

V0(θ̄), (2.8)

where the last two equalities follow again by [21, p. 370] and the fact that V0(θ̄) = V0(θ̄ ∧ τ). Since θ and θ̄ coincide up
to τ , as seen from contract inception, from now on we simply use the notation θ when dealing with (2.8). A solution θ∗ to
problem (2.8) is called a rational exercise policy, in the sense that itmaximizes the initial arbitrage-free value of the resulting
claim. While (2.8) can be justified by replication arguments when markets are complete, the case of incomplete markets is
more delicate (e.g., [13]). This is exactly our situation, even if we disregard mortality risk, because our financial market is
incomplete and perfect replication is in general not possible. We do not expand on this here and simply employ (2.8) under
our given fixed risk-neutral probability measure Q.

While expression (2.7) is extremely appealing from the point of view of interpretation, it can be computationally more
intensive than (2.6), as explained in [7]. This is why for the pricing algorithm described in the next section we use the last
equality in (2.8), but work directly with expression (2.6).

2.5. Extension to exogenous surrender factors

Themodel described so far can be extended to include exogenous surrender decisions, where by exogenouswemean that
the decision to withdraw from the contract may be triggered by something different from continuation values falling below
surrender benefits. A natural way of capturing this possibility is to introduce another stopping time ν with G-predictable
intensity (φt)t≥0, wherewe emphasize thatG could be generated by non-financial and non-demographic factors. Inspection
of expression (2.8) shows that the optimal stopping problem can bemodified by simply replacing τ with τ ∧ν. Since τ and ν
admit intensitiesµ and φ, the stopping time τ ∧ν admits the intensityµ+φ. If τ ∧ν, rather than τ , is assumed to satisfy the
conditions described in Section 2.2, then the valuation framework can be applied with no substantial changes, apart from
replacing µ with µ+φ. Similarly, the algorithm described in the next section can be used with no substantial modification.

3. The algorithm

The LSMC approach is based on the joint use of Monte Carlo simulation and Least Squares regression in Markovian
environments. The method first requires discretization of the time dimension, in order to replace the original optimal
stopping problem (2.8) with its discretized version along a time grid T. Denoting by n the number of periods in which
we divide the interval [0, T ] and setting ti =

i
nT for i = 0, . . . , n, we obtain a time grid T = {t0, . . . , tn} and a discretized

stopping problem

sup
θ∈TF,T

EQ [gθ ] , (3.1)

with TF,T denoting the family of T-valued F-stopping times and

gt
.
=

∫ t

0
B−1
0 dGs(θ),

where Gs(θ) is defined by (2.3). As is commonwhen dealing with American options, one can introduce the Snell envelope of
(gt)t≥0 and apply the dynamic programmingprinciple to develop a backward procedure involving a comparison, at each time
step, between the payoff provided by the surrender option and the continuation value (i.e., the reward from not exercising).
The LSMC method looks at such procedure in terms of optimal stopping times, in the sense that an optimal policy θ∗

= θ∗

0
is computed according to the backward algorithm{

θ∗

n = tn = T
θ∗

j = tj1gtj>Uj + θ∗

j+11gtj≤Uj for j = n − 1, . . . , 0,

where Uj
.
= EQ

[gθ∗
j+1

|Ftj ].
Since we work in a Markovian environment, we can write Uj = EQ

[gθ∗
j+1

|Xtj ] = u(tj, Xtj), for some Borel functions
u(t, ·), t ∈ T. A second approximation involves replacing each u(tj, Xtj) with the orthogonal projection from L2(Ω) onto the
H-dimensional vector space generated by a finite set of functions taken from a suitable basis {e1, . . . , eH , . . .}. For fixed H
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and each j, we define such projection by ũ(tj, Xtj)
.
= β∗

j · e(Xtj), where e(·) .
= (e1(·), . . . , eH(·))′ and β∗

j
.
= (β∗1

j , . . . , β∗H
j )′

is the optimal vector obtained by least squares regression. In particular, we simulate the state variable process X over the
time grid T (or over a finer grid) and then set

β∗

j = arg min
βj∈RH

M∑
m=1

(
gm
θ∗
j+1

− βj · e(Xm
tj )
)2

, (3.2)

where M denotes the number of simulations and Xm
tj , g

m
tj denote the simulated values of Xtj and gtj in the m-th simulation,

for m = 1, . . . ,M . Convergence results for the LSMC algorithm are provided in [12], while numerical results for several
choices of basis functions are reported in [20,23]. We now show how to apply the LSMC method to the setup of Section 2.

3.1. Algorithm

Assume that M simulated paths have been generated for the reduced state variables process X̂ and a unit exponential
random variable. For each simulation m (m = 1, . . . ,M), we let ξm denote the simulated value of the exponential random
variable and by (µm

t )t∈T a simulated path of the stochastic intensity given in (2.5). According to (2.4), the simulated time of
death is obtained by setting

τm
= min{t ∈ T : Γ m

t > ξm
},

where Γ m
t represents the (approximated) value of the integral

∫ t
0 µm

s ds. If the insured survives at maturity T (the set above
is empty), we set τm

= +∞ by convention. Of course, here and in the sequel, one can simulate random processes over
a grid finer than T to improve the approximations. For each t ∈ T such that t ≤ τm, we denote by rmt , Km

t and Smt the
simulated values of the short rate, stochastic volatility and reference fund. We can then compute the simulated discount
factors, denoted by vmt,s

.
= Bm

t (Bm
s )−1 (with t < s and t, s ∈ T) and the simulated benefits payable on death (F d,m

t ), survival
(F s,m

t ) and surrender (Fw,m
t ). The valuation algorithm requires execution of the following steps:

step 1. (Initialization)
Form = 1, . . . ,M , if τm

≤ T set θ∗,m
= τm and Pm

θ∗,m = F d,m
θ∗,m , otherwise set θ∗,m

= T and Pm
θ∗,m = F s,m

θ∗,m .
step 2. (Backward iteration)

For j = n − 1, n − 2, . . . , 1:
(1) (Continuation values) Let Ij = {1 ≤ m ≤ M: τm > tj} and, for eachm ∈ Ij, set Cm

tj = Pm
θ∗,m vmtj,θ∗,m

(2) (Regression) Regress the continuation values Ctj = (Cm
tj )m∈Ij against (e(Xm

tj ))m∈Ij to obtain C̃m
tj = β∗

j · e(Xm
tj ) for each

m ∈ Ij. If F
w,m
tj > C̃m

tj then set θ∗,m
= tj and Pm

tj = Fw,m
tj .

step 3. (Initial value)
Compute the single premium of the contract by

V ∗

0 =
1
M

M∑
m=1

Pm
θ∗,m vm0,θ∗,m .

The introduction of exogenous factors in the surrender decision, as outlined in Section 2.5, can be done as follows. We
essentially need to focus on ι

.
= (τ ∧ ν) rather than τ , and replace µ with µ + φ. For example, the simulated realization ιm

can be computed by using:

ιm = min
{
t ∈ T :

∫ t

0
(µm

s + φm
s )ds > ξm

}
. (3.3)

For the initialization in Step 1, we need of course to distinguish between death and surrender in case ιm ≤ T , unless death
and surrender benefits coincide. This can be done by drawing a Bernoulli for the conditional death event, with probability

Q(τ = ι|ι = ιm) =

EQ
[
e−

∫ ιm
0 (µs+φs)dsµιm

]
EQ
[
e−

∫ ιm
0 (µs+φs)ds(µιm + φιm)

] , (3.4)

wherewe note that both numerator and denominator can be computed in closed form in the affine setting, or approximated
numerically using the already available paths µm and φm. Alternatively, one could draw two unit exponentials ξm

τ and ξm
ν

and simulate τ and ν individually instead of using (3.3) and (3.4).
The simplest way to obtain the initial value of the surrender option (rather than the entire contract) is to compute the

initial value V0 of the European version of the contract, and then recover the surrender option price from the difference
V ∗

0 − V0. When V0 is not available in closed form, we can compute it by executing only Step 1 and Step 3 of our algorithm.
The next section offers numerical results on the implementation of the above procedure.

Please cite this article in press as: A.R. Bacinello, et al., Pricing life insurance contracts with early exercise features, Journal of Computational and Applied
Mathematics (2008), doi:10.1016/j.cam.2008.05.036



ARTICLE  IN  PRESS
A.R. Bacinello et al. / Journal of Computational and Applied Mathematics ( ) – 7

Fig. 1. Solid line: sample path of µ. Dashed line: Weibull intensitym.

Table 1
Parameters used in the simulation

r K S µ

BDS = 1.00 r0 = 0.05 K0 = 0.04 S0 = 100.00 µ0 = m(0)
FDS = 0.01 ζr = 0.60 ζK = 1.50 ρSK = −0.70 ζµ = 0.50

δr = 0.05 δK = 0.04 ρSr = 0.00 σµ = 0.03
σr = 0.03 σK = 0.40 λY = 0.50 λµ = 0.10

µY = 0.00 γµ = 0.01
σY = 0.07 c1 = 83.70

c2 = 8.30
x = 40

Table 2
Value of the contract

κ (%) κw (%)
0 2 4

113.556 (0.031) 115.381 (0.033) 123.087 (0.033) 0
117.223 (0.031) 117.551 (0.031) 123.291 (0.033) 2
123.687 (0.031) 123.727 (0.031) 124.507 (0.032) 4
137.130 (0.031) 137.327 (0.030) 137.710 (0.030) 6

V0 107.185 (0.047) 112.675 (0.045) 122.901 (0.041)

4. Numerical examples

We consider the single premium equity-linked endowment described in Section 2.1. The reference insured is amale aged
x = 40 at time 0. The contract hasmaturity T = 15 years and provides terminal guarantees on survival, death and surrender
benefits, as defined in (2.1). We apply the valuation algorithm with polynomial basis functions of order 3, yielding H = 34.
To replace the American claim with a Bermudan claim, we discretize the time dimension by using a time step (in years)
which we call Backward Discretization Step (BDS). To simulate the reduced state variable process X̂ , we employ a time grid
finer than T and call Forward Discretization Step (FDS) the length in years of each time interval in the finer grid. All the
relevant parameters used for our simulations are reported in Table 1.

With regard to mortality dynamics, we note that the function m in (2.5) is obtained by fitting a Weibull intensity, given
by m(t) = c−c2

1 c2(x + t)c2−1 (with c1 > 0, c2 > 1), to the survival probabilities implied by table SIM2001, commonly used
in the Italian endowments market. A sample path of µ is reproduced in Fig. 1.

We have considered different values for the minimum rates guaranteed upon both death and survival (κ .
= κd = κs),

as well for the surrender guarantee (κw). Of course, the price of the European contract does not depend on κw. The case of
kw ≤ k is what one encounters in practice, for otherwise contract design would favor withdrawals. We consider the case of
kw > k for numerical purposes only. We ran 19000 simulations with 140 different seeds to obtain the results reported in
Tables 2 and 3. The last row of Table 2 reports the value of the European contract (V0), while the other rows report the values
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Fig. 2. Value of the American contract.

Table 3
Surrender option value

κ (%) κw (%)
0 2 4

6.372 2.706 0.186 0
10.038 4.876 0.390 2
16.503 11.052 1.606 4
29.945 24.652 14.809 6

Table 4
Surrender option values and percentage changes of the higher mortality model with respect to the base case of Table 3

κ (%) κw (%)
0 2 4

6.402 (+0.47%) 2.950 (+9.02%) 0.273 (+46.77%) 0
9.884 (−1.53%) 4.994 (+2.42%) 0.407 (+4.35%) 2
15.968 (−3.24%) 10.856 (−1.77%) 1.639 (+2.08%) 4
27.980 (−6.56%) 23.105 (−6.27%) 14.148 (−4.46%) 6

of the American contract with standard errors in parenthesis. Finally, Table 3 reports the values for the surrender option,
while Fig. 2 depicts the value of the American contract against both κ and κw.

As expected, the value of the European contract is increasing with the minimum interest rate guaranteed upon death
or survival, κ . The value of the American contract is increasing with both κ and the minimum interest rate guaranteed
upon surrender, κw. The value of the surrender option instead increases with κw and decreases with κ . The option value is
negligiblewhen κ is large relative to κw, because stepping out of the contract is then less attractive. [7] propose an alternative
algorithm that can be used as a benchmark for our case and indeed confirms the validity of our results.

To understand the impact of mortality on our results, we compute surrender option values for amortalitymodel yielding
a 9.67% decrease in expected lifetime (from 38.79 to 35.04 years). This is obtained by raising instantaneous volatility to
σµ = 0.10 and mean jump size to γµ = 0.04. We report the results in Table 4, together with the percentage changes with
respect to the base case of Table 3. We see that surrender options becomemore valuable in the higher mortality case as long
as κ ≥ κw. To understandwhy, we note that while highermortality involves a lower probability of receiving payments upon
survival (i.e., surrender andmaturity benefits), at the same time it can be shown to increase the overall value of our standard
endowment contracts. As a result, there are two effects at play when considering the optimal stopping problem (3.1): on
the one hand, higher mortality increases the argument of the supremum, on the other hand, it reduces the probability of
being able to exercise before death. When κ < κw, surrender guarantees are more valuable relative to death and survival
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guarantees, but the lower probability of exercising before death generates a decrease in option values.When instead κ ≥ κw,
surrender benefits are less valuable relative to death and survival benefits, but the increase in value for the stopped contract
(induced by higher mortality) makes option values increase with respect to the base case.

5. Conclusions

In this paper we have described an algorithm for the valuation of a life insurance contract embedding surrender
options based on the Least Squares Monte Carlo method. The approach is effective in that we can avoid imposing rigid
simplifying assumptions on the valuationmodel.We have then shownhow to implement themodel in the context of equity-
linked endowment contracts with minimum guarantees on death, surrender and survival benefits. We have considered
different sources of uncertainty, such as random interest rates, stochastic volatility and jumps in asset prices, as well as
randommortality rates. Finally,wehave performednumerical experiments demonstrating the performance of the approach.
Objectives for future research are the detailed analysis of the implications of market incompleteness and the introduction
of policyholders’ subjectivity in the surrender optimization problem.
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