

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI AGRARIA

The sensitivity of trade flows to trade barriers

Valentina Raimondi and Alessandro Olper

Research Objective

- To provide estimates of the elasticity of substitution on 18 food sectors using four estimation techniques:
 - OLS
 - Heckman-two stage procedure
 - Eaton-Tamura Tobit model
 - Poisson Pseudo Maximum-Likelihood

 To give dimension to trade flow sensitivity, simulating the effect of a full trade liberalization scenario.

Main Finding

- Strong variation in the elasticity of substitution across procedures and products
 - the estimated values across product and methods range from 1.5 to 14, with a median value of 3.48
 - elasticity Rank across methods: $\sigma_{\text{PPML}} > \sigma_{\text{HEKIT}} > \sigma_{\text{OLS}}$
- Trade liberalization strongly increases food exports
 - especially from emerging and developing countries.

Outline

- Motivation and previous evidence
- Gravity model, elasticity and simulation
- Estimation methods and Data
- Empirical results
- Simulation results
- Conclusions

Motivation and Previous Evidence

- Renewed interest in the use of gravity equations to explain bilateral trade flows
 - Theoretical foundation (Anderson and vanWincoop, 2004)
 - Identification of import substitution elasticity (Lai and Zhu, 2004; Lai and Trefler, 2004; Bergstrand et al. 2007)
 - Estimate of gains from trade liberalization (Lai and Zhu, 2004; Lai and Trefler, 2004; Ghazalian et al., 2007)

Some problems

- Zero in the trade matrix (Helpman et al. 2008)
- Controversy over the correct estimation method (Schaefer et al. 2008, Santos Silva and Tenreyro 2008)

Gravity Model and Substitution Elasticity

- Standard CES monopolistic competition trade model (Krugman, 1980; Feenstra, 2002)
 - theoretical importance in the trade literature
 - clear-cut empirical predictions about relationship between trade costs and bilateral trade flows.
- We Follow Lai and Zhu (2004), Lai and Trefler (2004)
 - They add a rich set of international asymmetries and differences in production costs to identify the elasticiy of substitution

Gravity Model and Substitution Elasticity

- The bilateral trade equation from j to $i(M_{ij})$ is
- - $-\lambda_j$ and χ_i are the fixed effects capturing the unobserved number of varieties and the price term of j (exporter), and the expenditure and the unobserved price term of i (importer): equivalent to MTR index of Anderson and vanWincoop
 - In our specific (single product) setting fixed effects also capture acrosscountries differences in production costs
 - $-D_{ij}$ is the transport costs (proxy by distance between j and i)
 - $-\tau_{ij}$ is the ad-valorem bilateral tariff
- Then the elasticiy of substitution σ is:
 - $\beta_2 = (1 \sigma) \rightarrow \sigma = 1 \beta_2$

Gravity Model and Simulation

- The simulation is based on a trade costs shock (tariff removal)
- This shock induces two effects:
 - A direct trade impact through the trade costs function.
 - An indirect trade impact through the multilateral resistance terms.

• Our simulation is based on a fixed effect model, so MTR are not identified. Thus we are forced to measure only the direct (first order) effect.

• Formally, the first order condition is:

$$\frac{d\ln M_{ij}}{d\ln \tau_{ij}} = \beta_2 + \frac{d\Pi_j}{d\ln \tau_{ij}} + \frac{dP_i}{d\ln \tau_{ij}}$$

Outline

- Motivation and previous evidence
- Gravity model, elasticity and simulation
- Estimation methods and Data
- Empirical results
- Simulation results
- Conclusions

Estimation Methods

- •The OLS estimation equation (for $M_{ij}>0$) represents our benchmark
 - But when taking logs, 'zero' observations are dropped from the sample, because log(0) is undefined.
 - at disaggregated level, as in this paper, the issue is severe: i.e. we loose from 60 to 77% of the information
- Three main approaches recently proposed in literature
 - Heckman's sample selection model (Helpman et al. 2008)
 - The Tobit model proposed by Eaton-Tamura (1994) (Martin and Pham, 2008)
 - The Poisson Model (Santos Silva and Tenreyro, 2006)

Sample and Data

- 193 exporters, 99 importers
- 18 food industry sectors (ISIC rev.3 4-digit)
 - Trade: UN Comtrade database (average across 2002-03-04 years)
 - Distance, common language, common border, colonial relationship and common colonizer: CEPII
 - Bilateral Tariff: MAcMap (aggregated at the ISIC 4-digit level using import weights based on the reference group method)

Outline

- Motivation and previous evidence
- Gravity model, elasticity and simulation
- Estimation methods and Data
- Empirical results
- Simulation results
- Conclusions

Empirical Results at ISIC 4-digit Level

 Tariff coefficients of gravity regression estimated for each 4-digit ISIC sector separately

	OLS	Heckman	E-T Tobit	PPML
1511 Meat	-2,050	-1,424	-0,016	-1,083
1512 Fish	-8,190	-6,128	-2,266	-11,540
1513 Fruit Products	-3,234	-2,132	-1,420	-7,695
1514 Vegetable and Animal Oil	-3,766	-3,129	-1,614	-1,007
1520 Dairy Products	-4,011	-2,933	-1,357	-2,989
1531 Grain Mill Products	-2,700	-2,382	-1,332	-3,590
1532 Starch Products	-3,440	-2,855	-1,078	-2,409
1533 Animal Feed	-3,758	-2,068	0,219	-3,007
1541 Bakery Products	-4,187	-4,417	-4,655	-13,160
1542 Sugar	-0,790	-0,214	0,792	-2,313
1543 Cocoa and Chocolate Prod.	-6,633	-6,214	-5,527	-13,150
1544 Macaroni Noodles Couscous	-0,822	-0,507	-1,602	-5,886
1549 Other Food Products	-2,533	-2,131	-1,117	-7,707
1551 Spirits	-1,401	-1,077	0,434	-2,199
1552 Wines	-1,791	-1,448	-1,183	-8,448
1553 Malt	-3,916	-4,605	-5,485	-5,717
1554 Soft Drinks	-3,295	-3,034	-1,628	-5,113
1600 Tobacco	-1,539	-1,692	-2,426	-4,387

Empirical Results at ISIC 4-digit Level

- 15 of 18 products are statistically significant at the 5% level or more
- Pattern of estimated elasticity across all methods:
 - range from 1.5 to 14
 - mean equal to 4.32
 - median equal to 3.48
- Results broadly in line with previous evidence:
 - Hummels, 2001; Hertel et al 2004
 - Broda and Weinstein, 2006 mean and median 4.49 and 5.48

Empirical Results at ISIC 4-digit Level

	Estimation method						
Substitution elasticity	OLS	Heckman	E-T Tobit Heterosc.	PPML 14,16			
Maximum	9,19	7,21	6,53				
	-	Cocoa and	Cocoa and	Cocoa and			
	Fish	Chocolate	Chocolate	Chocolate			
		Prod.	Prod.	Prod.			
Minimum	2,40	2,08	2,08	3,83			
)		•			
	→ ´	,	Starch	Starch			
	Spirits	Spirits	Starch Products	Starch Products			
Mean	→ ´	,					
Mean Median	Spirits	Spirits	Products	Products			

Outline

- Motivation and previous evidence
- Gravity model, elasticity and simulation
- Estimation methods and Data
- Empirical results
- Simulation results
- Conclusions

Simulation: Which Estimation Strategy?

- Two formal tests:
- Mis-specification test (RESET test)
 - Heckman and the PPML procedure generally pass the RESET test
- Goodness-of-fit test (Theil's U-statistic)
 - OLS and the Heckman procedure give best forecast accuracy (Theil's Ustatistic)
- The RESET test and the U-statistic, taken together, suggest that the best estimation method for our purpose is the Heckman two-stage procedure

Simulation: Trade Liberalization

•The calculated tariff effects uses the estimates of the Heckman procedure for the 18 food sectors

We aggregated results across three exporting country groups to better evaluate the tariff liberalization effects:

- high income countries (World Bank)
- •developing countries (World Bank)
- •emerging countries (FTSE group classification)

Simulation: Trade Liberalization

	Exporter				
	High Income	Developing	Emerging	World	
Tariff effect (%)	10,4%	22,4%	30,9%	16,4%	
Trade value (million US\$)	242.324	24.648	89.903	356.875	

 Trade liberalization increases food industry world trade by 16% in the observed period

•Francois et al. (2005): 21% on agricultural and food trade using global computable general equilibrium model

•The effect of tariff removal is particularly important for the 'emerging' and 'developing' country groups

•'High income' countries grow by about 10% (their trade value represents more than two third of world trade)

 Anderson et al. (2006): 16% obtained for 'high income' export grow of, both, agricultural and food trade, using a dynamic computable general equilibrium model.

Simulation: Trade Liberalization at Product Level

	Product	High Income	Develo ping	Emerging	World
	Meat		el and Keeney (2)		13%
. 1	Fish		zalian et al. (2007): 10%	19%
	Fruit Products	5%	10%	21%	11%
	Veg. and Animal Oil	8%	7%	18%	13%
	Dairy Products	15%	85%	86%	22%
	Grain Mill Products	14%	51%	211%	86%
-	Starch Products	8%	41%	34%	13%
	Animal Feed	3%	27%	15%	5%
	Bakery Products	7%	20%	27%	10%
	Sugar	1%	7%	7%	5%
	Cocoa and Choc. Prod.	13%	45%	77%	26%
	Macaroni N.Couscous	2%	3%	5%	2%
	Other Food Products	8%	13%	21%	11%
	Spirits	4%	4%	4%	4%
	Wines	5%	19%	13%	6%
	Malt	71%	44%	41%	63%
	Soft Drinks	6%	18%	16%	8%
	Tobacco	18%	24%	135%	27%
	Processed Food	10%	22%	31%	16%

Simulation: Bilateral Trade Liberalization Effects

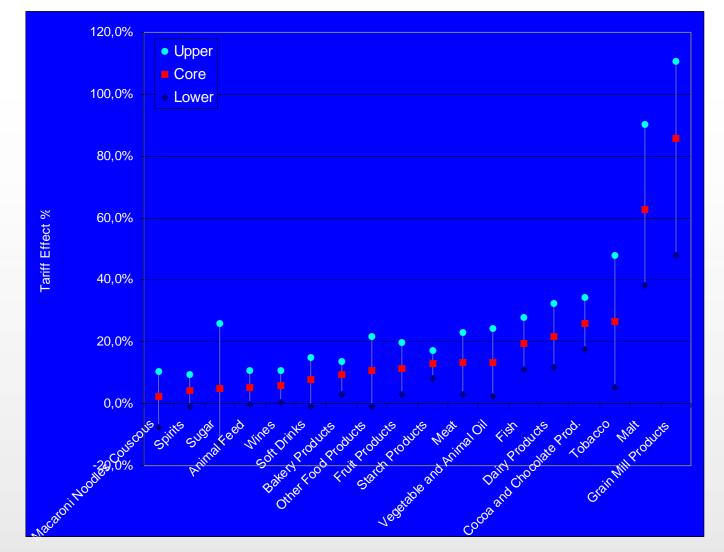
	Exporter			
Importer	High Income	Developing	Emerging	World
		Tariff effec	t (%)	
High Income	4,2%	18,2%	31,2%	10,5%
Developing	76,3%	31,3%	40,4%	54,9%
Emerging	31,8%	26,6%	24,7%	28,1%
World	10,4%	22,4%	30,9%	16,4%
	7	Frade value (mi	illion US\$)	
High Income	208.043	14.777	57.917	280.736
Developing	12.416	4.256	11.237	27.909
Emerging	21.865	5.615	20.750	48.230
World	242.324	24.648	89.903	356.875

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Agraria

Simulation Uncertainty

In this simulation we used estimated values, which are subject to sampling error and, thus, to uncertainty

 Thus we repeat the calculation twice more using: The core estimate + 2 standard deviations
The core estimate - 2 standard deviations


•This is a very approximate approach, but it produces a zone of results. (very preliminary...)

J**NIVERSITÀ DEGLI STUDI DI MILANO** ACOLTÀ DI AGRARIA

Simulation: the Zone of Results

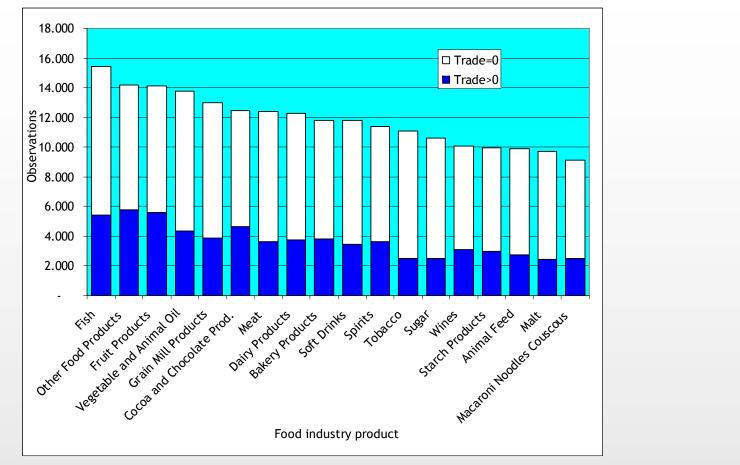
UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI AGRARIA

Conclusions

- Identification of import substitution elasticity using gravity model
 - the elasticities are very sensitive to the econometric technique.
 - Our substitution elasticity estimates are in the range of the most recent evidence confirming the validity of the gravity-like model to identify this important structural parameter.
- Heckman two step procedure perform well, especially when the estimated model is used for statistical forecast
- The simulation of a full trade liberalization scenario produces bilateral trade effects that are not so far from actual evidence based on more complex approaches.
 - thus more investments in econometric work to estimate the gains from trade liberalization could represent an interesting avenue for future researches

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI AGRARIA

Thank you



The sensitivity of trade flows to trade barriers

Valentina Raimondi and Alessandro Olper

Data

Zero trade flow in the 18 food industry sectors between 60%-77% of observations

UNIVERSITÀ DEGLI STUDI DI MILANO Facoltà di Agraria

Empirical Results on Pooled Data Level

	OLS	Probit	Heckman	E-T Tobit	PPML>0	
Log Distance	-1,361 (0,06)	-0,770 (0,02)	-1,604 (0,09)	-1,678 (0,03)	-1,065 (0,07)	
Log (1+ tariff)	-1,561 (0,24)	-0,526 (0,06)	-1,607 (0,22)	-1,550 (0,11)	-1,199 (0,44)	σ = 2.5 – 2.6 Lai and Trefler (2004): 2.53
Common Language	0,300 (0,15)	0,292 (0,05)		0,566 (0,07)	0,244 (0,13)	
Common Border	1,025 (0,13)	0,683 (0,09)	1,226 (0,14)	0,656 (0,08)	0,511 (0,14)	
Colonial Relationship	0,768 (0,17)	0,843 (0,08)		0,893 (0,08)	0,220 (0,15)	
Common Colonizer	1,615 (0,28)	1,102 (0,05)	2,082 (0,31)	2,624 (0,11)	1,604 (0,33)	

