
13. Two-Person Zero- and
Non-Zero-Sum

Games

Game theory deals with conflict of interest between (among) persons. A
game is a situation of conflict in which two or more persons interact by
choosing an admissible set of actions while knowing the reward associated
with each action. The persons who interact are called players, the set of
actions are called strategies and the rewards are called payoffs. Hence,
a game is a set of rules describing all the possible actions available to
each player in correspondence with the associated payoff. In a game, it
is assumed that each player will attempt to optimize his/her (expected)
payoff.

In this chapter, we will discuss two categories of games that involve
two players, player 1 and player 2. The first category includes zero-sum
games because the total payoff awarded the two players is equal to zero.
In other words, the “gain” of one player is equal to the “loss” of the other
player. This type of games assumes the structure of a dual pair of linear
programming problems. The second category includes games for which the
total payoff is not equal to zero and each player may have a positive pay-
off. This type of games requires the structure of a linear complementarity
problem in what is called a bimatrix game.

The notion of strategy is fondamental in game theory. A strategy is
the specification of all possible actions that a player can take for each move
of the other player. In general, a player has available a large number of
strategies. In this chapter we will assume that this number is finite. Player
1 and player 2 may have a different number of strategies. A set of strategies
describes all the alternative ways to play a game.

There are pure strategies and mixed strategies. Pure strategies occur
when chance does not influence the outcome of the game, that is, the out-
come of the game is entirely determined by the choices of the two players. In
the case of a game with pure strategies, aij indicates the payoff of the game
when player 1 chooses pure strategy i and player 2 chooses pure strategy
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j. Mixed strategies occur when chance influences the outcome of a game.
In this case it is necessary to talk about an expected outcome in the form
of an expected payoff.

Two-Person Zero-Sum Games

In a two-person zero-sum game, it is possible to arrange the payoffs cor-
responding to all the available finite strategies in a matrix A exhibiting m
rows and n columns

Player 1⇒ i





Player 2⇒ j

a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n

. . . . . . . . . . . . . . . . . .
ai1 ai2 . . . aij . . . ain

. . . . . . . . . . . . . . . . . .
am1 am2 . . . amj . . . amn




= A

We will say that player 1, or row player, or P1, has m strategies available
to him, while player 2, or column player, or P2, has n strategies available to
her. It is assumed that player 1 attempts to win as much as possible, that is,
he wishes to maximize his payoff while player 2 will attempt to minimize the
payoff of player 1. This assumption corresponds to the MaxiMin-MiniMax
principle. This principle may be described as follows. If P1 will choose the
i strategy, he will be assured of winning at least

min
j

aij (13.1)

regardless of the choice of P2. Therefore, the goal of player 1 will be to
choose a strategy that will maximize this amount, that is,

max
i

min
j

aij . (13.2)

Player 2 will act to limit the payoff of player 1. By choosing strategy
j, P2 will be assured that P1 will not gain more than

max
i

aij (13.3)

regardless of the choice of P1. Therefore - given that what P1’s gain cor-
responds to P2’s loss, according with the stipulation of the game - P2 will
choose a strategy to minimize her own loss, that is,

min
j

max
i

aij . (13.4)
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The following discussion borrows from Headly. There are several ways
to restate the behavior of the two players. The expression in (13.1) is a lower
bound, or a floor, on the payoff of player 1. Hence, expression (13.2) can
be interpreted as a maximization of the lower bound payoff. Analogously,
expression (13.3) may be interpreted as an upper bound, or ceiling, on the
amount lost by player 2. Hence, expression (13.4) may be regarded as the
minimization of that ceiling.

If there exists a payoff amount, say, ark that will correspond to

ark = max
i

min
j

aij = min
j

max
i

aij (13.5)

the game is said to have a saddle point. Clearly, in this case, the best
course of action for P1 will be to choose strategy r while P2 will optimize
her performance by choosing strategy k. As an example, and given the
following payoff matrix A

Player 1⇒ i





Player 2⇒ j

7 2 1
2 2 3
5 3 4
3 2 6





min
j

aij

1
2
3
2

max
i

aij

7 3 6

Hence,
a32 = max

i
min

j
aij = 3 = min

j
max

i
aij = 3

and this game has a saddle point. A remarkable property of pure strategy
games with a saddle point is that security measures of secrecy are not
necessary. In other words, any player can reveal his choice of strategy
while the other player will be unable to take advantage of this information.

On the contrary, if

max
i

min
j

aij < min
j

max
i

aij (13.6)

the game does not have a saddle point and the game is not stable. This
event is given by the following payoff matrix A

Player 1⇒ i





Player 2⇒ j

7 4 1
2 2 3
5 3 4
3 2 6




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min
j

aij

1
2
3
2

max
i

aij

7 4 6

Hence,
max

i
min

j
aij = 3 < min

j
max

i
aij = 4

and this game does not have a saddle point. Both players feel that they
could do better by choosing a different criterion of choosing their strategy.

In order to solve this problem, Von Neumann introduced the notion of
mixed strategy and proved the famous Minimax theorem. A mixed strategy
is a selection of pure strategies weighted by fixed probabilities. That is,
suppose that player 1 chooses pure strategy i with probability xi ≥ 0 andPm

i=1 xi = 1. This selection can be realized using an appropriate chance
device. Similarly, player 2 chooses pure strategy j with probability yj ≥ 0
and

Pn
j=1 yj = 1. This is a situation in which a player knows his/her

strategy only after using a chance device, such as a dice, for example. As a
consequence, we can only speak of an expected payoff for the game, stated as
E(x,y) = x0Ay =

P
ij xiaijyj , assuming that player 1 uses mixed strategy

x and player 2 uses mixed strategy y. The expected payoff E(x,y) is also
called tha value of the game.

The focus of the analysis, therefore, is shifted to the determination
of the probability vectors x and y. As before, player 1 is aware that his
opponent will attempt to minimize the level of his winnings. In other words,
player 2 is expected to choose a mixed strategy y such that, as far as she
is concerned, the expected payoff (which is a cost to player 2) will turn out
to be as small as possible, that is,

min
y

E(x,y).

Hence, the best course of action for player 1 will be to choose a mixed
strategy x such that

V ∗
1 = max

x
min
y

E(x,y). (13.7)

Analogously, player 2 expects that player 1 will attempt to maximize his
own winnings, that is, she expects that player 1 will choose a mixed strategy
such that, from his point of view,

max
x

E(x,y).

Therefore, the best course of action of player 2 will be to choose a mixed
strategy y such that

V ∗
2 = min

y
max

x
E(x,y). (13.8)
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Von Neumann has shown that there always exist optimal mixed strate-
gies x∗ and y∗ such that V ∗

1 = V ∗
2 . This is called the fundamental theorem

of two-person zero-sum games. It turns out that a two-person zero-sum
game can be always formulated as a dual pair of linear programming prob-
lems. Remarkably, the primal problem corresponds to the behavior of player
1 while the dual problem expresses the behavior of player 2. This LP spec-
ification is also due to Von Neumann and it represents the most elegant
proof of the fundamental theorem of two-person zero-sum games.

The justification of the LP format is based upon the observation that
player 1, when choosing mixed strategy x, can expect his payoff to be

mX

i=1

ajixi j = 1, . . . , n. (13.9)

It will be in his interest, therefore, to make this amount as large as possible
among the n selections available to player 2. In other words, player 1 will
attempt to maximize a lower bound L on the admissible n levels of payoff
accruable to him and as expressed by (13.9). Given this justification, the
primal linear programming specification that will represent this type of
behavior is given by the problem of finding a vector x ≥ 0 such that

Primal : Player 1
max
x,L

L (13.10)

subject to snL−A0x ≤ 0
s0mx = 1

where sn and sm are vectors of unit elements of dimension (n × 1) and
(m× 1), respectively. Vectors sn and sm are also called sum vectors. The
first constraint of (13.10) states a floor (lower bound) on each possible
strategy choice of player 2. Player 1 wishes to make this floor as high as
possible. The second constraint of (13.10) is simply the adding-up condition
of probabilities.

By selecting symbols y and R as dual variables of the primal constraints
in (13.10), we can state the corresponding dual problem as finding a vector
y ≥ 0 such that

Dual : Player 2
min
y,R

R (13.11)

subject to smR−Ay ≥ 0
s0ny = 1.
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The dual problem (13.11) represents the optimal behavior of player
2. She will want to minimize the ceiling (upper bound) of any possible
strategy chosen by player 1.

Let us assume that there exist feasible vectors x∗ and y∗. Then, from
the primal constraints

y∗0snL− y∗0A0x∗ ≤ 0 (13.12)
L ≤ y∗0A0x∗.

Similarly, from the dual constraints

x∗0smR− x∗0Ay∗ ≥ 0 (13.13)
R ≥ x∗0Ay∗.

Hence, L∗ = max L = x∗0Ay∗ = min R = R∗ and the value of the game is
V ∗ = L∗ = R∗, according to the duality theory of linear programming.

An alternative, but equivalent way, to establish the saddle-point prop-
erty of a two-person zero-sum game is to derive and analyze the KKT
conditions of the LP problem (13.10). In this case, the corresponding La-
grangean function, L, is specified as

L =L + y0(A0x− snL) + R(1− s0mx) (13.14)

with the following KKT conditions:

@L
@L

= 1− s0ny ≤ 0 (13.15)

L
@L
@L

= L(1− s0ny) = 0 (13.16)

@L
@x

= Ay − smR ≤ 0 (13.17)

x0
@L
@x

= x0Ay − x0smR = 0 (13.18)

@L
@R

= 1− s0mx ≥ 0 (13.19)

R
@L
@R

= R(1− s0mx) = 0 (13.20)

@L
@y

= A0x− snL ≥ 0 (13.21)

y0
@L
@y

= y0A0x− y0snL = 0 (13.22)

Using the information of KKT conditions (13.16), (13.18), (13.20) and
(13.22) we reach the conclusion that, for (L 6= 0) and (R 6= 0), L = y0A0x =
R, as expected.
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The condition that (L 6= 0) and (R 6= 0) can always be fulfilled. In
fact, the value of the game can always be regarded as a positive amount.
This means that the solution of a game, represented by vectors x∗ and y∗,
is the same when a payoff matrix A with positive and negative elements is
augmented by a matrix C with constant positive elements.

To demonstrate this assertion, let the (m×n) matrix C be defined by a
constant scalar k and vectors sm and sn such that C = ksms0n. This means
that Cy = ksms0ny = ksm and x0Cy = kx0sm = k. Now we may augment
the original payoff matrix A by the matrix C to make any payoff element
a strictly positive amount. The corresponding LP problem now becomes

Primal : Player 1
max
x,L

L (13.23)

subject to snL− (A0 + C0)x ≤ 0
s0mx = 1.

We will show that the primal problem (13.23) is equivalent to primal prob-
lem (13.10) and, therefore, their solutions, in terms of mixed strategies
(x,y), are identical. Notice that the structure of matrix C allows the re-
definition of the primal constraints in (13.23) as follows

Primal : Player 1
max
x,L

L (13.24)

subject to snL−A0x ≤ ksn

s0mx = 1.

The dual specification of problem (13.24) is

Dual : Player 2
min
y,R

R + k (13.25)

subject to smR−Ay ≥ 0
s0ny = 1.

Recall that the symbol k is a constant scalar and, thus, does not affect
the optimization process. This dual problem (13.25) has exactly the same
structure of problem (13.11) which, in turn, corresponds to the dual specifi-
cation of problem (13.10). Hence, the primal problem (13.23), with regard
to mixed strategies, is equivalent to problem (13.10), as asserted.
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Two-Person Non-Zero-Sum Games

Two-person non-zero-sum games are also called bimatrix games because
they are characterized by two distinct payoff matrices, A and B, one for
each player. Both matrices A and B have m rows and n columns. Elements
aij and bij are the payoffs to player 1 and player 2, respectively, when
player 1 plays pure strategy i, i = 1, . . . ,m and player 2 plays pure strategy
j, j = 1, . . . , n.

Mixed strategies are pure strategies played according to probability
distributions denoted by the vector x for player 1 and by the vector y for
player 2. Hence, vectors x and y have m and n nonnegative elements,
respectively, adding up to unity. Therefore, in matrix form, a pair of mixed
strategies (x,y) is written as

x0sm = 1, x ≥ 0 y0sn = 1, y ≥ 0 (13.26)

with expected payoffs to player 1 and player 2, respectively,

x0Ay x0By. (13.27)

As in the case of a two-person zero-sum game discussed in the preceding
section, we can assume that all the elements of matrices A and B are strictly
positive without affecting the vectors of mixed strategies, as Lemke and
Howson have demonstrated. A bimatrix game is completely specified by
the pair of matrices [A,B].

The solution of a bimatrix game consists in finding the vectors of mixed
strategies (x,y) such that they lead to an equilibrium of the game. A
characteristic of a bimatrix game is that it cannot be expressed as an op-
timization problem. In other words, there is no dual pair of optimization
problems that can be used to solve a bimatrix game as there is for a two-
person zero-sum game.

The following discussion is taken from Lemke. Nash has demonstrated
that an equilibrium point for the game [A,B] is a pair of mixed strategies
(x̄, ȳ) such that, for all pairs of mixed strategies (x,y) satisfying (13.26),

x̄0Aȳ ≤ x0Aȳ, and x̄0Bȳ ≤ x̄0By. (13.28)

The interpretation of x0Ay and x0By is the expected loss to player
1 and player 2, respectively, if player 1 plays according to probabilities
x and player 2 plays according to probabilities y. Each player attempts
to minimize his own expected loss under the assumption that each player
knows the equilibrium strategies of his opponent.

To further analyze system (13.28), let ej be a unit vector with all
components being equal to zero and only the j-th component being equal
to 1. It is clear that ej is a mixed strategy called pure strategy. Hence,
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system (13.28) holds if and only if it holds for all pure strategies (x,y) =
(ei, ej), i = 1, . . . ,m and j = 1, . . . , n. Then, in vector form, system (13.28)
can be expressed as

(x̄0Aȳ) ≤ e01Aȳ
(x̄0Aȳ) ≤ e02Aȳ

...
(x̄0Aȳ) ≤ e0mAȳ

(x̄0Bȳ) ≤ x̄0Be1

(x̄0Bȳ) ≤ x̄0Be2
...

(x̄0Bȳ) ≤ x̄0Ben

(13.29)

or, in more compact form and with reference only to the first system based
on the A matrix,

(x̄0Aȳ)





1
1
...
1



 ≤





1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1



Aȳ

and, furthermore,

(x̄0Aȳ)sm ≤ Aȳ (13.30)

A similar discussion, with respect to the system based on the B matrix,
leads to the following relation

(x̄0Bȳ)s0n ≤ x̄0B (13.31)

The goal is now to restate systems (13.30) and (13.31) in the form of
a linear complementarity problem. Therefore, the following constraints

φ1sm ≤ Aȳ x̄0(Aȳ − φ1sm) = 0 (13.32)
φ2sn ≤ B0x̄ ȳ0(B0x̄− φ2sn) = 0 (13.33)

where φ1 = (x̄0Aȳ) > 0 and φ2 = (x̄0Bȳ) > 0, are equivalent to (13.30)
and (13.31).

Finally, by defining new vector variables x = x̄/φ2 and y = ȳ/φ1

and introducing slack vectors v and u, system (13.32) and (13.33) can be
rewritten in the form of a LC problem (M,q)

∑
0 A
B0 0

∏ ∑
x
y

∏
+

∑
−sm

−sn

∏
=

∑
v
u

∏
,

∑
v
u

∏
≥ 0,

∑
x
y

∏
≥ 0 (13.34)

∑
v
u

∏0 ∑x
y

∏
= 0 (13.35)

where M =
∑

0 A
B0 0

∏
, q =

∑
−sm

−sn

∏
.
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A solution (x,y) to the LC problem (13.34) and (13.35) can be trans-
formed into a solution of the original bimatrix problem (13.30) and (13.31)
by the following computations:

Ay ≥ sm → x0Ay = x0sm → x̄0

φ2

A ȳ
φ1

= x0sm (13.36)

1
φ2

= x0sm → φ2 =
1

x0sm

since φ1 = x̄0Aȳ by definition. Therefore, a solution for the bimatrix game
will be achieved by retracing the steps from the definitions given above:
x̄ = xφ2 = x/x0sm. Analogous computations will lead to the second part
of the solution, that is, ȳ = yφ1 = y/y0sn.

Algorithm for Solving a Bimatrix Game

The description of this algorithm, as given by Lemke (p. 106), is reproduced
below. The bimatrix game, as articulated in (13.34) and (13.35), may be
expressed in the form:

I. u = −sn + B0x, u ≥ 0, x ≥ 0 (13.37)
II. v = −sm + Ay, v ≥ 0, y ≥ 0 (13.38)

together with the complementary condition

u0y = 0 and v0x = 0. (13.39)

Hence, (vi, xi), i = 1, . . . ,m and (uj , yj), j = 1, . . . , n are complementary
pairs, that is, vixi = 0, i = 1, . . . ,m and ujyj = 0, j = 1, . . . , n.

The two systems I and II are, seemingly, disjoint. The complementary
pivot algorithm consists of the following sequence:

1. First pivot. In system I, increase x1 to obtain a feasible solution of
system I. That is, pivot on the pair (ur, x1), with index r automatically
defined by feasibility conditons.

2. Second pivot. Having determined the index r on the first pivot, in
system II increase yr (complement of ur) to obtain the initial feasibility
of system II. Let (vs, yr) be the pivot pair.
Then, if s = 1, the resulting basic points satisfy (13.39), and the

pivoting terminates. If not, it continues.
The algorithm consists of alternating pivots on systems I and II, al-

ways increasing the complement of the variable which, on the immediately-
previous pivot, became nonbasic. This pivoting scheme is automatic. Fur-
thermore, the algorithm will always terminate in a complementary solution
(Lemke, p. 107, Theorem III).
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It is convenient to restate the complementary pivot algorithm for a bimatrix
game in a compact form as allowed by the LC problem. This is the form
adopted by the computer program described in chapter 15, problem 7.
Hence,

w = q + Mz, w ≥ 0, z ≥ 0 (13.40)

together with the complementary condition

z0w = 0 (13.41)

where

M =
∑

0 A
B0 0

∏
, q =

∑
−sm

−sn

∏
, z =

∑
x
y

∏
, w =

∑
v
u

∏
.

The initial basis of system (13.40) is the identity matrix associated
with the slack vector w. Thus, z = 0 and the complementary condition
(13.41) is satisfied. Notice that, at this initial step, the indexes of the basic
variables constitute an uninterrupted series from 1 to (m + n). The first
step of the complementary pivot algorithm, then, consists in increasing the
variable z1, by introducing the corresponding vector into the new basis.
Presumably, the vector associated with variable wr will be eliminated from
the current basis. Now, if r 6= 1, the complementary condition is violated
because z1w1 6= 0. At this stage, the basic index series is interrupted
because variables z1 and its complement w1 have become basic variables.

The pivoting scheme of the algorithm continues by choosing to in-
crease the complementary variable (zr, in this case) and keeping track of
the variable which is reduced to zero. The algorithm terminates when
either the variable w1 or z1 is reduced to zero, following the automatic piv-
oting scheme. At this stage, the index series of basic variables has become
uninterrupted, again.

A Numerical Example of a Bimatrix Game

The numerical example of a two-person non-zero-sum game is defined by
the following two payoff matrices:

A =




1 4
3 1
2 2



 , B =




3 2
1 2
4 1



 .

Hence, the payoffs to Player 1 and Player 2 are, respectively:

φ1 = x̄0Aȳ, φ2 = ȳ0B0x̄
where x̄ ≥ 0, ȳ ≥ 0, s0mx̄ = 1 and s0nȳ = 1.
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The transformation of the game into a LC problem follows the structure
of relations (13.32) and (13.33), where x = x̄/φ2 and y = ȳ/φ1. The
corresponding LC problem, therefore, takes on the following configuration,
according to relations (13.34) and (13.35):

M =





1 4
3 1
2 2

3 1 4
2 2 1




, q =





−1
−1
−1
−1
−1




, z =

∑
x
y

∏
, w =

∑
v
u

∏
.

In order to simplify the illustration and the understanding of the com-
plementary pivot algorithm, we will use the compact form in terms of vec-
tors z and w rather than the more articulated specification illustrated in
relations (13.37), (13.38) and (13.39). The recovery of the information in
terms of vectors x,y,u and v is straightforward.

In the following three tableaux, the specification of the LC problem as-
sumes the following rearrangement: w−Mz = q. Blank entries correspond
to zero values.

↓ initial step
T0 w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 q BI



 −3
2
−1
2









1 −1 −4 − 1
1 −3 −2 −1

1 −2 −2 −1
1 −3 −1 −4 −1

1 (−2) −2 −1 −1





w1

w2

w3

w4

w5 →
T1 ↓ complement of w5





−4
−1
−2









1 − 1 −4 −1
1 −3 (−1) −1

1 −2 −2 −1
1 −3

2 0 2 −5
2

1
2

−1
2 1 1 1

2
1
2





w1

w2 →
w3

w4

z1

T2 ↓ complement of w2


 1
2

−1
2









1 −4 11 0 3
−1 3 1 1
−2 1 4 0 1

1 −3
2 0 (2) −5

2
1
2

−1
2 1 1 1

2
1
2





w1

z5

w3

w4 →
z1
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The initial step of the complementary pivot algorithm, in its variant for
dealing with a bimatrix game, is to turn all the values of the q vector into
nonnegative elements in order to achieve feasibility of the solution. Given
the seemingly disjoint nature of the overall system of equations, as stated
in relations (13.37) and (13.38), this goal is achieved in the third tableau,
after two iterations that are guided by a special choice of the pivot element.

In the initial tableau, the basis variables are all slack variables, that is,
w = q and z = 0. The complementarity condition w0z = 0 is satified, but
the solution is not feasible since all the elements of the q vector are negative.
Notice that the index series of the basic variables, wj , j = 1, 2, 3, 4, 5, is
uninterrupted. The algorithm begins by introducing the column vector
associated with the variable z1 into the basis. The choice of z1 is arbitrary
but, once esecuted, the selection of all the successive column vectors to enter
the basis is automatically determined by the complementary condition.

In the first tableau, the choice of the pivot element is determined by
the following criterion: pivot = max(qi/mi1), i = 1, . . . , N for mi1 < 0 and
where mi1 are the coefficients of the first column in the [−M ] matrix. In
the first tableau, the pivot corresponds to (−2) and it is indicated by the
inclusion of this value in parentheses. The updating of the q vector and the
basis inverse eliminates the w5 variable from the set of basic variables and
replaces it with the z1 variable (second tableau). Hence, the next candidate
vector to enter the basis is associated with variable z5, the complement of
w5. The updating of each tableau is done by premultiplying the entire
current tableau by the transformation matrix Tk, where k is the iteration
index, as explained in chapter 4.

The second step of the algorithm follows the same criterion in the
choice of the pivot element and achieves the feasibility of the solution in
the third tableau. Notice that feasibility of the solution has been achieved
at the (temporary) expense of the complementarity condition. That is, in
the third tableau (as in the second tableau), the complementarity condition
is violated because w1z1 6= 0, indicating precisely that the solution is almost
complementary. A visual way to assess the violation of the complementarity
condition is given by the index series of the basic variables which is now
interrupted, with a gap between indices. For example, in the third tableau,
the series of the basic variables (under the BI heading) is 1, 5, 3, 4, 1, missing
the index 2.

The algorithm proceeds in the next three tableaux with the goal of
maintaining the feasibilility of the solution while striving to achieve its
full complementarity. Beginning with the third tableau, the choice of the
pivot element must be modified in order to maintain the feasibility of the
solution. From now on, the choice of the pivot is determined as pivot =
min(qi/mir), i = 1, . . . , N , for mir > 0, where the r index refers to the
vector selected to enter the basis.



248 Two-Person Games

From the preceding third tableau ↓ complement to w4

T3 w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 q BI




− 11
4

−3
4
1
4









1 −4 11 0 3
−1 3 1 1
−2 1 (4) 0 1

1
2

−3
4 0 1 −5

4
1
4

−1
2

1
4 1 0 7

4
1
4





w1

z5

w3 →
z2

z1

T4 ↓ complement of w3


 5
7
4
7









1 3
2

−11
4 0 0 1

4
1
2

−3
4 0 1 1

4
−1
2

1
4 1 0 1

4
1
2

−3
4 0 1 −5

4
1
4

−1
2

1
4 1 0 (7

4 ) 1
4





w1

z5

z4

z2

z1 →
final tableau : solution





1 3
2

−11
4 0 0 1

4
1
2

−3
4 0 1 1

4
−1
2

1
4 1 0 1

4
1
7

−4
7

5
7 1 0 3

7
−2
7

1
7

4
7 0 1 1

7





w1

z5

z4

z2

z3

The solution of the bimatrix game is achieved in the last tableau.
Notice that the index series of the basic variables has been reconstituted
with indices 1, 5, 4, 2, 3, without any gap. This is a visual indication that
the current solution is both feasible and complementary.

The reading of the LC problem’s solution from the final tableau and
the conversion of this solution into a solution of the bimatrix game proceeds
as follow.

z =
∑
x
y

∏
=





z1 ≡ x1

z2 ≡ x2

z3 ≡ x3

z4 ≡ y1

z5 ≡ y2




=





0
3/7
1/7

1/4
1/4




, w =

∑
v
u

∏
=





w1 ≡ v1

w2 ≡ v2

w3 ≡ v3

w4 ≡ u1

w5 ≡ u2




=





1/4
0
0

0
0





From the discussion of the previous section, the solution of the bimatrix
game, corresponding to the mixed strategies of player 1 and player 2, is
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extracted from the relations: x̄ = x/s0mx and ȳ = y/s0ny. Hence,

s0mx =
[1 1 1]




0

3/7
1/7



 =
4
7
, s0ny = [1 1]

∑
1/4
1/4

∏
=

2
4
.

Therefore, the vectors of mixed strategies for player 1 and player 2, respec-
tively, are

Player 1 : x̄ = x/s0mx =




0

3/7
1/7




¡

4
7

=




0

3/4
1/4





Player 2 : ȳ = y/s0ny =
∑

1/4
1/4

∏¡
2
4

=
∑

1/2
1/2

∏
.

Finally, the payoff values are

Player 1 : φ1 = x̄0Aȳ =
[ 0 3

4
1
4 ]




1 4
3 1
2 2








1
2

1
2



 =
1

y0sn
= 2

Player 2 : φ2 = x̄0Bȳ =
[ 0 3

4
1
4 ]




3 2
1 2
4 1








1
2

1
2



 =
1

x0sm
=

7
4
.

This concludes the discussion of the numerical example of a bimatrix game.

Lemke’s Complementary Pivot Algorithm for bimatrix games requires
that the payoff matrices A and B have all positive elements. This require-
ment does not affect the solution of a bimatrix game. This statement can
be demonstrated by the following reasoning.

Let us suppose that the payoff matrices A,B contain some negative
elements and that there exists an equilibrium point (x̄, ȳ) for the game
[A,B].

Now, let C = sms0n be the matrix with all unitary elements and let the
scalar k be large enough so that the matrices (kC+A) > 0 and (kC0+B0) >
0, that is, they have all positive elements. Consider now the solution x,y
to the following relations

(kC + A)y ≥ sm, y ≥ 0 and x0[(kC + A)y − sm] = 0 (13.42)
(kC0 + B0)x ≥ sn, x ≥ 0 and y0[(kC0 + B0)x− sn] = 0. (13.43)

The solution x,y does not, in general, satisfy the adding-up conditions
x0sm = 1 and y0sn = 1 since no such constraints are involved in relations
(13.42) and (13.43).
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Now, consider relation (13.42). By expanding the complementary con-
dition we write

x0[(kC + A)y − sm] = 0 (13.44)
kx0Cy + x0Ay − x0sm = 0

kx0Cy
x0sms0ny

+
x0

x0sm
A

y
s0ny

− 1
s0ny

= 0

k + x̄0Aȳ − 1
s0ny

= 0

where

x̄ =
x0

x0sm
and ȳ =

y0

y0sn
(13.45)

which are the same relations presented in (13.36).
The correspondence between the payoff is

x̄0Aȳ =
1

s0ny
− k. (13.46)

A similar calculation can be done for relation (13.43), with the result that

ȳ0B0x̄ =
1

s0mx
− k. (13.47)

This discussion establishes that the augmentation of the payoff matri-
ces A and B by a constant matrix kC, as defined above, does not affect the
equilibrium point of the bimatrix game.

Finally, what happens, or may happen, if there are ties in the columns
of either the payoff matrix A or B0? Ties may cause the bimatrix game to
be degenerate in the sense that the Complementary Pivot Algorithm may
cycle between two successive entries/exit operations without reaching an
equilibrium point. Without entering in the technical discussion of ties and
degeneracy, we point out that the presence of degeneracy may signal the
presence of multiple equilibrium points. A simple procedure for breaking
ties is to add a small arbitrary positive constant to one of the tie elements.
This is the procedure implemented in the Lemke computer program pre-
sented in chapter 16.

Maximizing Expected Gain

The preceding discussion of a bimatrix game, including the numerical ex-
ample, was conducted under the assumption that players wish to minimize
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their expected loss. If the game involves the maximization of expected gain,
the corresponding Nash equilibrium for the game [A,B] must be stated as
a pair of mixed strategies (x̄, ȳ) such that, for all pairs of mixed strategies
(x,y) satisfying (13.26),

x̄0Aȳ ≥ x0Aȳ, and x̄0Bȳ ≥ x̄0By. (13.48)

The interpretation of x0Ay and x0By is now the expected gain to player
1 and player 2, respectively, if player 1 plays according to probabilities x
and player 2 plays according to probabilities y. Each player attempts to
maximize his own expected gain under the assumption that each player
knows the equilibrium strategies of his opponent.

The Complementary Pivot Algorithm, however, must be implemented
as presented in the preceding sections also for this form of the bimatrix
game. Let us suppose, therefore, that the same matrices A and B used for
the above numerical example (with all positive elements) are now the payoff
matrices for a game formulated as in (13.48). In order to reformulate the
game (13.48) in the form suitable for submission to the Complementary
Pivot Algorithm it is necessary to invert the inequalities of (13.48) and
write

x̄0(−A)ȳ ≤ x0(−A)ȳ, and x̄0(−B)ȳ ≤ x̄0(−B)y. (13.49)

Furthermore, we must add a suitable positive factor, k, to each element of
the matrices (−A) and (−B) so that the resulting matrices have all positive
elements, that is, A∗ = (ksms0n − A) > 0 and B∗ = (ksms0n − B) > 0.
Application of this transformation to the matrices A and B used in the
previous numerical example results in the following matrices A∗ and B∗:

A∗ =




5 5
5 5
5 5



−




1 4
3 1
2 2



 =




4 1
2 4
3 3





B∗ =




5 5
5 5
5 5



−




3 2
1 2
4 1



 =




2 3
4 3
1 4





where the factor, k = 5, was chosen for implementing the positivity of all
the elements of matrices A∗ and B∗.

The solution of a bimatrix game [A,B] in the form of (13.48), requiring
the maximization of expected gain by each player, is thus carried out using
matrices A∗ and B∗ and the Complementary Pivot Algorithm as illustrated
in the following tableaux.
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↓ initial step
T0 w1 w2 w3 w4 w5 z1 z2 z3 z4 z5 q BI



 −1
2
−3
2









1 −4 −1 − 1
1 −2 −4 −1

1 −3 −3 −1
1 (−2) −4 −1 −1

1 −3 −3 −4 −1





w1

w2

w3

w4 →
w5

T1 ↓ complement of w4




−2
−1
2
−3
2









1 − 4 −1 −1
1 (−2) −4 −1

1 −3 −3 −1
−1
2 1 2 1

2
1
2

−3
2 1 3 −5

2
1
2





w1

w2 →
w3

z1

w5

T2 ↓ complement of w2


 −2
3
1
3









1 −2 0 7 1
−1
2 1 2 1

2
−3
2 1 0 3 1

2
−1
2 1 2 1

2
1
2

−3
2 1 (3) −5

2
1
2





w1

z4

w3

z1

w5 →
T3 complement of w5 ↓





1
7

−2
7
−3
7









1 −2 0 (7) 1
−1
2 1 2 1

2
−3
2 1 0 3 1

2
1
2

−2
3 1 13

6
1
6

−1
2

1
3 1 −5

6
1
6





w1 →
z4

w3

z1

z2

final tableau : solution




1
7

−2
7 0 1 1

7
−2
7

1
14 1 0 3

14
−3
7

−9
14 1 0 0 1

14
1
2

−2
3 1 13

6
1
6

−1
2

1
3 1 −5

6
1
6





z5

z4

w3

z1

z2

The solution of the bimatrix game (13.48) is achieved in the last
tableau. Notice that the index series of the basic variables has been recon-
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stituted with indices 5, 4, 3, 1, 2, without any gap. This is a visual indication
that the current solution is both feasible and complementary.

The reading of the LC problem’s solution from the final tableau and
the conversion of this solution into a solution of the bimatrix game proceeds
as follow.

z =
∑
x
y

∏
=





z1 ≡ x1

z2 ≡ x2

z3 ≡ x3

z4 ≡ y1

z5 ≡ y2




=





1/6
1/6
0

3/14
2/14




, w =

∑
v
u

∏
=





w1 ≡ v1

w2 ≡ v2

w3 ≡ v3

w4 ≡ u1

w5 ≡ u2




=





0
0

1/14

0
0





From the discussion of previous sections, the solution of the bimatrix
game, corresponding to the mixed strategies of player 1 and player 2, is
extracted from the relations: x̄ = x/s0mx and ȳ = y/s0ny. Hence,

s0mx =
[1 1 1]




1/6
1/6
0



 =
2
6
, s0ny = [1 1]

∑
3/14
2/14

∏
=

5
14

.

Therefore, the vectors of mixed strategies for player 1 and player 2, respec-
tively, are

Player 1 : x̄ = x/s0mx =




1/6
1/6
0




¡

2
6

=




1/2
1/2
0





Player 2 : ȳ = y/s0ny =
∑

3/14
2/14

∏¡
5
14

=
∑

3/5
2/5

∏
.

Finally, the payoff values are

Player 1 : φ1 = x̄0Aȳ =
[ 1

2
1
2 0 ]




1 4
3 1
2 2








3
5

2
5



 =
1

y0sn
= 2.2

Player 2 : φ2 = x̄0Bȳ =
[ 1

2
1
2 0 ]




3 2
1 2
4 1








3
5

2
5



 =
1

x0sm
= 2.0.

From the two versions of the bimatrix game discussed in this chapter
(minimization of expected loss and maximization of expected gain) it is
clear that different mixed strategies and expected values of the games are
obtained using the same pair of matrices.
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