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Summary. Solutions obtained for a k-means algorithm depends heavily on the starting

partition. In this article an aid is developed for implementing initialization methods par-

ticularly suited when all the cluster covariances matrices are presumed to be identical.
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1. Introduction

The efficacy of a k-means algorithm is influenced by many factors. Most obvious is the

starting partition. In fact, k-means algorithms have differential recovery rates depending

on the quality of the starting configuration. As the cluster analysis has evolved, a wide
variety of techniques has emerged for choosing the first k centroids (or, alternatively, for
specifying an appropriate starting partition). So far no attempt has been made to set up a

specific procedure by which an iterative partitioning based on the Friedman-Rubin ap-
proach could be triggered. This is partly due to a vicious circle: to determine a preliminary

classification of the entities a good estimate of the within-group scatter matrix W is re-

quired, but to estimate W a plausible classification should be known in advance. The pri-
mary purpose of this paper is to refine the algorithm proposed by Art et al. (1982) which
offers an interesting solution to this problem.

2. Preliminary estimation of the within-clusters matrix

Art et al. (1982) proposed an algorithm to compute an estimate of  W without knowing the

cluster structure, but assuming that the clusters have different means and a common cova-

riance matrix. The standard multivariate analysis decomposition T=W+B can also be made

in terms of pairwise differences:
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where, Xi for i=1,2,…,n gives the values of m real-valued features on n distinct entities.
The first term on the right side involves all the pairs which belongs to the same clusters,
and the second term involves all the distance measurement occurring between those pairs



where one entity comes from cluster i and the other entity comes from cluster j with i≠j.
No explicit indication is made to a cluster membership or to a fixed number of clusters.
Moreover, W* avoids the estimation of the centroids. Under normal sampling assump-
tions, with Xij˜N(µi,Ω) we have E(W)=(n-k)ΩΩΩΩΩ and E(W*)=cΩΩΩΩΩ where c is a constant
depending only on the cardinalities of the clusters. Hence W and W* can be used to construct

an unbiased estimate for ΩΩΩΩΩ, but W* gives relatively more weight to large clusters than does

W. The fact that W* needs to be scaled by a factor to remove the bias is not relevant since

a clustering based on W*
 

is invariant with respect of the transformation aW* with a>0.

Naturally, since the cluster structure is unknown, neither W nor W*
 
can be computed. The

initialization of the k-means, however, requires something less demanding. In this sense, I

extend an earlier work of Gnanadesikan et al. (1993) based on the work of Art et al.

(1982).  A first approximation W
1
 to W*

*
 can be obtained by a Winsorizing-type scheme
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where Xi and Xj are among the closest q pairs in terms of the given metric W0. The weight
or score δh is  a non increasing function of the rank position of the Mahalanobis distance
Mij. This relationship reflects the fact that entities belonging to the same cluster are closed

together than entities belonging to different clusters. The weighting scheme has the effect

of decreasing the impact of the larger distances and increasing the smaller ones, thereby

counteracting the biasing inherent in sample-based estimation of a covariance matrix.

Next W
2 

is formed in the same manner except that a new Mahalanobis distance is

used to define the weights: δh=f[M(W1)]. The algorithm continues in a like manner until
the process stabilizes. The procedure is controlled by the following parameters:
1) The first metric. Art et al. (1982) used W0=I, that is the first allocation is made by using
Euclidean distance, although W0=T seems a more plausible choice when the data consist
of a number of variables measured in different scales and T is well-conditioned. Another
plausible choice is W0=diag(v1,v2,…,vm). It should be noted that choosing a diagonal is
justified only when the variables are uncorrelated or weakly correlated. If this fact is not
taken into account, the measure of closeness of the entities, suffers. Gnanadesikan et al.
(1993) consider a sequence q0, q1, q2,…, and revise iteratively the starting metrics: W0,1=I,
W0,2=Wq0,W0,3=Wq1,… In practice, this can be done if W0,i is not ill-conditioned and there
is enough evidence that W0,i is a better choice than W0 which cannot be guaranteed because
of the oscillating behavior of Wq.
2) The number of pairs. The integer q is chosen conservatively small to avoid contamina-

tion by between-cluster pairs. However, q>n-m to ensure a regular positive definite ma-

trix. It should be noted that if the number of within-group pairs is small compared with the

true number of pairs, the covariance matrix estimates become highly variable. The reduc-

tion of q has, undoubtedly, some advantages from a computational point of view. In fact,
instead of sorting the n(n-1)/2 vector of all possible distances, it is sufficient to determine
the smallest q elements. The Hoare’s Quicksort can be adjusted to this purpose avoiding
many of the computation required to do a complete sort. Hoare’s algorithm takes advantage



of the remarkable power of the recursive function (a function that calls itself). Lent and
Mahmoud (1996) analyze multiple Quickselect (MQS), a variant of Quicksort designed to
search for several order statistics simultaneously. I have adapted MQS to select the first q
ordered Mahalanobis distances.

3) The weights. Art et al. used δh=1/q. After some experiments the following formula has

given better results and more robustness against non-singularity
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where h indicates the h-th closest pairs. The lower α is, the slower the decrease of the

weights and the larger the number of distances that receive a score significantly different

from zero. Of course, α→0 implies δh(α)=constant. As α→1 W* becomes insensitive to q

and ill-conditioned which, in turn, leads to lowered classification accuracy.

4) The measure of closeness. Art et al. defined ε
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2
 and convergence is

considered satisfactory if εi+1≤ε. The method outlined by Art et al. is available in the
Aceclus procedure of the SAS routine Fastclus.

3. Empirical investigation

The performance of the method discussed in the previous section has been evaluated in
terms of quality for several test data sets. In particular, the configuration with W0=I,
q0=max{(n/3)[n/(k*3)-1],2*(n-m)} has been applied (k is the number of clusters suspected
to be present in the data set). The procedure is stopped after εi+1≤ε=0.001; the process is
also interrupted after 30 iterations. The crucial elements of the algorithm are the number
of pairs q and the score system δh(α). A good couple of values (q,α) is not likely to be
known in advance. My approach to covariance estimation is to explore a grid of points on
the (q,α) plane and then determine the point with the greatest value of
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Note that (1/m)≤ p ≤1 and p=1 if and only if Wq∝ ΩΩΩΩΩ. For the distance mixing parameter the

following we used α∈ {0.005*(i-1),i=1,2,…,21}; for each α the procedure has been re-

peated for q∈ {q0+gi,i=0,1,2,.,9} where g=[(ν-q0)/10], v=n(n-1)/(2√2). One expects that

p increases with q (as a consequence of the growing number of within-group pairs which

is included in the estimate) and reaches a maximum, hopefully in the vicinity of the upper

bound.  As q continues to increase, the value of (5) should decline because of the contami-

nation due to the between-group pairs which are progressively included in the estimate.

The value of α should anticipate the achievement of the peak. If the optimal p is far from

unity than the hypothesis of homogeneous clusters in the data is not defensible.

Usually we do not known ΩΩΩΩΩ  or even W. A reasonable strategy is to replace ΩΩΩΩΩ  with

the metric W
q
 obtained at the last iteration of the algorithm and evaluate (5) for a variety of

different choices of q and α. To this end, a graphical aid consisting of a plot of p against α
for a range of q-values would be useful. The idea is illustrated in Figure 1.



  Figure 1: Plot of p vs α for the Chernoff data set.

The real data example from Chernoff (1973) involves m=6 variables measured on each of
nummulited specimens from Eocene Yellow Limestone formation of Northwestern Jamaica.
According to Chernoff the entities divide into k=3 distinct clusters. The cardinalities are
{40, 34, 13}. The choice of q=251 is too small because the value of p for consecutive

estimates of ΩΩΩΩΩ are too different. The dashed line uses the true number of within-cluster

pairs. The curves corresponding to the largest levels of q seem instable. Instead, there is a

flat region between m=515 and m=779 where adjacent nearby estimates are similar enough

to keep  p at a stationary level. In fact, the optimal value of q when ΩΩΩΩΩ is replaced by the W

(the scatter matrix based on the actual cluster membership) is 709. The best  choice for α
is from 0.00005 to 0.00010.

When n is large, computation of exact quantiles is impractical due to the large

requirement of memory storage and execution times. In this case, the closest q pairs can be

selected in a random sample of pairs.

Even if the true covariance matrix of each cluster differs greatly, the common cova-

riance matrix estimate can be useful, especially in small-sample settings.
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