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Summary
The Gini concentration ratio as well as any other scalar measure of inequality is clearly
inadequate as a description of the Lorenz curve. In this paper, a "dual" description, based
on a measure of concentration and one of asymmetry (the Zanardi index) is advocated.
Two applications are presented to show that the Gini and Zanardi indices capture the most
significant aspects of a Lorenz curve.
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1. Introduction
The Gini concentration ratio is a scalar measures of average deviations in the in-

come distribution; thus it gives only a general idea of income inequality. In fact, the same
Gini ratio might be associated with very different distributions(1)

Many of the authors who have used the concentration ratio noted such a drawback
and several attempts have been made to supplement the index with additional measures:
Hagerbaumer (1977), Dagum (1980), Koo et al. (1981), Cortes and Rubalcava (1983).

As Chipman (1985) puts it "For too long it has been the bane of social science to
seek for a single number that can measure a complicated and emotionally charged con-
cept. The time has come to move on to a multivariate approach" and further "I would
imagine that if Gini were alive today, he would be pioneer in the development of such
multivariate approach."

This article is based on the idea that fundamental complementary information on a
size distribution of incomes can be obtained by studying the asymmetry of the Lorenz
curve.

After a general discussion on the symmetry of the curve (2nd section), the Zanardi
index of asymmetry is presented (3rd section). Finally, in the fourth section, I report two
applications which show that the Gini and Zanardi indices capture the most significant
aspects of the Lorenz curve.

2. The asymmetry of the Lorenz curve
The asymmetry of the Lorenz curve has been studied by several Italian statisticians: Gini
(1932), Panizzon (1955), Giurovich (1959), Zanardi (1964) and (1965). After being in
isolation for over fifteen years it has recently been considered to deal with the problem of
comparing income distributions whose Lorenz curves intersect: Kakwani (1980), Gagliani
and Tarsitano (1987).

In this section I discuss the asymmetry of the Lorenz curve. To do this, the curve is
expressed in terms of the Gini's coordinate system(2) instead of the usual, but less direct
(p,q) plane(3).

The Gini's coordinate are given by the transformation
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Clearly, (1) is a one-to-one mapping(4)of (p,q) onto (π,θ).
The equation of the Lorenz curve in terms of π and θ  is

θ = L(π)      for  0≤ π  ≤ 2                                                 (2)

Since (2) is concave(5) the concept of asymmetry of a Lorenz curves becomes very
similar to the concept of skewness of a unimodal density function. The Lorenz curve
θ=L(π) is symmetric around the pole π=1 if



L(1+π) = L(1-π) for 0 ≤ π ≤ 1                                             (3)

this entails that a symmetric Lorenz curve has the same ordinate for any two abscissae
equidistant from the median point. In addition, if θ̂   denotes the maximum height(6)  of the
Lorenz curve and π̂ the abscissa at which it is obtained, π̂ = 1.

In figure a, curve A is symmetric; consequently the rising portion of the curve π ≤π̂
has the same slope (regardless of the sign) of the declining portion π ≥π̂.

π π π

Symmetric curves result from income distributions in which there is a perfect com-
pensation between statistical quantities (e.g. concentration) in the lower and in the upper
part of the distribution(7). Curve B is positively asymmetric (or asymmetric to the right)
because π̂b <1, and because its rising portion has a steeper slope than its declining por-
tion. Such a curve represents a distribution characterized by a large fraction of relatively
poor IRU's whereas the rich IRU's share almost equally. Conversely, curve C is negatively
asymmetric (or asymmetric to the left) because π̂c >1, and because its declining portion
has the steepest slope. This type of curve is the expression of a distribution in which a
majority of relatively poor IRU's shares a given quota of total income while a few rich
IRU's possess the remaining income.

Definitions given above(8) do not quantify the asymmetry of the Lorenz curve, rather
they constitute a framework in which such measurement can be realized.

3. The Zanardi index of asymmetry of a Lorenz curve
The purpose of this section is to present an index of asymmetry  of the Lorenz curve

that complements the traditional indices of inequality.

In Figure b, point W w w≡ ( )π θ,  is the intersection point of L(π) with the symmetry

pole. Let yw indicate the income level which generates (pw,qw) and define "poor" a unit
whose income is less than yw

(9) and "rich" a unit whose income is at least  yw.



On the basis of yw the income distribution is divided into two subdistributions: the poor-
est pw% which determines the portion of the curve to the left of the median M, and the
richest (1-pw)% which determines the portion to the right of M.

θ

Figure b. -Definition  of the Zanardi index
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Triangles AWE and WFZ have the same area H=pwqw/2 and form (p,q) planes for
the poor and for the rich income-receiving units (IRU's) respectively. The Gini ratios for
these subdistributions are Gi=Ai/H and Gs=As/H. According to Zanardi (1965), the asym-
metry of the Lorenz curve reflects unbalances between inequality among poor and in-
equality among rich IRU's

To quantify the asymmetry of the Lorenz curve, Zanardi introduced the following
measure(10):
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where G=A(2) is the overall Gini ratio and A(π) represents the area below the curve L(π)
in the interval [0,π].

Index (4) satisfies certain desirable properties:
1) Z does not change when all incomes change proportionally(11).
2) Z=0 if the Lorenz curve is symmetric.
3) Z lies between -1 and 1.
4) If L*(π) is selfsymmetric(12) to L+(π), then Z*= -Z+.

Verification of the first three properties is straightforward(13). The last property, which
was not mentioned by Zanardi, becomes apparent by observing that L* is the mirror image
of L+ (with respect to the pole of symmetry π=1).

It is important to note that Z is a normalized index (with respect of G) and, conse-
quently, it can be used to compare the asymmetry of Lorenz curves having a different Gini
ratio.

For a better understanding of the bounds on Z let us consider Figure c.
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Figure c. - Extreme Lorenz curves
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 For a fixed value G of the Gini ratio (segments AE) curve AEZ represents the distribution
whereby the first G% receives zero income and each unit in the remaining fractile receives
the same amount Ls. Hagerbaumer (1977) called AEZ the "minimum" Lorenz curve. The
curve is obviously asymmetric to the left (As=0); as G tends to zero, that is, as the fractile
reaching the upper income level Ls increases, the Zanardi index converges to the lower
limit -1.

Similarly, curve AFZ (the "maximum" Lorenz curve) represents the distribution
whereby all but the richest unit receive the same amount Li of income. Since Ai=0, the
curve is asymmetric to the right. As G (segment FZ) tends to zero, that is, as the "survival"
income Li increases, the Zanardi index converges to the upper limit 1.

Computation of the Zanardi index for smooth curves is relatively simple. For the
curve(14) introduced by Kakwani and Podder (1976)

L R a ba bπ π π( ) = −( ) < ≤ < ≤2 0 1 0 1,      ;                                  (5)

where R denotes the relative mean deviation of incomes(15), Z is given by

Z a b IB a b, . , ,( ) = − + +( )[ ]2 1 2 0 5 1 1                                          (6)

where IB(x;r,s) is the incomplete Beta function ratio. It is easy(16) to show that if a=b, i.e.
if the curve is symmetric, then Z(a,b)=0. Moreover, Z(a,b)= -Z(b,a).

Kakwani (1980) proposed [(a/b)-1] as a measure of asymmetry for the Lorenz cur-
ve. Such a measure has an infinite range and, therefore, offers no benchmark to which its
values can be related(17).

To estimate the Zanardi index for grouped data(18) the construction of the empirical
Lorenz curve is required. To this end, a common method is the use of a linear function R
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If k is the number of groups, the Zanardi index is given by
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is the ordinate of the intersection between the straight line R
m
 and the symmetry pole

π
w
=1. Both (3.7) and (3.8) are based on the trapezoidal rule. As the Lorenz curve is conca-

ve, the estimates of A(1) and A(2) are inferior to their true values. The effect on Z will be
negligible when the number of groups is large or when the curve is symmetric. In other
cases the bias due to grouping depends on the bias affecting A(1)/A(2).

4. Applications.
The Gini and Zanardi indices do not identify completely a Lorenz curve. As shown in
Figure d it is possible that different Lorenz curves have the same combination of the two
indices.

θ

Figure d. - Symmetric Lorenz curves having the same Gini index
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However, comparison of Lorenz curves can now be carried out on a two-dimensional
basis, and, therefore, the ambiguity of single summary measures is reduced. In this section
I report two applications which show that the combination Gini/Zanardi constitutes an
efficient tool of income distribution analysis.



4.1  Income distribution and economic development
Kakwani (1980, ch.17) suggested using Lorenz curve's asymmetry to test the Kuznets'
hypothesis on income distribution in developed and developing countries. In table 1 be-
low are reported the values of Gi, Gs, G, and Z as computed(19) from the data published in
Grosh and Nafzinger (1986).

Table 1. - Asymmetry of some observed Lorenz curve
Economic Country Indices
Classifications Gs Gi G Z
Low income countries 0.5433 0.5132 0.4666 0.0141
Middle income countries 0.5334 0.6841 0.5436 -0.0573
Industrialized countries 0.4036 0.5105 0.3900 -0.0630
Centrally planned economies 0.2386 0.2929 0.2362 -0.0558

It is to be noted that although |Z| can vary from zero to one, it is unlikely to find
empirical applications for which |Z|>0.30. This is the real benchmark against which make
comparisons(20). In this respect the results in table 1 appear consistent with the hypothesis
that in the course of economic development a Lorenz curve tends not only to enclose a
smaller area but, also, to change shape: from asymmetric to the right (or from quasi-
symmetric) to asymmetric to the left.

4.2  Identification of the Lorenz curve by the Gini ratio and the Zanardi index
Deciles, as expressed by the proportion of total income held by a given tenth of

IRU's, are a convenient representation of the size distribution of income since each decile
summarizes a different part of the distribution. Nonetheless, a tabulation of nine values
can be not easy to understand even for relatively small data sets.

In this section I try to attain some degree of parsimony by collapsing the relation-
ships between income deciles to a smaller set of composite indices. This will throw light
on one of the possible ways the index of asymmetry can be put to use.

The choice of principal component analysis (see Seber, 1984 for a review of the
technique) is dictated by the assumption that the matrix of correlations contains all the
information on the common characteristics of deciles.

The data used for the analysis consist of 32 income distributions by deciles of vari-
ous developed and developing countries(21)published by van Ginneken and Park (1984).

Table 2 reports the lower half of the matrix of correlation coefficients between in-
come deciles. Examination of these coefficients confirms that nearly all the deciles (the
only possible exception is D9) are highly correlated and that a linear reduction technique
of dimensionality can be usefully applied in this setting. It also appears that the correlation
coefficients decrease and become negative as one moves from the poorest decile towards
the richest.



Table 2. - Matrix of correlation coefficients between income deciles

D1 D2 D3 D4 D5 D6 D7 D8
D2 0.9405
D3 0.8974 0.9776
D4 0.8639 0.9534 0.9545
D5 0.8329 0.9090 0.9285 0.9685
D6 0.7584 0.8406 0.8937 0.9010 0.9502
D7 0.6530 0.7351 0.8022 0.8243 0.8946 0.9599
D8 0.4685 0.5145 0.5717 0.6273 0.7075 0.7514 0.8345
D9 -0.3765 -0.4605 -0.4035 -0.3899 -0.3105 -0.2305 -0.0742 0.3350

Table 3 displays the eigenvalues of the correlation matrix

Table. 3 - Eigenvalues of the correlation matrix
Percentage of variability

Component Eigenvalue Component Cumulative
1 6.8625 76.25 76.25
2 1.4941 16.60 92.85
3 0.3633 4.04 96.89
4 0.1017 1.13 98.02
5 0.0803 0.89 98.91
6 0.0539 0.60 99.51
7 0.0225 0.25 99.76
8 0.0135 0.15 99.91
9 0.0080 0.09 100.00

Only the first two components, accounting for about 93% of total variability, are of prac-
tical significance. Hence the aim of reducing the dimensionality of the problem has been
achieved. The eigenvectors corresponding to the first two components are shown in table
4 (the loadings have been scaled so that the sum of their squares equals one).

Table 4: eigenvectors for first two components

Deciles C1 C2
D1 0.3378 -0.1735
D2 0.3631 -0.1871
D3 0.3695 -0.1161
D4 0.3722 -0.0758
D5 0.3748 0.0218
D6 0.3654 0.1150
D7 0.3429 0.2612
D8 0.2685 0.5509
D9 -0.1236 0.7282

The first component accounts for about 76% of the total variability and may be considered
an overall characteristic of the income distribution because of the high and approximately
equal weights given to most of the deciles. The only decile with little weight is D9 which



is, in effect, less correlated with the others (the highest entry in row D9 of table 2 is -
0.4605 whereas all the other rows have at least one entry greater that 0.8). The second
component explains about 17% of the total variability and may be regarded as a bipolar
factor because negative loadings for D1-D4 contrasts positive loadings for D5-D9.

To further clarify the meaning of these components, I have computed their correla-
tions with the Gini index (as a summary statistic of overall inequality) and the Zanardi
index (as an indicator of disparity of concentration between poor and rich IRU's). The
results are included in table 5.

Table 5: correlation coefficients between C1,C2,G, and Z.

C1 C2  Gini Zanardi
C1 1.0000
C2 0.0000 1.0000
Gini -0.9980 0.0084 1.0000
Zanardi -0.2180 -0.7960 0.1919 1.0000

Table 5 indicates that the Gini index is an excellent proxy for the first component
whereas the Zanardi index is a remarkably good substitute of the second component.
These results shows that the Gini and Zanardi measures suffice to characterize the
income distribution by deciles.

5 Conclusion.
In this paper I argue that the Zanardi index of asymmetry of the Lorenz curve

provides a useful supplementary measure to those usually employed in income
distribution analysis  This measure, when used in conjunction with the well known Gini
index of inequality is a valuable tool for making intertemporal and international
comparisons of income distributions.
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Notes
(1)Two populations of the same size have the same Gini ratio if the relative shares of units equidistant from
the median differ, in each population, of the same amount. This may be illustrated using a discrete ungrouped
income distribution {y1<y2<...<yn} with finite mean µ>0. The Gini ratio can be written as
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the two distributions: {2,4,6,8,10} and {7,7,8,15,23} have the same G.
(2) See Gini (1932).



(3) p is the fraction of income receiving units (IRU's) having an income lower than a given level and q is their
fraction of total income.
(4) Maddala and Singh (1977) claim that "there is no a priori reason why (p-q) should be explained by (p+q),
nor is it clear what the meaning of such a relationship is". Since
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the meaning of (1) is evident: the plane (p,q) is first reflected, then rotated about the origin through an
angle of 45º and, finally, stretched by the scalar 2 .
(5) This is a consequence of the convexity of the Lorenz curve in the (p,q) plane.
(6) θ̂  is also known as Pietra index and corresponds to the relative mean deviation of incomes.
(7) A symmetric Lorenz curve is obtained (Kendall, 1956) if and only if the density function of income can
be expressed as f(y)=(µ/y)(3/2)g[Ln(y/µ)] where g(.) ia an even function of its argument. A similar condition
is given in Champernowne (1956).
(8) See Piesch (1975, p. 87-94) for alternative definitions of the symmetry of the Lorenz curve.
(9) The income y

w
 is a measure of central tendency which coincides with the arithmetic mean when the

Lorenz curve is culminant, that is if the maximum of L(π) is obtained at the median abscissa.
(10)  Taguchi (1968) defined a measure of asymmetry based on the curvature of the Lorenz curve. Such a
measure is not applicable to piece-wise linear Lorenz curves.
(11)A change of location do alter Z. In fact, the Gini index of the linear transformation x=a+by is G
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, and, therefore, since poor and rich IRU's have a different mean income, it follows that Z
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(12) See Taguchi (1968) for a definition of selfsymmetry. For example, the ordinary Lorenz curve is
selfsymmetric to the Lorenz curve, based on the same income distribution, but cumulated from the highest
grade.
(13) In particular, the third property derives from the fact that , in the (π,q) plane, (G/2) is the maximum of
|A

s
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i
|.

(14) Curve (5) has several drawbacks: first, it is not necessarily a Lorenz curve because some of its ordinates
may fall outside the maximum inequality triangle ANZ. Furthermore, it cannot generate a culminant curve.
An alternative to (5) is the curve studied by Gini (1932)
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where b∈ [0,2], c∈ [0,b/R], d∈ [0,(2-b)/R].
(15) The authors failed to note this aspect of the parameter R. In fact, in their formulation, R is only constrained
to be positive.
(16)  The recursive formula IB(x;r,s)=1-IB(1-x;s;r) can be used.
(17) A more plausible measure is the difference (a-b) proposed by Musgrove (1980).
(18)Zanardi (1965) discussed his index only  for smooth curves. Patimo (1978) derived a formula of the
Zanardi index for a piecewise linear Lorenz curve in the (p,q) plane.
(19) The entries in table I were obtained by applying the trapezoidal rule to the empirical Lorenz curve as
determined by the deciles. As a result, the G values are slightly different from those reported by Grosh and
Nafzinger.
(20) I found that the empirical distribution of Z (based on 306 decile's income distribution from various
sources) is well approximated by a Gaussian law with mean -0.05 and standard deviation 0.09.
(21)The data refer to money income, pre- or post-tax, and either to families or households.


