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Abstract

The core of a k-means algorithm is the reallocation phase. A variety of schemes have been suggested for moving entities
from one cluster to another and each of them may give a di(erent clustering even though the data set is the same. The present
paper describes shortcomings and relative merits of 17 relocation methods in connection with randomly generated data sets.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Non-hierarchical classi/cation; Iterative partitioning; Combinatorial optimization

1. Introduction

The goal of cluster analysis is to verify the presence (or
the absence) of natural clusters in a given set of entities.
The data set D consists of n distinct m-dimensional points
D = {X1;X2; : : : ;Xn}m where, for each r, Xr gives the ob-
served values of m real-valued characteristics. Relative ge-
ometric arrangements, causing concentration and dispersion
of the points in di(erent regions, produce clusters.

There is a wide choice of clustering methods which have
di(erent adaptability to the data and di(erent requirements
of computer resources. The k-means algorithm usually start
with an arbitrary choice of a feasible classi/cation of the
entities into clusters. Then, keeping the same number of
clusters, a sequence of possible reassignments is considered.
The reassignment that yields the maximum bene/t is made
and the process is repeated until an optimum of the criterion
is reached. The core of a k-means algorithm is the realloca-
tion phase. A variety of schemes have been suggested for
moving entities from one cluster to another [1] and each of
them may give a di(erent clustering of the data set. How-
ever, little consensus exists with respect to which scheme
is most indicated as being e(ective (i.e. maximizes the
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number of proper assignments) and e@cient (i.e. evaluates
the minimum number of membership changes). The current
research study will focus on k-means algorithms based on
the Friedman–Rubin criterion. In particular, questions re-
garding both the computational e@ciency and clustering ef-
/cacy of several reassignment methods are addressed.

The contents of the various sections are as follows.
Section 2 reviews the general framework of the k-means
algorithm for the subdivision of the data set into a /xed
number of mutually exclusive and exhaustive clusters. Sec-
tion 3 is devoted to relocation schemes which can be used
by a k-means algorithm to determine the best cluster as-
signment. Some of the methods have never been previously
tested—as far as the author is aware—and in some cases
some surprising results have been noted. Section 4 will fo-
cus on the reallocation of pairs of entities. Finally, Section 5
describes shortcomings and relative merits of 17 relocation
methods in connection with randomly generated data sets.

2. K -means algorithms

A partition is a collection of k subsets such that

Cj �= ∅; 16 k6 n;
k⋃

j=1

Cj = D;

Ci ∩ Cj = ∅ (i �= j); (1)
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where ∅ is an empty set and the cardinalities n1; n2; : : : ; nk
of the clusters satisfy

(a) ni¿ 1; (b)
k∑
i=1

ni = n: (2)

This implies that each entity is assigned to exactly one clus-
ter, each cluster contains at least one entity and the partition
contains all entities. A partition can be succinctly expressed
by the classi/cation vector � = (�1; �2; : : : ; �n) where �r de-
notes the cluster membership assigned to Xr that is �r = j if
Xr ∈Cj . The requirement of exclusive assignment 2b is par-
ticularly stringent since every entity is constrained to join a
cluster, including outliers (entities that consistently emerge
as singletons or very small clusters) and intermediate en-
tities linking two or more otherwise isolated clusters. The
number of clusters k is assumed to be given as input, al-
though it is often unknown and its estimation is a topical
problem in cluster analysis.

The problem addressed by k-means algorithms is to /nd,
for each cluster Cj , j = 1; 2; : : : ; k a representative entity or
centroid �j for whom is minimized a known function of the
dissimilarities between an entity in the cluster and the cen-
troid. When �j ; j = 1; 2; : : : ; k are de/ned the classi/cation
vector � is determined by assigning each entity to the clus-
ter with the nearest centroid. The ability of �j to summarize
the information content of Cj depends on the actual spread
of the data in the given variable space. Usually, the cen-
troids, the cluster membership, and the variance–covariance
structure are unknown and must be estimated from the data.
Since each partition may provide a reasonable solution
to the clustering problem, some selection is necessary. A
comparison can be accomplished using an objective function
L(�) : �∈P(n; k) → [0;∞) which measures the quality of
di(erent partitions of the same data set. More speci/cally,
L(�)¡L(�) means that � provides better estimates than �.
The symbol P(n; k) denotes the set of partitions of n enti-
ties into k clusters. This paper uses the criterion proposed
by Friedman and Rubin [2] L(�q) = Min{|W (�q)|} where

W (�q) =
k∑

j=1

W q
j ; W q

j =
n∑

r=1

(Xr − �q�r )(Xr − �q�r )t ;

�qj =
∑
�r=j

Xr=n
q
j ; j = 1; 2; : : : ; k: (3)

W (�q) is the pooled dispersion matrix across the k clusters
(or within-cluster dispersion matrix) for the qth classi/ca-
tion vector. It is assumed that n¿m+1 otherwise the esti-
mate is always singular regardless the true value of W (�).
The use of (3) implies:
(1) the dissimilarities are measured by Mahalanobis dis-

tances;
(2) each centroid coincides with the average of all entities

within the cluster;
(3) the clusters have the same variance–covariance

matrix.

The criterion Min{|W (�)|} is invariant under the a@ne
transformations Y =AX + b where A is non-singular (this
allows the question of standardization of the variables to be
overcome); additionally, it is appropriate when the variables
are correlated because it takes into account the variability
of the values in all dimensions. However, sinceW (�) is an
average of the variance–covariance matrices of the clusters,
correlated variables in the clusters generate multicollinearity
inW (�), that is |W (�)| will approach to zero as correlations
grow stronger.

IfW (�) is ill-conditioned and one supposes that the clus-
ters lie in the same subspace, redundant features can be
eliminated by applying techniques such as principal compo-
nent analysis. This has two positive implications. Firstly, for
the computational e(ort because reduced data require less
storage space and can be manipulate more quickly than the
complete data. Secondly, a limited set of selected features
may alleviate the inHuence of irrelevant information.

Since the cardinality of P(n; k) is /nite, it exists at least
one partition �∗ such that |W (�∗)|¡ |W (�)| for �∈P(n; k).
The most straightforward way to /nd �∗ is to evaluate
|W (�∗)|, for all possible partitions generating, randomly or
sequentially, each partition at most once. It is well known,
though, that a complete search is possible in principle, but
not in practice since the average number of partitions to be
considered grows rapidly and becomes prohibitively high
for even moderate values of n and k. It is necessary instead
to apply techniques of local optimization.

Given an initial partition �q with q=0; k-means algorithms
compute the criterion value |W (�q)|. Another partition �q+1

is obtained by transferring a single entity (or block of them)
from one cluster to another. The new partition is accepted
if |W (�q+1)|¡ |W (�q)| and the procedure is repeated until
no further reduction of |W (�q)| can be obtained. Of course,
there is no absolute guarantee in terms of solution quality
and running time.

The e@cacy of a k-means algorithm is inHuenced by
many factors. Most obvious is the starting partition. In fact,
k-means algorithms have di(erential recovery rates depend-
ing on the quality of the starting con/guration. In gen-
eral, the repetition of the algorithm starting from indepen-
dent partitions and saving the best results is considered a
good protection against this sensitivity. It should be empha-
sized that |W (�0)|¡ |W (�0)| does not necessarily imply
that |W (�∗)|¡ |W (�∗)|; therefore, the k-means algorithms
must consider each initialization as a separate basis for the
subsequent phases.

Less obvious, but often crucial to performance, is the
sequence of the entities within the data set. A k-means
algorithm is said to be combinatorial [3] if the criterion, cen-
troids, cardinalities, and the within-group scatter matrix are
updated immediately after a move has been executed in or-
der to take account of the new situation. As a result, the tra-
jectory of the iterative process is dependent, to some extent,
on the sequence in which entities are processed and di(er-
ent orderings may yield di(erent clusterings. This problem
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can be mitigated by randomizing the choice of the entities
to be reallocate or by applying data reordering techniques.

In a non-combinatorial k-means algorithm [4], the moves
are executed in parallel in the sense that the entities do not
actually change to their new cluster membership until des-
tinations for all entities have been determined. Hence, the
calculations are substantially simpli/ed (but not necessarily
reduced) and the iterative process does not su(er from
ordering e(ects. However, unless certain conditions are
satis/ed [5], there is no guarantee of a net improvement in
L(�), no guarantee that the k-means process converges, and
no guarantee that k non-empty clusters are produced. In
spite of this weaknesses, the Forgy approach can generate
fast and reliable k-means algorithms which, nonetheless,
tend to be less e@cient than algorithms implementing the
McQueen approach [6, p. 166], and will not adopted in the
present study.

3. Relocation of the entities

There are a number of schemes in common use to relocate
entities, each reHecting a di(erent trade-o( between classi-
/cation capability that can be achieved and computer time
consumed. Most methods di(er basically in the number of
criterion evaluations required to reach a local minimum and
the accuracy of this minimum. The schemes considered here
are based on a combination of two distinct stages: transfers
and swaps. Transfers consist of moving one entity from one
cluster to another; swaps involve the exchange of two enti-
ties from di(erent clusters.

3.1. Transferring entities

Let |Wq+1| the determinant of the within-cluster disper-
sion matrix after that the transfer ofXr from cluster j to i has
taken place (the transfer from a singleton is not considered).

�q(r; j; i) =
|Wq+1|
|Wq| = (1 + �iytiW

−1
q yi)(1− �jytjW

−1
q yj)

+ �i�j(ytiW
−1
q yj)2;

�i = nqi =(n
q
i + 1); �j = nqj =(n

q
j − 1);

yi = Xr − �qi ; yj = Xr − �qj : (4)

If �q(r; j; i)=�¡ 1 then |Wq+1|¡ |Wq|. This condition en-
sures that the procedure does indeed produce progressively
better partitions. Moreover, since |Wq| is bounded by zero,
the process must converge in a /nite number of steps. A
threshold lower than one (e.g. �=0:9999) prevents cycling
divergence due to numerical problems; additionally, it may
help to regulate the running time of the algorithm. The trans-
ferring pass can be carried out in three di(erent ways.

3.1.1. Transferring pass-First-improving (TFI)
The simplest reassigning pass merely consists of

scanning—in a random or systematic order—the data set and
computing �q(r; j; i) for i=1; 2; : : : ; k; i �= j; r=1; 2; : : : ; n,
where the sequence in which the cluster are tried can also
be natural or randomly generated. If �q(r; j; i)6 � then
Xr is immediately reclassi/ed from its present cluster j
to cluster i without checking to see if some other transfer
would be better. The change in the scatter matrix, its in-
verse, centroids and cardinalities is easily computed from
the following relations

Wq+1 =Wq − �jyjytj + �iyiyti ; 1− �jytjZ
−1
q yj �= 0;

1 + �iy
t
iW

−1
q yi �= 0;

W−1
q+1 = Z−1

q +
�j(Z−1

q yj)(Z−1
q yj)t

1− �jytjZ
−1
q yj

;

Z−1
q =W−1

q − �i(W−1
q yi)(W−1

q yi)t

1 + �iyt
iW

−1
q yi

;

�q+1
i =

nqi �
q
i + Xr

nqi + 1
; �qj =

nqj �
q
j − Xr

nqj − 1
; nq+1

i = nqi + 1;

nq+1
j = nqj − 1: (5)

To avoid the accumulation of rounding errors, the quan-
tities in (5) should be computed directly from the data
after a number of transfers depending on the data set (e.g.
200(nm)0:5). The n entities are then checked in turn to see
if another transfer decreases the criterion. For each entity,
TFI examines at most (k − 1) partitions derived from the
current partition by moving an entity from one cluster to
another (that is, the neighborhood set).

3.1.2. Transferring pass-Local best-improving (TLBI)
A /rst-improving policy may lead to premature con-

vergence of the k-means process. This motivated the
development of several search methods to solve the prob-
lem of Min{|W (�)|}. Rubin [7] suggested examining the
potential e(ect of switching Xr from the cluster it occu-
pies to each other cluster and /nding the value satisfying
Min�(r; j; i)|�(r; j; i)6 �; i = 1; 2; : : : ; k; j �= i}. If such
a transfer exists then the process is moved from the current
partition to the best partition among the (k − 1) partitions
belonging to the neighborhood set. When there is more than
one entity whose transfer gives the same decrease of the
criterion, the gaining cluster may be selected by choosing
the transfer with the smallest i among the competitors. The
search is repeated—using either deterministic or stochastic
sequences—for each entity of the data set. It is evident that
TLBI is more computer demanding that TFI since the latter
is interrupted if also the former is interrupted, but this may
continue to evaluate transfers also when the TFI does not.
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3.1.3. Transferring pass-Global best-improving (TGBI)
Local improvements may impede or postpone more ef-

fective transfers; therefore, it seems plausible to devise a
scheme which moves down the steepest permissible di-
rection globally. TGBI performs a complete scanning of
the entities and produces the set of candidate transfers
E = {�(rh; jh; ih)6 �; h = 1; 2; : : : ; }. Then the elements
of E are sorted in ascending order and the correspond-
ing transfers executed (provided that �(r; j; i)6 � after
each transfer) starting from the /rst, but discarding those
a(ecting clusters already involved in a reassignment.

Clearly, global strategies are expected to give better re-
sults than local ones since an improvement of the local
search do not necessarily mean an improvement of the al-
gorithm. However, global strategies may be questionable
under the request of computer resources. In fact, for each
pass through the data set TGBI moves at most [k=2] entities
which could seem unsatisfactory compared with the num-
ber of relocations performed by TFI or TLBI. It should be
pointed out, though, that after some initial iterations char-
acterized by many re/nements, both TFI and TLBI tend to
settle into sequences of very few and often ine(ective moves
even when the process is not in the vicinity of a minimum
partition. In addition, the results of TGBI are invariant with
respect of the entity order, whereas the ordering of the enti-
ties can have a signi/cant impact upon the /nal solution of
TFI and TLBI.

3.2. Swapping entities

Ban/eld and Bassil [8] proposed that the interchange of
cluster membership between entities is a useful tool for re-
assigning entities.

3.2.1. Swapping pass-First-improving (SFI)
Consider the swap ofXr with �r=i andXs with �s=j; i �=

j. The e(ect on the dispersion matrix is

Wq+1 =Wq − �(Xr − Xs)(Xr − Xs)
t + (Xr − Xs)

×(�j − �i)t + (�j − �i)(Xr − Xs)
t ; (6)

where � = (ni + nj)=(ninj). The determinant of (6) and its
inverse can be computed by repeated applications of the
Sherman–Morrison formula:

|Wq+1| = |Wq|∗�(r; s; j; i) = |Wq|∗(1− �f tW−1
q f )

× (1 + gtB−1
q f )(1 + f tA−1

q g)

f = (Xr − Xs); g = (�j − �i): (7)

B−1
q =W−1

q +
�(W−1

q f )(W−1
q f )t

1− �f tW−1
q f

;

A−1
q = B−1

q − (B−1
q f )(B−1

q g)t

1 + gtB−1
q f

;

W−1
q+1 = A

−1
q − (A−1

q g)(A
−1
q f )

t

1 + f tA−1
q g

;

�q+1
i = �qi + n−1

i f ; �q+1
j = �qj − n−1

j f : (8)

The set of the combinations without replacement of n entities
taken two at a time is tested—sequentially or at random—
and the /rst swap for which �(r; s; j; i)6 � is immediately
executed. The centroids and the dispersion matrix are up-
dated after each interchange (the cardinalities of course re-
main unchanged). The number of potential partitions exam-
ined by a SFI pass has an upper bound of n(n− 1)=2.

3.2.2. Swapping pass-Global best-improving (SGBI)
For each scan of all possible interchanges between di(er-

ent clusters SGBI implements the swaps (if any) which most
reduce the criterion, provided that no cluster is involved in
more than one swap and that �(r; s; j; i)6 � after each swap.

The cardinality of the neighborhood set of a SGBI pass is
exactly n(n − 1)=2 which makes it di@cult to apply SGBI
to large data sets. It should be noted, however, that SGBI
is immune to the ordering problem whereas the order in
which the pairs are considered has a direct e(ect upon the
clustering quality of SFI.

The swapping pass can be combined with the transferring
pass generating 12 mixed schemes: TFI+SFI, TFI+SGBI,
TBLI+SFI, TLBI+SGBI, TGBI+SFI, TGBI+SGBI,
SFI+TFI, SGBI+TFI, SFI+TLBI, SGBI+TLBI, SFI+TGBI,
SGBI+TGBI.

The pure schemes (TFI, TLBI, TGBI) reprocess the whole
data set and terminates when there are no entities that change
their cluster membership. The mixed schemes have two dis-
tinct alternating strategies: either the transfers are applied
for the /rst pass across all entities then the swaps for the
second, and proceed in this fashion until a minimum of the
criterion is reached or the swaps are used for the /rst stage
then transfers for the second and continue oscillating un-
til convergence occurs. In both cases, mixed schemes may
feel the impact of order dependency (with the exception of
TGBI+SGBI and SGBI+TGBI).

4. Reassigning pairs of entities

Most of the k-means algorithm currently in use main-
tains the principle that only one entity is to be moved at a
time, even though a “block move”, i.e. transferring several
entities simultaneously, could rescue an algorithm that has
became trapped at a local minimum signi/cantly less good
than a global minimum. Block moves have been discour-
aged by several authors (e.g. Anderberg, [6, p. 45], Rubin
[7] and SpOath [9, p. 30]). Firstly, it is not proven that the /nal
partition found with a sequence of block moves is a bet-
ter partition than one obtained with single-move passes.
Secondly, the computer time and memory storage needed
to examine the e(ects of switching vector of entities is still
exorbitant in the age of parallel processors. However, the
simultaneous reallocation of only two entities is not more
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computer demanding than an interchange of their cluster
membership and the additional operations that can now be
performed can balance the extra time requirement. More-
over, a double transfer includes as special cases all the
schemes previously discussed so that the k-means algorithm
can choose at each stage the operation which best meets the
criterion.

Let (Xr ;Xs) be a pair of distinct entities with �r = i and
�s = j and consider a pair of clusters (Cg; Ch). The analysis
of a double-transfer must consider 26=64 patterns involving
clusters i; j; h; g. The patterns can be characterized by the
following binary variables:

D1 =
{
1 if i = j;
0 if i �= j;

D2 =
{
1 if h= g;
0 if h �= g;

D3 =
{
1 if i = g;
0 if i �= g;

D4 =
{
1 if j = h;
0 if j �= h;

D5 =
{
1 if i = h;
0 if i �= h;

D6 =
{
1 if j = g;
0 if j �= g:

(9)

Some variants are inadmissible. There may be no (i; j) and
(g; h) yielding sextuples of the type (0; 1; 1; 1; x; x). Fur-
thermore, sextuples like (1; 1; 1; 1; x; x) leave unchanged the
cluster membership and several others are equivalent. For
example (1,0,1,0,0,1), (0,1,1,0,1,0) and (0,0,1,0,0,0) gener-
ate the same sequence of operations which moves Xs from
cluster Ci to cluster Ch whereas Xr remains where it is. Due
to the nature of the relocation phase it is possible to make
certain a priori reductions and deductions so that only seven
basic operations must be examined for each pair of entities.

The e(ect of a double-transfer can be expressed by
|Wq+1| = �2(i; j; g; h)|Wq| where �2(i; j; g; h) depends on
the particular operation being executed.

The k-means algorithm investigates, either in natural or
in a random sequence, all possibilities of moving two en-
tities at the same time to ascertain whether a reduction in
|W (�)| can be achieved. A pattern is implemented if and
only if �2(i; j; g; h)6 � and if no clusters will become empty
after the move. This implies that the criterion will decrease
monotonically at each iteration and the algorithms will con-
verge to a local, thought not necessarily global minimum.

The upgrade of centroids and scatter matrix after a
double-transfer can be calculated using Eqs. (6)–(8) for
almost all the operations. Only circular shifts require new
formulae

Wq+1 =




Wq − 1
ni
ff t + hrih

t
ri − hsihtsi

−�jyjytj + �hyhy
t
h;

Wq − 1
nj
ff t + hsjh

t
sj − hrjhtrj

−�iyiyti + �gygytg;

(10)

Obviously, circular shifts involve more arithmetic than any
of the other operations.

An application rarely calls of all of the tentative place-
ments in their full generality, so we can /nd an optimal
implementation of a double-transfer schemes depending on
the operations which are to be done most frequently. In this
sense, single transfers are of principal importance since they
are executed by far the most often: more than 75% in a num-
ber of experiments (not reported here) with k¿ 4, whereas
the pattern involving two separate transfers and the split
pattern were the least frequent. Fortunately, the upgrading
formulae after a single-transfer pass are the quickest among
the operations included in Table 1.

The neighborhood set of a given pair of entities is formed
by all partitions that derive from the current partition by
changing the membership of two entities. As mentioned ear-
lier, the k-means algorithm can be interrupted after the /rst
improvement (T2FI) found in the neighborhood set or af-
ter examining the whole neighborhood set (T2LBI). In the
former case, a maximum of k2 candidate partitions are eval-
uated while, in the latter, exactly k2 alternatives must be
analyzed. The process is carried out until no partition in the
neighborhood set of any pair of entities causes the criterion
to reduce. Both T2FI and T2LBI su(er from ordering e(ects.

It would also be possible to evaluate |W (�)| for all
pairs of entities and all pairs of clusters thus examining
n(n − 1)k2=2 distinct partitions at each iteration (in this
case the entity order would have no inHuence on the /nal
partition). Such a large neighborhood set makes it more
likely that the partition achieved will in fact be a global
minimum, but the computation time which is spent for at
most two changes in cluster membership dissuades from
using it, particularly for data sets in which a large value of
n is coupled with a large values of k.

5. Experimental investigation

This paper deals with the problem of determining which
type of relocation scheme yields a better solution when in-
serted in a k-means algorithm based on the Friedman–Rubin
criterion. To this end, the performance of the 17 methods
discussed in the previous section have been evaluated in
terms of quality of the clustering obtained and the time taken
to achieve the result for several test data sets.

All the software has been written in Future Basic 3
language running on G4 computers using MacOS 9.0.4.
Although it may be possible to appreciably improve on any
one program, approximately the same e(ort was devoted to
coding each one so that comparisons of the computational
times should be quite meaningful.

5.1. Data sets

The experiments were constructed by simulating points
from k m-dimensional random variables belonging to the



2960 A. Tarsitano / Pattern Recognition 36 (2003) 2955–2966

Table 1
Patterns of cluster membership changes in a double-transfer pass

Single transfers Xs ∈Ci = Cj = Cg → Ch; Xr ∈Cj = Ci = Ch → Cg
Binary transfer Xs; Xr ∈Cj → Cg = Ch
ConHuence Xs ∈Ci; Xr ∈Cj → Ch = Cg
Swap Xs ∈Ci → Cj; Xr ∈Cj → Ci
Split Xs ∈Ci = Cj → Ch; Xr ∈Cj → Cg
Two transfers Xs ∈Ci → Ch; Xr ∈Cj → Cg
Circular shifts Xr ∈Cj → Cg = Ci; Xs ∈Ci → Ch; Xs ∈Ci → Ch = Cj; Xr ∈Cj → Cg

same family of multivariate uniform distributions having
di(erent locations but a common shape. The mean vectors
are �i = dicm; i = 1; 2; : : : ; k where cm is a vector (m × 1)
of “1”. This choice eliminates the bias of criterion (3) to-
ward a single strongly grouped variable [10]. The depen-
dency between the variables of the clusters is speci/ed by
the variance–covariance matrix

!= ("ij) =

{
9 if i = j;

3 if i �= j;
(11)

which ensures an adequate cohesiveness for each cluster.
The reason for including uniform samples is explained by
Art et al. [11] to /nd out how the lack of a high-density
region in the middle of each cluster a(ects k-means algo-
rithms. The Mahalanobis distance between �i and �j is pro-
portional to |di − dj|=2 allowing for a check whether the
true centroids provide a satisfactory separation between clus-
ters. The following values were used for the simulations:
d1=74; d2=62; d3=49; d4=35; d5=20; d6=4 which deter-
mine a su@cient isolation of the clusters and prevent atyp-
ical entities such as outliers which are unduly emphasized
by the Mahalanobis metric and borderline entities which are
di@cult to classify in a hard clustering context. From a ge-
ometrical point of view, the clusters tend to take the form
of a hyper-rectangle which calls in to question the perfor-
mance of k-means algorithms based on Min{|W (�)|} which
is oriented to /nding hyper-ellipsoidal clusters.

Thirty data sets were generated by varying k; m and the
cardinalities {ni} covering most of the di(erent parameters
that might a(ect the performance of a k-means algorithm.
In particular, the number of clusters was set to 2; 3; 4; 5; 6;
the number of variables ranged over 4; 6; 8. Two patterns
were selected for the cardinalities: clusters varying in size
(n1 = 15; n2 = 25; n3 = 35; n4 = 45; n5 = 55; n6 = 65) and
equal sized clusters (ni = 40; i = 1; 2; : : : ; k).

5.2. Ordering of the entities

Since the test data sets are formed by compact and iso-
lated clusters, there is a high chance that any arrangement
of the data may lead to a global minimum [3]. Nevertheless,
more consistent and reliable comparisons can be performed
if the way the entities are selected for the updating phase
does not interfere with the minimization process. Peña et
al. [12] suggested trying many runs with di(erent arrange-

ments to marginalize out ordering e(ects, but the number
of repetitions deserves further exploration. Fisher et al. [13]
argued that arrangements so that consecutive entities are
dissimilar lead to good clustering. In this sense, each test
data set, prior to clustering, has been reordered by using the
furthest-neighbor procedure [14]. In the absence of ties the
procedure of Kennard and Stone determines a uniquely de-
/ned sorting P(r); r = 1; 2; : : : ; n which reduces the impact
of the entity order upon the relocation schemes. It goes with-
out saying that this sorting strategy is arbitrary since other
methods may give similar or better orderings. Further work
remains to be done on connections between sorting strate-
gies of the data and recovery rate of combinatorial k-means
algorithm based on Min{|W (�)|}.

5.3. Starting partitions

The data sets used as test problems are well-structured so
that every good (resp. bad) initial partition gives rise, al-
most without exception, to a global (resp. local) minimum
and the inHuence of the initial conditions increases with the
number of clusters. Since the goal of this study is to test
the e@cacy of relocation schemes rather than the adequacy
of initialization methods, the k-means algorithms obtained
their initial con/guration by a strati/ed random sampling
based on the true classi/cation �. According to this proce-
dure, the cluster Ci ∈ �0 contains a minimum of ni − [ni=k]
entities randomly selected from Ci ∈ � for i=1; 2; : : : ; k. The
other assignments are generated giving a random weight to
each cluster. N = 200 independent random partitions were
tried as starting con/guration for each data set for a total
of 6000 distinct experiments. The number of entities in �0

which have the true membership increases with m to balance
the loss of cohesiveness due to the decrease of the percent-
age of total variance (100=m)[1 + (m− 1)=3] accounted for
the /rst principal component of (11). This, however, does
not necessarily provide a systematically good starting parti-
tion even with the strongly structured data sets used in our
simulations.

5.4. Computational e9ciency

Table 2 reports the average Cpu-time in seconds con-
sumed by each k-means algorithm to reach a solution.
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Table 2
Computational times in seconds recorded for various relocation methods

m Method Equal size Disparate size

2 3 4 5 6 2 3 4 5 6

4 TFI 0.0 0.0 0.2 0.4 1.0 0.0 0.0 0.1 0.3 0.8
TLBI 0.0 0.0 0.1 0.3 0.7 0.0 0.0 0.1 0.3 0.6
TGBI 0.0 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.2
TFI+SFI 0.1 0.6 1.5 2.8 5.3 0.0 0.2 1.0 2.3 5.2
TLBI+SFI 0.1 0.5 1.4 2.6 4.5 0.0 0.2 0.9 2.0 4.6
TGBI+SFI 0.2 0.6 0.9 1.3 1.9 0.0 0.2 0.4 1.0 1.7
TFI+SGBI 0.4 1.6 4.1 7.9 11.0 0.1 0.5 2.2 7.3 17.1
TLBI+SGBI 0.4 1.6 4.1 7.8 11.0 0.1 0.5 2.1 7.1 16.8
TGBI+SGBI 0.4 1.4 2.5 4.0 4.9 0.1 0.4 1.2 3.1 6.1
SFI+TFI 0.1 0.5 1.3 2.6 4.7 0.0 0.2 0.9 2.1 4.7
SFI+TLBI 0.1 0.5 1.2 2.4 4.0 0.0 0.2 0.8 1.8 3.8
SFI+TGBI 0.2 0.5 0.7 1.0 1.5 0.0 0.2 0.4 0.8 1.3
SGBI+TFI 0.4 1.5 4.0 7.7 10.6 0.1 0.5 2.1 7.1 16.8
SGBI+TLBI 0.4 1.5 3.9 7.7 10.6 0.1 0.5 2.1 7.0 16.5
SGBI+TGBI 0.4 1.3 2.4 3.8 4.8 0.1 0.4 1.2 3.0 5.9
T2FI 0.2 1.5 6.0 15.5 34.3 0.1 0.6 3.5 13.4 37.7
T2LBI 0.2 1.5 5.7 13.7 30.1 0.1 0.6 3.4 10.4 33.9

6 TFI 0.0 0.1 0.4 1.0 1.7 0.0 0.0 0.2 0.8 1.8
TLBI 0.0 0.1 0.3 0.8 1.4 0.0 0.0 0.2 0.7 1.4
TGBI 0.0 0.1 0.2 0.2 0.3 0.0 0.0 0.1 0.2 0.3
TFI+SFI 0.3 1.1 3.3 5.0 8.8 0.1 0.5 2.2 5.4 13.4
TLBI+SFI 0.3 1.0 3.1 4.9 7.9 0.1 0.5 2.1 4.6 11.5
TGBI+SFI 0.4 1.1 1.9 2.7 3.2 0.1 0.4 1.0 2.0 3.7
TFI+SGBI 0.8 3.4 8.3 15.8 22.8 0.1 1.0 4.4 14.0 34.4
TLBI+SGBI 0.8 3.3 8.3 15.9 22.4 0.1 1.0 4.4 14.0 34.0
TGBI+SGBI 0.7 2.8 6.1 7.9 15.3 0.1 0.8 2.6 6.3 12.3
SFI+TFI 0.2 0.9 3.6 4.4 9.1 0.1 0.5 2.1 5.0 12.7
SFI+TLBI 0.2 0.9 2.8 4.2 7.3 0.1 0.5 1.8 4.0 10.2
SFI+TGBI 0.3 0.9 2.0 2.1 4.3 0.1 0.4 0.9 1.6 2.9
SGBI+TFI 0.8 3.2 5.7 15.2 13.9 0.1 1.0 4.3 13.6 33.7
SGBI+TLBI 0.8 3.2 7.9 15.2 22.1 0.1 1.0 4.3 13.3 33.2
SGBI+TGBI 0.7 2.7 6.0 7.8 15.0 0.1 0.8 2.5 6.2 11.8
T2FI 0.4 2.9 11.1 35.2 71.1 0.1 1.2 6.5 25.0 71.0
T2LBI 0.4 3.0 10.0 31.7 56.6 0.1 1.2 6.1 23.7 60.5

8 TFI 0.0 0.1 0.6 1.7 3.5 0.0 0.1 0.4 1.4 3.7
TLBI 0.0 0.1 0.5 1.5 2.8 0.0 0.1 0.3 1.1 2.9
TGBI 0.0 0.1 0.2 0.4 0.5 0.0 0.1 0.1 0.3 0.5
TFI+SFI 0.6 1.9 6.1 11.7 21.1 0.1 0.9 3.4 9.4 21.2
TLBI+SFI 0.6 1.8 5.2 10.4 18.0 0.1 0.9 3.1 8.1 17.7
TGBI+SFI 0.7 2.0 3.2 4.8 6.0 0.1 0.8 1.9 3.7 6.5
TFI+SGBI 1.3 5.8 15.5 29.3 41.5 0.2 1.7 7.6 25.3 61.9
TLBI+SGBI 1.3 5.7 15.6 29.6 41.3 0.2 1.7 7.4 24.8 60.9
TGBI+SGBI 1.2 4.7 8.8 14.1 18.0 0.2 1.4 4.4 10.6 20.7
SFI+TFI 0.5 1.5 5.5 10.6 19.3 0.1 0.8 3.1 9.2 20.4
SFI+TLBI 0.5 1.5 4.7 9.8 16.6 0.1 0.8 2.6 7.3 16.5
SFI+TGBI 0.6 1.8 2.5 3.8 4.5 0.1 0.6 1.6 3.0 5.0
SGBI+TFI 1.2 5.6 14.8 28.3 39.9 0.2 1.6 7.3 24.3 60.7
SGBI+TLBI 1.2 5.5 14.8 28.3 39.7 0.2 1.6 7.1 24.2 59.8
SGBI+TGBI 1.1 4.5 8.5 13.7 17.0 0.2 1.3 4.2 10.3 20.0
T2FI 0.6 4.5 19.0 53.0 112.2 0.2 1.9 11.2 43.6 126.1
T2LBI 0.6 4.5 18.5 48.3 97.3 0.2 1.9 11.3 38.4 125.4
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The scheme TGBI scores top marks in terms of conver-
gence speed signi/cantly better than any other scheme and
on all 30 data sets. In this sense, it is, unexpectedly, a nat-
ural candidate for clustering large data sets, at least for ap-
plications where a reasonably good initial classi/cation is
available.

The other /ndings in Table 2 mirror the increasing com-
plexity of the local search inserted in the k-means algo-
rithm. The mixed schemes are uniformly less rapid than pure
schemes and the di(erence between execution times reaches
a maximum—as it should be suspected—when the globally
best transfer is coupled with the globally best swap. On the
other hand, when swaps are performed, TGBI+ are faster
than TLFI+ which are, in turn, faster than TFI+. The same
ranking is found for the tandems lead by SFI and by SGBI.

The durations of TGBI+ and SGBI+ are higher than any
other mixed scheme by orders of magnitude. It is evident
that the swapping stage is a time-consuming task because
it compares an entity with the entire data set. Interestingly
enough, the results of combinations S+T compare favorably
with those of the reverse combinations T+S. Ban/eld and
Bassil [8] have ignored mixed methods of the type S+T
which, on the contrary, seem to generate e@cient schemes.

Not surprisingly, the most time consuming strategies are
those using a double-transfer scheme because of the con-
siderable space of partitions they explore. T2FI and T2LBI
are more than two time slower than the slowest among all
the other procedures (with the exception of k = 2 where
their neighborhood set is smaller than that of TGBI+SGBI
or SGBI+TGBI). In spite of this, the average duration of
T2LBI in the largest dimensional problem (k = 6; m = 8,
disparate sized clusters) has an average running time of two
minutes which could be judged feasible in some situations,
should the quality of the results be satisfactory. The execu-
tion time spent by T2FI was roughly the same as the time
spent by T2LBI because both the /rst and the best local op-
eration was quite often a single-transfer pass. As k increases
T2LBI tends to be faster than T2FI.

As it may be expected, the duration of computer runs in-
creases with k and m, but for double-transfer schemes the
growth is exponential. It is also con/rmed the noticeable
di(erence in Cpu times for algorithms running on data sets
with unequal cluster sizes which were much faster than run-
ning on data sets with clusters of equal size.

Schemes based on a “/rst-improving” policy are al-
most always slower than schemes based on a “local
best-improving” policy both in the tandem S+ and in the
tandem T+; in addition, the divergence enlarges as k and m
increase. Analogous results are obtained by schemes using
a double-transfer pass. This is surprising since a substan-
tial fraction of the computation time required by any of
these schemes is spent in determining the centroid closest
to a particular entity and a LFI slower than a LBI dis-
agrees strongly with our intuition. One possible reason for
this results is that schemes enforcing a “best-improving”
principle perform a smaller number of iterations which

overcompensates the higher speed of schemes driven by a
“/rst-improving” principle [15].

5.5. Clustering e9cacy

The e(ectiveness of the relocation procedures has been
measured by comparing the /nal partition �+ generated by
k-means algorithms with the prior knowledge of the true
classi/cation � (which, for the chosen data sets, it is a global
minimum). In particular we used the Hubert-Arabie [16]
statistic

RHA =
nc(n− 1)(c − 1)− ab

n(n− 1)b− ab
;

a=
k∑
i=1

n+i (n
+
i − 1); b=

k∑
i=1

ni(ni − 1);

c =
n−1∑
r=1

n∑
s=r+1

)(�+r = �+s ∩ �r = �s); (12)

where )(x) is one if x is true and zero otherwise. The statistic
RHA has a /xed upper bound RHA = 1 indicating perfect
clustering recovery and E(RHA) = 0 under the hypothesis
that �+ and � are picked at random subject to having the
true number of clusters and objects in each.

Table 3, in two parts, shows the results of the simulations.
In these tables are displayed the percentage Tc of runs in
which RHA = 1 and the average deviation of the criterion at
�+ from the value of the criterion at the true classi/cation
vector �:

1
N

N∑
i=1

( |W (�+)| − |W (�)|
|W (�)|

)
× 100: (13)

Although the cluster structure in the data was reasonably
clear-cut, the k-means algorithms are not equally appropriate
and the quality of the solution di(ers as a function of m, k
and the {ni}. The key /ndings are listed below.

1. TGBI outperforms all the other methods, regardless the
number of variables, the number of clusters and the struc-
ture of the cardinalities. The inclusion of a global search
determining a chain of reassignments each of which is the
best taken from among the available reassignments is gen-
erally bene/cial for improving both the rate of convergence
and the accuracy of the /nal partition. This is apparent from
Table 3a and b that clearly show the consistent superiority
of TGBI+ over TFI+ or TLBI+, and +TGBI over +TFI
or +TLBI.

2. Mixed schemes T+ obtain (but not always, see Ismail
and Kamel [17]) some re/nement of the /nal partition over
the respective pure schemes. Similar results are found for
SFI+ and SGBI+. Nonetheless, the impact of the swaps
over the quality of the solution is small and the time needed
for each convergence may not be worth the extra computa-
tion. Mixed schemes are more likely to work better for poor
starting conditions.
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Table 3
Simulation results

m Method k = 2 k = 3 k = 4 k = 5 k = 6

Rmd Tc Rmd Tc Rmd Tc Rmd Tc Rmd Tc

(a) for equal size clusters
4 TFI 28.6 0.95 65.6 0.91 289.0 0.66 283.6 0.68 401.7 0.62

TLBI 28.6 0.95 81.1 0.89 291.4 0.65 306.8 0.66 399.1 0.62
TGBI 0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SFI 8.9 0.99 2.7 1.00 21.4 0.98 20.6 0.98 5.7 1.00
TLBI+SFI 8.9 0.99 6.1 0.99 16.6 0.98 9.8 0.99 0.0 1.00
TBGI+SFI 3 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SGBI 2.8 1.00 3.5 1.00 10.3 0.99 8.1 0.99 0.0 1.00
TLBI+SGBI 2.8 1.00 3.5 1.00 5.1 1.00 13.1 0.99 0.0 1.00
TGBI+SGBI 0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SFI+TFI 8.2 0.99 0.0 1.00 20.1 0.98 9.1 0.99 0.0 1.00
SFI+TLBI 8.2 0.99 6.1 0.99 13.3 0.99 8.7 0.99 0.0 1.00
SFI+TGBI 2.5 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SGBI+TFI 0 1.00 3.6 1.00 10.0 0.99 4.6 1.00 0.0 1.00
SGBI+TLBI 0 1.00 3.6 1.00 5.1 1.00 4.6 1.00 0.0 1.00
SGBI+TGBI 0 1.00 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
T2FI 2.2 0.99 0.0 1.00 9.5 0.96 57.5 0.75 75.2 0.71
T2LBI 1.4 0.99 3.3 0.98 4.9 0.98 5.9 0.97 9.6 0.97

6 TFI 92.2 0.71 118.5 0.88 230.7 0.79 538.7 0.50 388.7 0.63
TLBI 92.2 0.71 138.8 0.85 230.8 0.79 553.2 0.48 378.5 0.65
TGBI 4.6 0.98 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SFI 15.3 0.95 18.6 0.98 0.0 1.00 5.7 1.00 0.0 1.00
TLBI+SFI 15.3 0.95 13.6 0.99 0.0 1.00 0.0 1.00 0.0 1.00
TGBI+SFI 25.2 0.92 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SGBI 59.5 0.82 4.6 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TLBI+SGBI 59.5 0.82 4.7 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TGBI+SGBI 24.4 0.92 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SFI+TFI 16.2 0.95 13.9 0.99 0.0 1.00 10.1 0.99 5.0 1.00
SFI+TLBI 16.2 0.95 4.6 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SFI+TGBI 39.4 0.87 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SGBI+TFI 60.2 0.81 9.6 0.99 5.7 1.00 5.5 1.00 0.0 1.00
SGBI+TLBI 60.2 0.81 5.1 1.00 5.7 1.00 5.7 1.00 0.0 1.00
SGBI+TGBI 24.3 0.93 0.0 1.00 4.2 1.00 0.0 1.00 4.5 1.00
T2FI 5.6 0.92 1.3 1.00 18.6 0.93 96.3 0.64 106.8 0.58
T2LBI 7.5 0.90 7.1 0.97 2.7 0.99 36.7 0.87 13.4 0.95

8 TFI 153 0.64 69.5 0.94 253.6 0.71 653.9 0.34 609.3 0.44
TLBI 153 0.64 86.5 0.92 257.5 0.71 675.8 0.33 621.8 0.42
TGBI 16.2 0.96 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SFI 60.8 0.85 0.0 1.00 18.4 0.98 24.4 0.98 12.3 0.99
TLBI+SFI 60.8 0.85 0.0 1.00 0.0 1.00 17.6 0.98 3.1 1.00
TGBI+SFI 64 0.84 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SGBI 79.9 0.81 0.0 1.00 22.1 0.98 10.0 0.99 3.1 1.00
TLBI+SGBI 79.9 0.81 0.0 1.00 13.0 0.99 10.3 0.99 3.1 1.00
TGBI+SGBI 56.4 0.85 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SFI+TFI 58.5 0.85 4.1 1.00 4.9 1.00 33.5 0.97 3.1 1.00
SFI+TLBI 58.5 0.85 9.3 0.99 8.5 0.99 23.0 0.98 3.1 1.00
SFI+TGBI 71.8 0.82 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SGBI+TFI 91.3 0.78 0.0 1.00 18.9 0.98 18.6 0.98 3.1 1.00
SGBI+TLBI 91.3 0.78 0.0 1.00 18.2 0.98 13.9 0.99 0.0 1.00
SGBI+TGBI 54.1 0.86 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
T2FI 2 0.98 2.3 0.99 27.4 0.88 197.0 0.18 208.4 0.25
T2LBI 2.2 0.97 1.3 1.00 12.3 0.95 118.1 0.52 66.9 0.76
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Table 3 (continued)

m Method k = 2 k = 3 k = 4 k = 5 k = 6

Rmd Tc Rmd Tc Rmd Tc Rmd Tc Rmd Tc

(b) for disparate sized clusters
4 TFI 87.2 0.85 63.1 0.90 172.6 0.65 384.5 0.33 305.3 0.21

TLBI 87.2 0.85 77.6 0.88 179.8 0.64 382.9 0.34 299.3 0.23
TGBI 11.7 0.98 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SFI 48.2 0.92 44.0 0.94 32.8 0.92 103.5 0.79 106.8 0.69
TLBI+SFI 48.2 0.92 27.6 0.96 32.1 0.93 70.1 0.85 94.3 0.73
TBGI+SFI 51.1 0.91 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SGBI 58.7 0.90 34.9 0.94 58.8 0.89 38.7 0.95 26.9 0.94
TLBI+SGBI 58.7 0.90 24.8 0.96 54.0 0.90 38.2 0.95 26.7 0.95
TGBI+SGBI 17.3 0.97 5.3 0.99 0.0 1.00 0.0 1.00 0.0 1.00
SFI+TFI 47 0.92 44.2 0.94 37.5 0.91 98.1 0.81 98.9 0.72
SFI+TLBI 47 0.92 23.6 0.97 34.8 0.92 75.5 0.84 70.8 0.80
SFI+TGBI 42.9 0.93 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
SGBI+TFI 44 0.92 26.7 0.95 65.8 0.88 41.9 0.95 34.9 0.94
SGBI+TLBI 44 0.92 29.6 0.95 54.3 0.90 33.9 0.95 31.1 0.94
SGBI+TGBI 23.3 0.96 0.0 1.00 0.0 1.00 0.0 1.00 0.0 1.00
T2FI 2.4 0.99 15.5 0.90 28.0 0.82 124.3 0.12 143.9 0.05
T2LBI 2.7 0.98 4.9 0.97 6.4 0.95 87.0 0.57 54.1 0.63

6 TFI 167.2 0.52 259.7 0.59 421.4 0.36 616.4 0.31 411.3 0.31
TLBI 167.2 0.52 264.0 0.59 405.0 0.39 636.5 0.31 404.5 0.33
TGBI 78.6 0.79 2.7 1.00 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SFI 144.3 0.59 77.9 0.87 80.5 0.88 120.1 0.86 95.7 0.77
TLBI+SFI 144.3 0.59 67.4 0.89 76.3 0.89 61.7 0.93 81.1 0.79
TGBI+SFI 142.2 0.64 13.7 0.98 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SGBI 169.1 0.56 72.7 0.87 68.4 0.90 141.1 0.87 21.2 0.97
TLBI+SGBI 169.1 0.56 76.1 0.87 64.7 0.91 130.6 0.87 17.1 0.98
TGBI+SGBI 126.8 0.67 2.4 1.00 6.1 0.99 0.0 1.00 0.0 1.00
SFI+TFI 148.1 0.60 87.6 0.86 69.8 0.89 117.2 0.86 103.2 0.77
SFI+TLBI 148.1 0.60 62.9 0.90 85.9 0.87 73.8 0.92 69.9 0.83
SFI+TGBI 158.2 0.59 23.3 0.97 6.1 0.99 0.0 1.00 0.0 1.00
SGBI+TFI 167.5 0.56 76.9 0.86 71.6 0.90 130.5 0.87 29.0 0.96
SGBI+TLBI 167.5 0.56 69.6 0.88 65.4 0.91 132.3 0.87 20.0 0.97
SGBI+TGBI 127.2 0.66 4.5 0.99 6.3 0.99 0.0 1.00 0.0 1.00
T2FI 9.6 0.87 28.3 0.82 110.8 0.33 190.2 0.09 136.8 0.18
T2LBI 13 0.85 8.5 0.95 30.3 0.82 106.9 0.51 9.8 0.93

8 TFI 316.5 0.28 327.1 0.41 995.6 0.27 441.1 0.29 702.9 0.19
TLBI 316.5 0.28 329.1 0.41 1017.4 0.26 417.6 0.31 721.4 0.21
TGBI 140.8 0.68 7.4 0.99 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SFI 199.7 0.54 126.8 0.76 279.0 0.80 69.5 0.85 96.2 0.75
TLBI+SFI 199.7 0.54 108.5 0.79 190.3 0.87 46.3 0.90 56.0 0.85
TGBI+SFI 193 0.54 20.9 0.96 0.0 1.00 0.0 1.00 0.0 1.00
TFI+SGBI 215.8 0.52 126.9 0.76 220.3 0.84 92.3 0.87 54.5 0.94
TLBI+SGBI 215.8 0.52 135.2 0.74 199.8 0.86 89.4 0.88 49.4 0.95
TGBI+SGBI 178.3 0.60 30.7 0.94 6.9 1.00 0.0 1.00 0.0 1.00
SFI+TFI 196.8 0.54 141.9 0.73 237.5 0.83 74.7 0.87 105.9 0.77
SFI+TLBI 196.8 0.54 115.7 0.77 167.6 0.88 40.4 0.92 61.5 0.84
SFI+TGBI 191.1 0.54 27.5 0.94 0.0 1.00 0.0 1.00 0.0 1.00
SGBI+TFI 206.9 0.53 117.8 0.76 176.9 0.87 93.3 0.87 55.8 0.94
SGBI+TLBI 206.9 0.53 117.5 0.76 193.4 0.86 87.6 0.87 50.0 0.95
SGBI+TGBI 162.2 0.62 42.3 0.92 13.7 0.99 0.0 1.00 0.0 1.00
T2FI 42.6 0.54 67.9 0.39 265.0 0.19 158.9 0.09 205.3 0.04
T2LBI 40.2 0.57 40.8 0.65 174.5 0.49 55.5 0.66 76.3 0.59
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3. As can be inferred from Tables 3a and b, schemes of
the type S+ tend to yield better solutions in terms of stability
and accuracy than T+. Most likely the phenomenon is due
to the major ability of the swaps to exploit the fact that most
of the changes in cluster membership occurs at the /rst few
iterations [6, p. 163].

4. For data sets divided into even clusters, the recovery
rate is steadily higher than for disparate sized clusters and
the di(erences becomes more pronounced as the number
of clusters increases. This is aligned with the conjecture
that Min{|W (�)|} encourages the formation of partitions
with clusters of equal size when the separation between the
clusters is not large [18,19, p. 94].

5. The double-transfer schemes detect the true cluster
structure only to a limited extent. According to the /gures
in the last two rows of Table 3a and b, the recovery rate of
T2FI and T2BLI is consistently lower than the correspond-
ing single-transfer schemes. A possible explanation for this
unexpected lack of accuracy is the dominant frequency of
the relatively ine@cient and restrictive single-transfer pass
as the most convenient operation among the ones allowed
by a double-transfer pass.

6. The global e(ectiveness of k-means solutions becomes
admittedly worse as the number of variables increases. This
is somewhat unusual since previous clustering research (e.g.
Milligan [20]) indicate that cluster recovery tends to increase
with increasing dimensionality. There are two possible
reasons for this. The /rst one is that the decline of the
percentage of total variation explained by the /rst princi-
pal component of (11) determines progressively (though
slightly) less compact clusters as m becomes larger. Sec-
ondly, the rapid diminution of the percentage of the cluster
variance explained by the other components adds poor dis-
criminatory variables to the representation of the entities.
This reduces the accuracy of k-means algorithm because the
/xed number of entities in the clusters tends to concentrate
in the corners as the dimensionality of the data sets increases.

6. Conclusion

The purpose of the present study was to analyze and com-
pare 17 di(erent relocation methods for the k-means algo-
rithm implementing the Friedman–Rubin criterion (given
that the number of natural clusters is known and the order
of entities within the data set is /xed). The methods are
based on a combination of transfers and swaps. The trans-
fers are either considered as a stand-alone tool or alternate
with the swaps as part of a mixed scheme. In the latter
case, the swaps are used both as pre-processing stage deter-
mining pro/table initial partitions for the transfers and as a
post-processing stage to improve the quality of the solution
determined by transfers. In addition, strategies moving two
entities at a time were investigated in detail.

The best results in terms of clustering quality and robust-
ness were obtained by TGBI, that is a relocation method

which, for each scan of the data set, executes only the
best transfers involving pairs of distinct clusters. More-
over, TGBI is indi(erent to the order of data whose inHu-
ence on other schemes is complex and unpredictable. For
medium-sized data sets the algorithm runs quite e@ciently.
Huge data sets are precluded because the large values of nm
would require excessive (for the present technology) com-
puter resources.

The complexity of mixed schemes is higher than pure
schemes due to their more intricate search, but the limited
impact on the classi/cation adequacy does not compensate
the extra energy expended for these procedures. The exper-
iments of Section 5 indicate that combinations of di(erent
strategies may provide signi/cantly less good performance
than do their isolate application. The swaps phase should
be essentially considered as a way of getting out of a local
minimum.

A major gulf between demand of computer resources and
quality of the outcome is noticed for double-transfer schemes
which, despite their enormous potential impact and their
formidable computational cost, produced poor-quality re-
sults and do not seem worthy of further consideration for the
Friedman–Rubin criterion (at least for local search strate-
gies).

An inherent limitation of the k-means algorithms tried in
this paper is that their /nal partition does not necessarily
coincide with one of the desired global minima. Since all
the schemes do only descent moves, they are not able to
force the process out of the current valley and eventually
fall into a deeper one. The development of mixed algorithms
which combine the best elements of the transfers/swaps with
a non-descent technique would be a signi/cant contribution.

7. Summary

The purpose of this paper is to report and discuss the re-
sults of an empirical investigation of several techniques used
by k-means algorithms (based on the Friedman–Rubin ap-
proach) to move entities from one cluster to another. Most
of these procedures di(er basically in the number of crite-
rion evaluations required to reach an optimum and the ac-
curacy of this optimum. The prime objective of the current
research study has been to establish the relative merits of
17 combinatorial passes by comparing them across a variety
of arti/cial data sets. The experimental results suggest that
a direct and e@cient search which moves down the steep-
est permissible direction globally outperforms both simple
and more sophisticated reassignment methods in terms of
grouping e@cacy and numerical e@ciency.
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