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Riassunto: si adopera la classificazi one gerarchica aggregati va per classificare n giudici
(per ognuno dei qudi si considerala graduatoria completa proposta su mitem) in gruppi
disgiunti ed omogenei. Lo schema si basasumatrici di di ssimilaritari cavateda coefficienti
di correlazi one ponderata che sono in grado di cogliere meglio di quelli tradizionali certi
profili di giudizio e consentono la defini zione di gruppi piu significativi di giudici.
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1. Introduction

M easuring agreement between two set of rankings is an i ssue frequently encountered in
many research studies. Classic fields where rank data occur are market segmentation,
consensus formation, scaes of symptoms and fedings, information retrieval . The situa
tion considered this paper is as follows: afixed set of mitem is arranged in order accord-
ingtothe different degree in whichthey possess acommon attri bute with 1 assigned tothe
most preferred i tem, 2 to thenext-to-most preferred and soforth by njudges {O,, O,,...,O }.
Gapsortiesare not dlowed: aranking is simply apermutation of theintegers 1 through n.
Each judge ranks independently of the other judges, but there is reason to bdieve that
there exist different subgroups among the n judges.

Cluster andysis (CA) i stheprocedure by which we objectively group together rank-
ings on the basis of ther differences and similarities. A crucid issue of CA isto decide
wether rankings should be described by elther apattern matrix or adi ssimilarity matrix. A
pattern matrix isa (nxm) matrix S=(s”.) where's, denotesthe rank given by thei-th judge to
the j-th object; adissimilarity isa (nxn) matrix D:(dij) where dij measures the degree of the
interjudge cl oseness (usudly, the latter is derived from the former). The most common
outputs of CA are a partition of rankings (which is applied to S) and a hierarchical cl assi-
fication (which is applied to D). The problem of iterati ve partitioning aset of judges into
disjoint types may be investi gated by using ak-means agorithm based on asimple func-
tion of the average Spearman’s p. Alternativey, theintergroup agreement can be evalu-
ated by the average Kendall’ s t.

The purpose of the present study is to obtai n asuccessively-nested set of partitions
based on a dissimil arity matrix compati ble with ranked data. The contents of the various
sections are asfoll ows. Section 2 reviewsthe genera formulation of weighted rank corre-
lati ons in which the incorporation of aweight function dlows more flexibility in the cl as-
sification. In Section 3 rank correlations are transformed in dissimilarity coefficients. In
additi on, the choiceof anagglomerati vead gorithm isbriefly discussed. Finally, in Section
4, we show experimenta results and summarize our conclusions.



2. Weighted rank correlations

Researchers in many fields have become increasingly aware that there are certain patterns
of resemblance which may reflect significant facets of the associati on between two rank-
ings. In evauati ng these relationships one would require aclassification method that cap-
tures the specific pattern and is not unduly affected by few possibly incongruous data.
Quadeand Sdama(1992) showed that statisticd methodsfor measuring association when
themagnitudeof intercategory di stances cannot beignored, group naturally intwo classes:
weighted rank correlation (w.r.c.) and correlation of scores. Inthisnote, we pursuethefirst
gpproach. In particular, we analyze aweighted version of the Spearman’s p
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where x_isthek-thrank given by judge O, after that the ranks given by judge 0, have been
arranged in their naturd order. Vector w={w,, w.,...,w_} isamonotonesystem of weights.
Theexpectations E(.) istaken over all m! permutati ons. Two specia cases of (1) areknown
in the literature. The Mango index (mango, 1997) is obtained by using w=i? i=1,..., m
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This measure is based on the sum of the second order minors extracted from the (mx2)
matrix having x as first column and the naturd ordering as second column. The Blest
index (Blest, 2000) is obtained by using w=(m-i+1)? i=1,...m
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Which is based on the differences between the accumul ated ranks of the two judges. Al-
though the two procedures appear to be entirely different, each of r,, and r, can be derived
fromtheother. Furthermore, (r_+r,)/2=p i.e. the Spearman’s coefficient. Thevaluesof r,,
and r, range between -1 and 1. The former occurs between s and =m-s+ 1fori=1,..., m
whereas +1 occurs only in the case of maximum concordance. A va ue near to zero indi-
cates no association between the rankings. Theindex of Mango and Blest act as comple-
mentary rank order statistics in cases of limited resource allocation because ascribing
higher importance to oneitem reduces the importance of another. For exampl e, it is more
satisfactory the placing of thewinner in aracein the first positi on than the placing of the
worst contestant | ast (ceiling effect). In other cases differences in low ranks would seem
more critical (floor effect). For example, when an admission office expunges the less
qudified candidates. The coefficient r, is more sensitive to floor effects because weighs
the front ranks heavier than the back ranks. Ther  reacts moreto ceiling effects. Another



interesting featureis that their vaues are synchronized to quantify bipolarity condition
that is comparisons in which the top-down and the bottom-up process simul taneously
affect the same attribute giving riseto a bidirectiona effect.

3. Correations, disance measures and agglomerative clustering

The basic assumption of this paper is that arank corrd ation between judgei and thej can
be used to quantify the similarity/dissimilarity between them. Since -1<r, , r, <1 these
coefficients have to be transformed into dissimil arities in the interval (0,1). Anderberg
(1973) suggested a linear transformation of the Spearman’s footrule which also corre-
sponds to the general coefficient of amilarity proposed by Gower (1971) for rank data
Kaufman and Rouseeuw (1990) proposed ali near transformation of theof the Spearman’s
p. Rank correlations can be mapped to distances using the fact that the matrix R= (r”) is
positive definite or positive semi-definite. Consequently, the transformation dij(w):[l-
(rij(w)+ 1)/2]°Sresult in metric dissimilarity matrices for each weight function. The use of
correlations in CA is in genera controversia, but appears legitimate for rankings since
each judgement is bel ng averaged over homogeneous atributes.

An agglomerative clustering starts with each judge forming a separate group. It
successively nests the group close to one another until al of the groups are merged into
one or until astopping rule is satisfied. Numerous agglomerati ve a gorithms are reported
in exploratory data anaysis. They differ mainly in their definition of intergroup dissimi-
larity (link). The focus of this sectionisto use monotone invariant proceduresinwhichthe
construction of the particul ar hierarchy depends solely on the rank order of the dissimil ar-
ity. While other links are possible, the type of data we are using precludes somewhat
methods using average of corrdations (UPGMA, UPGMC, WPGM C, Ward). In particu-
lar, we have employed the complete-link method because it is expected to identify stereo-
typd judge types and avoids chaining effect.

4. Experimental resultsand conclusons

Test datawere generated in two steps. In thefirst, we have defined six pivot permutations

Natural order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Inverse order 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Floor effect 1 2 3 4 515 14 13 12 11 10 9 8 7 6
Ceiling effect 10 9 8 7 6 5 4 3 2 1 11 12 13 14 15
Direct bipolarity 1 2 3 41110 9 8 7 6 5 12 13 14 15

Reflected bipolarity 15 14 13 12 5 6 7 8 9 1011 4 3 2 1

Then, we have generated 14 rankings by swapping the ranks of two randomly selected
positions of each of the pivot permutations. A tota of n=90 “judges” have been obtained.
The following table reports the alternati ve cl assifications of rankings into six groups, as-
suming dissimilarities based on Mango and Blest indices and two other commonly used
rank correlation coefficients: Spearman’s p and Kenddl's 1. Tne last row shows the cor-
rected Rand index of proximity between the “true “ partition and that achieved by the



method. Cell entries are the ranki ngs which have been moved from one group to another.

Table 1. aternative classifications of n=90 rankings

Type Cluster] Mango Blest Spearman | Kendall |
Natural order 1-15 +62 +62 +62 +62
-6,-9,-13 -6,-12 -6,-12 -12
Inverse order 16-30 +79,+90 +81 +81| +81,+82

-26,-29( -17,-21 -17,-21

Floor effect 31-45 +48,+87

Ceiling effect 46-60 | +9,+13,+67 +12 +12 +12

+70 -48 -48

Direct Bipolarity 61-75 +6 +6 +6
-62,-67,-70 -62 -62 -62

Reflected Bipolarity 76-90 +26,+29( +17,+21| +17,+21+48
-79,-90 -81,-87 -81| -81,-82
C.Rand index 0.7495( 0.7941 0.8186| 0.8939

Itisfull evident that p and T show scarce di scrimi nating power over the simulated rank-
ings (here, high values of the Rand index have anegdtive interpretation). In contrast, r,,
and r alow reassigning severd judges. For instance, according to the Mango index,
judgeo,=(15,14,6,12,5,13,7,89,10,11,4,3,2,1) and judge O~ (15,14,6,12,5,13,7,8,9,10,11,4,3 2, 1) SUp-
posed to be affected by reflected bipolarity, have been movedto a cl uster characteri zed by
inverse ordering because r,, gives more weight to agreement between back ranks than to
agreement between front ranks. It is important to realize that the choice of aw.r.c. coeffi-
cient presupposes the existence of particul ar type of clusters. Of course, there are no stan-
dard rulesasto how the weights of rij(w) should be chosen. However, thecharacteristi cs of
aw.r.c. would simplify the selection of dissimilarity measures and increase the generality
of research findings.
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