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Summary. Si affronta il problema della stima di verosimiglianza di una variabile casuale
espressa attraverso la sua funzione quantile. In particolare si segure l’approccio sviluppato
per i dati raggruppati in classi. L’efficacia del metodo è illustrata su due casi concreti. Si
adopera poi delle simulazioni per confrontarne l’efficienza con quella dei momenti pesati.
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1. Introduction

Frequency curves are often used for modelling extreme floods. To be a reasonable candi-
date, a distribution has to be able to accommodate positively skewed histograms. More-
over, since the form of empirical distributions encountered in hydrology is found to vary
considerably, it seems likely that a model with four or five parameters would be needed to
describe the data. The Wakeby distribution (WAD) has gained widespread use due to its
reliability in curve fitting, although the estimation of its parameters can be very difficult.
For this purpose, the standard technique is the method of PW-moments which sometimes
shows convergence failure. The maximum likelihood method (ML) for the Wakeby is
computationally demanding because of the complex and unwieldy objective function, but
offers a well established theoretical background. In fact, it is common to use the asymp-
totic properties of the ML estimates to construct confidence regions for parameters. The
objective of this paper is to show that the ML estimates can be implemented in a straight-
forward manner even for a random variable described by its quantile function.

2. The Wakeby random variable

The WAD is specified by the quantile function

X p,λ( ) = λ1 − λ2qλ4 + λ3q
λ5( )     0 ≤ p ≤1, q = 1 − p                        (1)

where λ
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 is a location parameter, λ
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, λ
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 are linear parameters prevalently related to the

scale of the variable and λ
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 are exponential parameters determining the shape of the

quantile function.The WAD has a finite lower bound λ
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 or both are negative. The probability density func-

tion is defined implicitly by the density quantile function that is the density expressed in
terms of the cumulative probability p.



1
dX p; λ( )

dp

= h X p;λ( )[ ] = λ4λ2qλ4 −1 + λ5λ3q
λ5 −1[ ]−1

= h p;λ[ ]
                (2)

The regions in which (2) is a valid density functions are

R1 : λ4λ2 > 0,λ5λ3 ≥ 0 R2 : λ4λ2 ≥ 0,  λ5λ3 > 0
R3 : λ4λ2 < 0,λ5λ3 > λ4λ2 ,λ4 ≥ λ5 R4 : λ5λ3 < 0, λ4λ2 > λ3λ5 ,λ4 ≤ λ5

     (3)

The parameters λ
4
 and λ

5
 determine the type of tails of the WAD. For example, if λ

4
,λ

5
> 0

then (2) has increasingly peakedness and short tails; if λ
4
, λ

5
<0 the tails have increasingly

heaviness. The derivative of the quantile-density function (2) is

 h' p,λ( ) = h3 p,λ( )A p,λ( );   A p,λ( ) = λ2λ4 λ4 −1( )qλ4 −2 + λ3λ5 λ5 −1( )qλ5 −2      (4)

If p
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 is such that  h’(p

c
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h" pc; λ( ) = −h3 pc;λ( )D pc ,λ( );  D p,λ( ) = λ2qλ4 −3 λ4 − i( )
i=0

2
∏ + λ3q

λ5 −3 λ5 − i( )
i=0

2
∏    (5)

Consequently, the density is unimodal if (λ
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mation Z=X−λ
1
. The expected value of  Zi is given by

µ i Z( ) = i
j
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   

  iλ4 +1 − j λ4 − λ5( )[ ]−1
λ2

i− jλ3
j

j =0

i
∑                             (6)

Since Z-E(Z)=X-E(X) the central moments of X coincide with the central moments of Z. In
particular, the first moment exists finite if  λ

4
 ≠−1  and λ
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 ≠-1; σ2(X)<∞ if (λ
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>-0.5)∩(λ
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>1). The i-th probability-weighted  moment E{X[1-F(x)]i} has the simple expression

τi λ( ) = i +1( )−1λ1 − i +1 + λ4( )−1λ2 − i +1 + λ5( )−1λ3,    i = 0,1, …         (7)

3. Method of maximum likelihood (ML)

Let {X1, X2, …,Xn} be a simple random sample drawn from a WAD. The negative log-
likelihood function is S1(λ )=-∑ni,Ln[h(pi, λ )] where pi=F(Xi,λ) and F is cumulative
distribution function of the WAD. The criterion S1(λ ) can be minimized over λ through
application of the scoring method. An alternative could be the minimization over for λ
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,

λ
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, λ
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; an estimate for λ
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 is then obtained by λ
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)=X

min
. However, we have left

this as a check of the results. The gradient and the information matrix are:



gr λ( ) = h3 pi, λ( )A pi ,λ( )Xr
' pi ,λ( )     where    Xr

' pi,λ( ) = ∂Xr
' p,λ( ) ∂λr[ ]

p=p i

 
i=1

n
∑

Wr,s λ( ) = − h4 pi,λ( )Xs
' pi ,λ( ) Xr

' pi ,λ( ) 3A2 pi,λ( )h2 pi ,λ( ) − D pi ,λ( )[ ] +{
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   (8)

Given a preliminary estimate λ
0
 for λ then to obtain ML estimates we use the recursion

λ
m+1

=λ
m

-Bm δ(λ
m

) with δ(λ
m

)=[W(λ
m

)+γmI]
-1
g(λ

m
). Bm is a diagonal matrix of correc-

tion factors which fixes the step length of each parameter and γm is a positive scalar large
enough to make [W(λ

m
)+γmI] positive definite when W(λ

m
) it is not. The nonzero ele-

ments of Bm are selected  performing a systematic search along the Newton direction by
means of Faure sequences. More precisely, sequences of 1’000 points in [-δ(λ

m
),δ(λ

m
)]

are examined and the search is interrupted whenever S1(λ
m+1

 )<0.9999*S1(λ
m

 ). Since the
computation of pi cannot be directly carried out we have used a combination of bisection
and Newton’s method to solve Xi=X(pi,λ) for pi>pi-1 and p0=0. The algorithm has been
applied to two data sets reported in Haktanir and Bozduman (1995) and Haktanir (1997)
of n=50 and n=51 annual flood peaks values respectively. It must be said that when two
different data were recorded as the same value we have added 0.01 to one of the observa-
tions. The results have been compared with those obtained by the PWM method. These
estimates were determined by computing the first five sample PW-moments

ti = n−1 1 − Pj( )i
x( j)

j=1

n
∑ ,  i = 0,1,…,   with  Pj = j − r( )

r=1

i
∏ n − r( )

r =1

i
∏             (9)

setting them equal to (7) and solving τi(λ)=ti; i=0,1,…,4 for λ. To this end, we have ap-
plied the downhill simplex minimization to S2(λ)=Max{τi(λ)-ti i=0,…,4}.  This is a well-
known derivative-free optimization algorithm due to Nelder and Mead. It requires only
function evaluations and has a wide applicability for general function minimization. Table
1 below shows estimates obtained by the ML method and by the PWM method. The last
column reports the mean standard error of prediction MSE(λ)={n

-1
∑[xi-X(λ, pi)]

2}0.5. The
starting value λ0

  for the two methods has been determined by examining Faure sequences
of 100’000 points over the relevant parameter intervals.

To limit the evaluations of S1(λ ) and S2(λ ) in the required region, the algorithm handled
the constraints (3) by setting the objective function equal to 1042 whenever an inequality
was violated.ML represents a slight improvement over the PW for the two datasets. The
most obvious point to be noticed is that we can have multiple solutions (with both the
methods). When we analyze data which conform to different type of curves, the estimates



of the parameters can differ according to which method of estimation is used. This is not
surprising since the large number of parameters in WAD leaves a considerable variation
possible. However, the possibility of multiple solutions it is not necessarily a problem, but
can be an opportunity.

4. A Monte Carlo experiment

N=2’000 random samples of size n∈{30,50,70} were obtained by first generating a pseudo
random number q∈{0,1} and then inserting q in (1) to determine the “observed” peak flow
X. The parameter combination is λ1,0=200, λ2,0= -70, λ3,0=50, λ4,0= -0.5, λ5,0=1.5. For
each generated sample the ML and PWM estimates of λ were compared to the true value.
To initialize the iteration process from a sufficiently good value we took λ0.Two simple
coefficients of performance have been considered for comparison: the mean relative bias:
Mrb(λi)={N

-1
∑|λi,j-λi,0λi,0} and the standard deviation: Std(λi)={N

-1
∑[λi,j-mi]

2}0.5 where
mi={N

-1
∑λi,j}. Table 2 shows our findings.

The ML method has given results which are decidedly better than those obtained by PWM
both with respect to the bias and with respect to the standard deviation for all the type of
parameters (linear and exponential). It must be said that the ML estimates are computa-
tionally demanding, but not by an amount of likely practical importance in the age of
ample availability of fast computers.

It is well known that ML does not always give satisfactory results for models in
which one or more of the parameters corresponds to a limit on the range of the variable.
The estimation problem for the WAD when the regularity conditions for the ML estimates
do no apply has not yet been rewieved and discussed.
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