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Abstr act: In this paper we consider the problem of fitting a five-parameter generalization
of the Lambda distribution to data given in the form of a grouped frequency table. The
estimation of parametersis done by six different procedures: percentiles, moments, prob-
ability-wei ghted moments, minimum Cramér-Von Mi ses, maximum likeihood, and pseudo
| esst squares. These methods areeval uated and compared using aM onte Carl o study where
the parent populationswere GLD approxi mations of Normal, Beta, Gamma random vari-
ables and for nine combinations of sample sizesand number of dasses. Of the estimators
analyzed is concluded that, although the method of pseudo least squares suffers from a
number of limitations, it appearsto be the candidae procedure to estimatethe parameters

of a GLD from grouped data.



1. Introduction

The generalized lambda distribution (GLD) is a flexible and manageable tool for model-
ing empiricad and theoretical distributions. In empirical work the data on continuous vari-
ables are generally presented in one of two ways: individual observations are reported or
the dataare summarized in a grouped form with the frequency associ ated with each group
being reported as it is frequently the case for size distribution. The estimation of the pa-
rameters of the GLD for continuous datahas been discussed in severd papers (eg. Lakhany
and Mausser, 2000) and thereareseverad methods to estimatethe parameters when grou ped
data only are available (e.g. Berkson, 1980). Things are more difficult in the case of the
GLD because the density and the distribution function are not availabledirectly except in
a few special cases and must be determined by numerical methods. This paper andyzes
and compares traditional and new methods of parameter estimation from grouped data for
a quantile function. More specificaly, our purpose is to determine the method of estima-
tion that preserves the versatility and the effectiveness of the GLD in fitting continuous
variables when

i) the data are collected or published in a histogram form or in the form of a grouped
frequency table. Individual observationsare unrecoverable or permanently lost;

ii) the grouping is not fine enough to be negligible.

The GLD appears to be most useful when the form of the empirical distribution is
found to vary considerably and it seems likdy that a modd with four or five parameters
would be needed to describe the data

The content of the present paper is organized asfollows: in Section 2 the properties
of afive-parameter GLD model are described and the main analyticd and stati stical pecu-
liarities are summarized. Section 3 contains a discussion of six estimation procedures in
the case of grouped data paying special attention to the extension of these methods to a
random variable defined by its quantilefunction. A limited series of Monte Carl o experi-
mentsis undertakenin Section 4 with the objective of identifying the most effective esti-

mator for the parameters of a GLD model.



2. Thegeneralized lambda distribution (GL D)
In this section we shall outline the defining properties of afive-parameter generalizaion
of the lambda di stribution i n order to obtain smoothed analytic representations for grouped

data The GLD is specified by the quantile function
X(pA)= A +Aop™ -Aag®  0<p<l g=1-p &)

where A, is alocation parameter, A, A, are linear parameters prevalently related to the
scale of the varigble and A ,, A, are exponential parameters determining the shape of the
guantile function. The two linear parameters contribute to specify the relative weights of
the tals and to avoid imposing upon the fitted curves constraints not present inthe daa.
Sincethe GLD features four shape parameters, we can expect this model to assume awide
variety of shapes.

The expression (1) readily yidds X(p,A) in terms of a uniform random variablep
ontheinterval [0,1]. This fact isparticularly relevant not only for simulation experiment,
but also for order statistics, optimal grouping, inequality measures, heavy tail behavior
analysis, loss distributions, osculaory interpolation, Q-Q plotting.

The following conditions are i mposed:

If A, ~ 0then Ay, >-w; If A, - o then \y|<oo; If A, — —co then A, 20 )
If A3 Othen Ag>—co; If A o then \g|<oo; If A5 — —oo then )\3¢0()

The support of the GLD random variableis (A- A, A+ A)if A, A >0andisthereal line
if A, A;<0. Hence, theextremes of X(p, A) are finite or infinite according to the sign of the
exponentiad parameter.

Andyticexpression for thecumul ativedistribution function F(x,A) of aGLD mode
isingenerd not available. However, the fact thatthe GLD isnot invertible is not aserious

drawback because the same istrue for many popular modds such as normal, lognormal,



generalized gamma, generalized beta. The limiting forms as A, and/or A, tend to zero or

divergeto o are

GLD (A, A, A, 0, 0) = GLD (A, 0,0, A, A)) = degenerate
GLD (A, A,, 0,2, A = GLD (A}, A,, A,<o0, A,,00) = power function

GLD (A, 0,A;, A>-00, A)) = GLD (A, A,<0, A,, 00, A,) = generalized Pareto

3!

GLD (A, Ay A, 1, 1)= uniform (A A, A+A,)

173

GLD (A, A=A, 2, 2)= uniform (A=A, A, +))

Other versions of the unif orm distribution are present. The GLD has been found to adapt,
by suitable choice of A, to awide variety of theoretical and practica distributions (Karian

and Dudewicvz, 2000). For example, if we let A A,=B, A=y, A =0-B/A,+Y/A, then

GLD (a, B=y, 0, 0) =logistic
GLD (a,0,v, A, 0) = exponential
GLD (a, B, 0,0, A,)) = reflected exponential

There are several parameterization of the asymmetric lambda distribution: Shapiro-Wilk
(1965), Joiner-Rosenblatt (1971), Ramberg-Schmeiser (1974), Filliben (1975), Hoaglin
(1975), Lamet al. (1980), Freimeret al. (1988), Sarabia(1996), Devroye (1996), Gilchrist
(2000). All of these versions can be obtained asspecial casesof (1).

Although the GLD isvery versaile and flexible in curve fitting, the estimation of
its parameters can be difficult. In paticular, the large number of parameters can generate
high variability of the estimates, strong correlation between those estimates numericd
singularities due to heavy cancellation in X(p,A), and time consuming optimization ago-
rithms. Of course, if the histogram of the data or theoreticad considerations suggest fitting
simpler models (e.g exponential, Pareto or generalized Pareto or a symmetric distribu-

tion) then the more parsimonious parameterization should be employed.



Shapes of the GLD model
The probability density function of a GL D random variable is defined implicitly by the

density quantile function (d.q.f), that isthe density expressed in terms of p

1 1
dX(pA) ~ '{X(IOJ\)] = )\4)\2px4—1 +)\5)\3q7‘5 T (3)
dp

See Parzen (1979) for a general definition of this function. The parameter A, exerts its
influence on the density function viathe quantile function X(p, A).

If A,=\,and A=A then the GLD is symmetric about the pole X=A, because the
quantile function satisfiesthe condition X(p, A)- A =-X(1-p,A)+ A,. Hence interchanging
(A, A and (A, Ay in (3) we obtain ad.qf. thet is the mirror image of the original d.g.f.
W hen scal eand | ocation are changed we transform the variable Y =a+bX. The transformed
distribution isanother member of the GLD family withA,, A,, A, replaced by a+bA,, bA,,
bA, respectively. Expression h[X(p, A)] represents alegitimate probability density func-
tion if and only if it is nonnegative and integrates to one. The latter condition follows

directly from (3). Regions in which h[X(p, A)] is non negative are

Vi AgAo >0, Ash3 =0 Vo 1AgA22 0, AgA3 >0

Va3 sgn(Aahz) 2 sgn(Aghs), As <LAs>1 Vjisgn(AsAz)#sgn(Aghs) A > LAs <1
provided that provided that

_MAs (1_)\4)1_M ()‘5‘1))\5_l _Ads (1—)\5)1_“()\4 —1))‘4 i
)\5)\3 ()\5—)\4))\5_}\4 )\2)\4 ()\4 _)\5))\4—)\5

Q)

In particular, regions V, and V , are based on a result of Karian, Dudewicz, McDonald
(1996). The ordinates of the density quantile function a the extremes of the range of

variation are (A A,, A A, if A, A:21 and zero for A, A<1.



The parameters A , and A, determinethe type of tails of the GLD. Forexample, if A, A.>0
then (3) hasincreasingly peakedness and short tails; if A ,, A,<0 the tails have increasingly
heaviness.

The density tendsto zero bothasp - Oandasp - 1if, respectively,A ,<land A <1,
provided that A, and A, are finite. On the other hand, if A 21 (A;>1) the density has trun-
cated |€ft (right) tail. In particular, the caseA ,>1 allows model (1) to describe the ectud
distribution with arange equal to the dosed-open infinite interval [A-AJ/A,, «] which is
physically reasonable for many gpplications. The relative weights of the tails are con-

trolled viaA ,and A,.

The derivative of the quantile-density function (3) is
3 - _
h‘[X(p,)\)]={h[X(n)\)]} [7\37\50‘5 —l)q)‘5 =M A (A, -D)p 2] ®)

If po Oorif p-1thenh’[X(p, A)] tends, respectively, to

()‘4 _1) —2h, +1 ;
- fi - 0if A <1
sgn(AoAs JAoA4)° P P o

(As-9)
Sgn()\a)\s)()\s)%)

3 6
sq 2" for po 1if Ag<1 ©

Therefore, the slope a the lower (upper) extreme of a GLD random variables is zero,
nonzero but finite, or infinite if, respectivey, A,<0.5, A,=0.5, 0.5<A ,<1 (A;<0.5, A .=0.5,
0.5<A,<1). If 1< A ,<2thenh’ [X(p, A)] divergesto -co when A,>0 (or + o0 when A,<0) for
p- 0. If 1<A <2thenh'[X(p, A)] divergesto +co when A >0 (or -0 when A,<0) for p— 1.
The derivative (5) is always finite at p=0 and p=1if A,, A .>2.

If p, is such that h'[X(p,, A)]=0 then

A -

i x(min] =0 X(“;A)]@ZM(M ~Yna-2)p’ +A@5(A5—1)(A5—2)q35_3ﬁ @



Hence, the density isunimodal if A, A.>2 and A, A>0 orif A, A<Oand A, A,<Oor if
0<A,, A;<landA,, A>0. The density is zeromodal if 0<Min{A,, A;} and Max{A, A }>1
andA,, A>0orifA,=1,2 and sgn(A ;A )>0 or if A .=1,2 and sgn( ,A )>O0.

The moments of the GLD random variable

The mean and the median of a GLD random variable are

u:)\+ )\2 _ )\3

) _ A A
VY Gasd B M, = A, +1,05™ —A;0.5" ®)

Consider the linear transformation Z=X-A,. The expected va ue of Z'is given by
I i- f . .
=3 E( 1IN B, (- ) +LAg) +2) )

where B(X,y) denotes the complete beta function. Since Z-E(Z)=X-E(X) the central mo-

ments of X coincide with the central moments of Z (Freimer et al., 1988). More specifi-

cally
02=0,—-2cB(A, +1A5+1)
o 302 EB(2>\4 +1LAs +1)  B(A,4+1,2A5+1)0
Yi=—F3 "% O
o® o D A3 A2
o3 3EB(3>\4+1 As+1) B, +13Ms+] 382\, +12)\5+1)E
2754 07'@ Y: 2 2c E (0

— )\Hl +(_ i+1

Azt

= =123, c=A\

di (+DAg +1] ) [(+I)5+1 =1 €=A2hs

It is evident that thei-th moment of the GLD exists if and only if min(A ,A.)>1. In addi-
tion,1 +y12 <Y, asfor all random variables. In spite of its versatility, the GLD cannot be
fitted to all data sets because there are moment values that no GLD random variable can

achieve. For example, symmetric distributions with a kurtosis value of y,<1.75 (Joiner and



Rosenblat, 1971). The coefficient of skewnessy, (A) isfunction of four parameterswhich
makesit difficult to egablish what shape changes occur astwo or more parameters vary
simultaneously (see, for example, MacGillivray, 1982). Moreover, for each value of
sgn[y,(A)] the shape of a GLD can range from normal curve to decidedly non-normal
curve ether positively or negatively skewed. Nevertheless, ever, the degree of skewness

can also be measured by a more gable index

[1 (g +1)0.5%] - [1—(>\5+1)o.5A5]

[1 0.5 s] (11)

A
s

()\4+1)[ -05 ] 5+1

U_Mezb)\ ()\4+1
5. (A) =

where §, is the mean deviation about the median. Index b(A), suggested by Bonferroni
(1940-41, p. 79, p. 116) and Groeneveld (1986), varies between -1 and 1 with values near
-1 indicating atruncaed J-shaped density and near 1 for a truncated L-shaped density.
For the GLD, interchanging A, and A,, other things being fixed, reverses the type
of the skewness. In fact, bA,, A, A, A = -b(A,, A, A, A); a@lso, b(A,-A,, A, A)=Db(-A,,
A, A.). Forthe special caseof A=A, the coefficient (11) dependsonly on (A, A,). If the
distributionis symmetric (that is, A ,=A,, A,=A;) then b(A)=0. The converse is not necessar-
ily true unlessA =A.. Infact, if A, zA, then b(A) vanishesif and only if A,=A_=1, but for this

parameter combination the GLD becomesthe uniform distribution which issymmetric.



3. Parameter estimation
Inthis section we show how to determine unknown parameterswhen the GLD isfitted to
empiricd distribution reported in the form of a frequency table. Suppose that a sampl e of

sizen from aGLD is grouped intok intervals
i i )
(%X m Ni= Zns =36, = 151200k (12)
i= i=

The vdues{X;, i=0,12, ..., k; X;_1<X;} are the boundariesof k exhaustive and non-over-
lapping dasses and k=3 is limited in practice (Kariya, 1986). In the present paper the
number of classesis fixed in advance and the X;’s are known constants and we will con-
sider the problem of estimati on of the parameter A when the availabl e information consists
only of the number of observed values X; falling into the various classes. The probability

mass assigned to the i-th class can be written as

k
F(X;A) -F(X_;A)=m(A)>0,i=12...k Sm()=1 (13)

i=1
We suppose that A TA O R’ and we think of Mo OA asthe true but unknown value of the
parameter A. Clearly, the grouping schememay significantly affect the parameter estima-
tion and the variance of estimators (e.g. O'Neill and Wells, 1972). For instance, if the

observations cluster significantly around particular values producing multimodal distri-

butions, no GLD can give an acceptable agreement with this behavior.

Percentile matching estimates (PM)
This method consists of equating a selection of five empirica X; and five theoreticd per-
centiles X(p;,A) provided that X; isagood approximation of the unknown empirical order

statistic corresponding to .

X, =A AR A =15 (14)



10

Where ijD(1,2,...,k’) and k’'=k if the upper bound of the variable is known and finite
otherwise k'=k-1. The PM method hasthe advantage of being operative without the ne-
cessity of knowing every measurement (for exampl e, the endpoi nts of the terminal dasses
can be ignored). On the other hand, the PM estimates depend markedly on the particular
choice of percentage points. If the sdected percentiles favor the central part of the distri-
bution then the estimation is better for the val uesaround the mode, but at thecost of being
much worse in the tals. If more constraints are placed on the tals then fewer conditions
can be imposed on remaining percentiles. In addition, the use of too extreme percentiles
would lead to very inaccurate estimates because of the high variance of the corresponding
order statistics. The grouping effect increases in the central classes because of the in-
creased crowding of the order statistics (David and Mishriky, 1968). If k’>5 is not too
large then all the ,.C, combinations of the k' observed percentilestaken five a atime could
be investigated to establish the “ optimal” subset of percentiles (supposing that atleas one
set gives an admissible value for A). Alternatively, one may select (systematically or at
random) a prespecified number of five-percentile solutions. These values are then com-
bined in a suitable way to produce more efficient estimates (see for example Castillo and
Hady, 1996). No distribution theory seems to be available for this procedure.

To keep the computation at a reasonable level, the PM estimates were obtained
applying system (14) to the five sextiles wy, Wy, W, Wy, Wg computed by

s~ Pj-1

p S, . .
Ws:(l_Bs)Xj—l'*'Bsz; Bs = ) ps:E§ I = Mm{ﬂ 2ps}: s=12...,5 (15)

fi O<i<k

Wehave considered other methods for i nterpol ating quantil es (Schmei ser and Deutsch,1977,;
Harrell and Davis, 1982; Korn et al. 1997) but did not offer any improvement over the
linear interpolation. It is important to note that, as five percentiles of the GLD tend to
coincide with the corresponding observed percentiles, theremaining empirica percentiles
do not necessarily concentrate more and more about their theoretical true value. Since

(14) is a nonlinear system of equations in A, one needs to use an iterative procedure to



solve for A. To calculate the PM estimates of A we have gpplied the downhill simplex
minimization to the following criterion

Som(A)= 1'\5/@2{ s = X(ps ?\)ﬁ (16)
under the constraint that min(A,,A.)>-1. This method isawell-known derivativefree op-
timization adgorithm due to Nelder and Mead (1965). It requires only function eval uations
and has awide applicability for general function minimization (Olsson and Nelson, 1975).
A limitation of the direct-search approach isthelack of guarantee that the globa optimum
will be achieved, though it works very well on a range of practical problems. Note that
there may be more than one value for which the minimum of the criterion is atained
(Karian and Dudewicz, 1999) and that there is no assurancethat the algorithm will termi-
nate in the interior of the appropriate parameter space. In many cases, a typical daa set
will lead to parameter estimatessatisfying their natural constraints (4). For other casesthe
constraints must be explicitly imposed. To limit the evduations of the objective function
in the required region, the direct-search algorithm handled the constraints by setting the

objective function equal to 10*? whenever an inequality was violated.

Moment matching estimates (MM)
This method suggests that empirical moments should be found from observed data and the
GLD model employed which hasthe closest theoretical counterparts. The empirica mo-

ments are calculated using the class midpoints
k k i, .
m= 3o fi=m; m :_Zl[cj—ml] f,i=2..5 )
= i=
The grouping errors introduced by the use of the dass midpointsin skewed distributions

can be significant though, as the greatest dass width goes to zero while the number of

observations is limited, the bias tends to zero.

11
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The computation of the moment estimatesinvolvesthe solution of

LA)=m, i=1...,5 (18)

Under the restriction min(A A )>-0.20. A set of roots of (18) can be obtained by applying

the downhill simplex by to the objective function defined as
3 2
S = (1 () -m) (19)

Several other objective function can be used to find MM estimates, but expression (19)
has proved to be the most convenient criterion function for the particular problem we are
solving. The presumed valueof A, is quickly computed from (8) once the other parameters
have been estimated. It should be remarked tha (18) can have multiplesolutions or no real
solution for some data sets (Ramberg et al., 1980). Even when a solution exists, the nu-
merical procedure devoted to its search may miss it because of convergence failure
(Ramberg et al., 1979). However, Karian et al. (1996) state that the possibility of multiple
solutions to (18) it is not a problem, but can be an opportunity.

The dassical method of moments is restricted to distributions possessing fairly
light tails because they must have afinite fifth moment. Moreover, the sample moments
are sensitive to extreme observations or other contamination in data and sampling vari-
ability in high order momentscan be very large. If the interval lengthsare unequal, then
the estimated moments admit of no simple “ Sheppard's-like” corrections. Thus, using
sample estimates of W, W, M in a fitting procedure may lead to extremdy biased esti-
mates. Another possible drawback isthat, even though the discrepancy between empiricd
moments and theoreticd moments isextremdy low, there isno guarantee that the corre-
sponding model fits adequatdy the data Also, the method of moments assumesthe avail-
ability of specific measurementsfor each class; consequently, if X ;and/or X, are omitted,

then the MM estimates will be biased as long as their imputation or the centering of the



extreme classes does not typify adequately the tailsof the digribution. Often the method

of moments fails because of the lack of information on the larger values.

Probability-weighted moment estimates (PWM)

The method of probability-weighted moments proposed by Greenwood et al. (1979) pro-
vides aviable dternative to the traditional method of momentswhen the tails of the em-
pirical distribution indicate that high order moments of the population may not be finite.
In fact, PW moments can be defined for any random variable whose mean exists in the

finite sense. For the GLD it isconvenient to work with the probability-weighted moments

Mo, A Al
i+l Ag+i+l II'I()\5+1+1)
=0

i=0,1...,4 (20)

v, =EQ(pA)p']=

Expression (20) shows that this type of moments is paticulaly of interest for a random

variable known in terms of its quantile function. Sample probability-weighted moments

for grouped data can be given as follows

n n I:ll ) D
X 2 CjDﬂ(l—r)E
=il g =zl b=l , for i=123,4 1)
: M(n-r)
r=0

In practice, the empiricd PWM'sfor grouped data are computed on the basis of no group-
ing effect in the data collection and using class midpoints as “ observed values” with a
GLD density. Thus n,c,’s, n,c,’s, ..., NG 's constitute the sample to which the PVM esti-
mators have been applied.

In the method of PW moments, the vector A is estimated by computing the first
five sample PW moments (21), setting them equal to the population PW moments (20)

and solving the system of equations

13
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TN=t, i=1,...4 22)

for A, A, A, Ao Anestimatefor A, isthen obtained by means of (8). In general, the PWM
estimaes for A do not lend themselves into the explicit forms. To determine the PWM
esti mates we proceed anal ogously to themethod of moments. More specificdly, thedown-
hill simplex adgorithm isapplied tothe criterion

Seum ()= Max{fs - (M)} @9
subject to min(A ,A.)>-1. The main advantage of using PWM is that the parameter esti-
mates are more reliable than the MM estimates for heavy-tails distributions because the
observed values appear linearly in (21). Furthermore, the equati ons associated with PWM
estimators are simpler and the computational techniques devoted to their sol ution experi-
enceless convergencedifficulties than thetraditiond moment estimators. A possi bl edraw-
back is that the sampling and asymptotic properties of the PWM estimators for grouped
data are not yet well established.

Minimum Cramér-von Mises estimates (MCM)

The quality of fit can be measured by the discrepancy between the empirical distribution
function and the predicted cumul aive frequencies thought to be an element of the GLD
family. In paticular, we can use the minimum digance estimation method based on a
grouped-data version of the Cramér-von Mises statigic (see Duchesne et al. 1997). The

corresponding estimator ischosen to be that vaue of A that minimizes
k
Svow ()= 3 [ ~F(X N F(6A) > F(1), F(XoA) =0 (24)
| =

where F(X;,A\) denotes the estimated p val ue that woul d generate the observationX; for the

given A. Expression (24) weights each deviation equally; other interests may suggest a



different weighting scheme. If Sy, (A) attainsits minimum at aninterior point ACA then

A isdso asolution of

v El[p‘ F(X;M)] . =0 r=12..5 (25)
According to Eubank (1998) we have
oF(X,\) _ . _ . _bx(p,A)E
T-—h[X(F,,A)]X,(F,,)\) with ><r(|=.,>\)-D o EJZF' (26)

where h[X(p,A)] isthe density-quantile function and F;= F(X;,A). Tofind A we canusethe
Newton-Raphson iterative procedure. The elements of the gradient and Hessian can be

written as

gr(A)=i§1(n -FHXEA)X(RA) r=12..5 (27)

UROES T LGEY PECRVECEY REECE ECRYER

~(n- F)X(F V)8R )

Where

AR A) = Aghs (A5 — (1~ |:i)>\5-2 —AAg(Ay - YRM2
(29)
_ X ()

I

) . . 0 . . . .
Given a preliminary estimate A for A then an algorithm to obtain the MCM estimaesis

B(F.A)

described by the recursion

A=A B ST with 3(A™)= [w()\m) +ym|]'1g(>\m) (30)

15
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where B, is a diagonal matrix of correction factors which fixes the step length of each
parameter and y,,, is a positive scalar large enough to make [W()\m)+yml] positive definite
when W()\m) itisnot. It should be remarked that the parameter estimates are highly corre-
lated and have relatively large variances because of the extremesusceptibility of the GLD
to even smadl changes in A. The nonzero elementsof B, can be sdected by performing a
systematic search d ong the Newton direction by means of Faure quasi-random sequences
(Faure, 1982; Fox, 1986). More precisely, we have considered a Faure sequence of 1000
points in the region [—6()\”]),6()\m)]. The computation of F; cannot be directly caried out
because the cumulative distribution of the GLD model is not andyticdly invertible. To
solve X;=X(F;A) for F>F;_; and F;=0 we have used a combination of bisection and
Newton’s method (see Presset al., 1993, p. 366-367)

The estimators that minimize (24) belong to the family of minimum distancemeth-
ods (Parr, 1981). These methods of estimation, under modest regularity conditions, are
strongly consistent, asymptoticaly normal and perform well in avariety of settings. Fur-
thermore, The procedure outlined above is close to the starship technique discussed by

King and MacGillivray (1999).

Maximum likelihood estimates (ML)
The classfrequencies can be thought of asarandom sample of size nfrom a multinomial
distribution specified by a vector [1;(A),T5(A),..., 4 (A)] of probabilities of k mutually

exclusive events. The negative log-likelihood function isof the form

S ()= —élni Log[F(Xi;)\) —F()g_l;)\)] = —élni Log{ni ()\)] Eni =n (31

i=1

Thiscan be minimized over A through application of the scoring method (Rao, 1973, 366-
374; McDonald and Ransom, 1979). The efficient score for the parameter A, and the (r,s)-

term of the information matrix are



or(A)= élm?)\) @gk(? )E
_X n Dm(h) Ham(A)E >
W s()‘) - .élﬂi )\) ?a ; @6?\5 E
0;&?) = [{X(FN]X (F.A) - X(F o N]X (F o) (33

The method of scoring isvery similar to the Newton-Raphson procedure and we can again
use the recursion (30) to achieve the minimization of (31). Gilchrist (2000, p. 295-298)
describes a more direct approach to the ML estimation for the quantile function based on
individual observations. By standard theory, the ML estimators will be asymptoticaly

normal, unbiased, consistent and efficient. See dso Cheng and Iles (1987).

Pseudo least squares estimates (PLS)

The vector A can be estimated taking up a nonlinear regression framework
X =E(X)+e, i=12...k (34)

Since we ignore if some observation isequal to X;, the value of X; is not necessarily the
order stati stics corresponding to the observed p, and E(X;) may not be the valuepredicted
by (34). Yet, for a sample size sufficiently large and if the grouping is not too coarse, X;
can be considered a reasoneble goproximation to X(p;, A) (David and Mishriky, 1968). It
should be emphasized that classica assumptionsonthe error terms{ e} are inappropriate
because the{ X;} will not have equal variance nor will they be uncorrelated or come from
a symmetric distribution. Since our purpose is to obtain an approximate solution, we ig-
nore these violations. The expected va ue of order statistics from a GLD is availablein

closed form and we may write (34) as

X(py )=, + 2, Bl T NI 9 5 (R e N‘)r(nﬂ)é (3

H(N)T(Ay+n+ B “PH (n+1- N (A5 +n+1)
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provided that min(A,A)>-1. The computation of E(X;) requires repeated eval uations of
the gamma function. Nevertheless, it is well known that for continuous random variable,

E(X,) convergesto X(p;,A). Thus, for large samples we have
X =AM+ AP - Aaq +g; i=1..k (36)
The least squares approach cdls for choosing A to minimize

spLs(A)=él[>ﬁ -X(p)] 37

The {f;} in (37) take into account the fact that there are unequa counts in the intervals.
The distinguishing features of many real data sets are a heavy thickness of the tailsand an
accentuate peakedness. It would be interesting to incorporate inthe PLS method aninge-
nious system of weights so that the tails become adequatdy detectable.

Since(A A\ ;) areinlinear form, minimization of S, (A) can be achieved by first
assuming tha (A ,A ) are known constants and then sol ving the minimization problem asa
linear regression of X; on X(p;,A) ( Lawton and Sylvestre, 1971). The parameter reduction
has the additional benefit that it is necessary to supply an initial guess vdue only for
(A ,A5). Thevaluesof (A A ,A,) are theninserted i nto the minimization function (37) and a
new value of (A ,,A,) iscomputed. The processisrepeated until an optimum of the criterion
isreached. The current estimate of (A ;A ;) can be determined using the Newton-Raphson
algorithm described in the preceding section.

The criterion S, (A) is the squared Samuel-Bachi distance (Samuel and Bachi, 1964)
between the observed quantile function andthe GLD. If X; were the order statistic corre-
sponding to p; then thevector A which minimizes S, (A) would coincidewith thewei ghted
L2 quantiledistance estimator discussed by LaRiccia (1982). Oztirk and Dal e (1985) used
(26) for microdata. Oztirk and Abouammoh (1987) considered the absolute version of

(26) for estimaing A in the Ramberg-Schmei ser parameterization of the GLD.



4. Comparison of the methods

A good fitting procedure is not very useful unless one can assess its standard error by
Monte Carlo methods. This, however, ispossible only when the procedure is completdy
automated and its execution time isforeseeabl e and compatiblewith an adequate number
of replicaions. Unfortunately, the estimates for grouped data must be deveoped on a
case-by-case bass because the results are not invariant under different grouping schemes
even though the individual observations are the same. Consequently, only alimited simu-
lation study was conducted to compare the performances of the alternative estimation

techniques and investigate their properties.

Monte Carlo experiments
Random samples were obtained from GL D models which were good substitutes of two
symmetricdistributions: Normal (0,1), Beta(2,2) and two positively skewed distributions:

Gamma(2,1), Beta(2,4).

Model | Density range

Normal(0,) |(2m)™®* X o, +oo

Beta(2,2) 6X(1-X) 0,1

Gamma(2,1) | xe 0, (38)

Beta(24) |20x(1-x)* 0,1

We believe that the above models areillustrative of a range of commonly encountered
situations.

Parameters of the GLD models were selected by considering the closeness of the
quantile function X(p,\) to F-1() where F() is the cumulative distribution function of the
random variable being approximated. To check the closenesswe have followed the same

ideaas Karian and Dudewicz (2000, p.66-67) and used the criterion

d(GLD,F):l<l\i/I<%9|h(pi,}\) -f[x(p N} 5 :5%0, i=12..,499 (39
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Where f() isthe probability density function corresponding to F. Parameter valuesusedin

simulations are reportedin the following table.

Table 1: experimental cases from the GLD model

Nodel N X X X, s dGLDH

Normal(0,1) 0.0000000 4.6525421 4.6525421 0.1492010 0.1492010 0.0004430
Beta(2,2) 0.5000000 0.5095575 0.5095575 0.4480095 0.4480095 0.0060918
Gamma(2,1) 24.0345788 1.0875235 24.0726325 0.4043437 0.0547165 0.0022480
Beta(2,4) 0.7617832 0.2707079 0.7662556 0.4462439 0.2448268 0.0059850

Simulations were performed for samples of size nJ(1000, 2000, 4000) classified into k
classeswhere k[1(8, 14, 20). All inall, we have examined 36 distinct configurations. The

boundaries of the grouping intervals are asfollows

Model class _boundaries

Normal (0,3) | X :—3.1+6.2§'2§ X i :3.1—6.2§'zﬁ i2012...,k/2

Beta2, 2) xi:ﬁ:ﬁ i=012,...k
(k=80 00, 0.3 0.7, 1.1, 19, 29, 4.2, 56, 8.4
H=140 00, 02, 04, 06 08 12, 16, 20, 24
5| 3.0, 34, 39, 48 56 84

Gamma2 ) | X =8 _ 200 0.0, 02 03, 04, 0.5 06, 0.7, 0.8 0.9
. 10, 12, 1.4, 16, 20, 2.4, 28 34, 40 (40)
S| 48 56 84
(k=80 000, 0.08, 0.1 0.24, 0.32, 0.45, 0.60, 0.75, 1.00
K =140 000, 0.04 008, 0.12, 0.16, 0.22, 028, 0.34, 0.40
B 0.45, 0.50, 0.58, 0.67, 0.75, 1.0

Beta24) | X =0 _
k=200 0.00, 0.04 0.08 012, 016, 0.20, 0.24, 0.28, 0.32
a 0.36, 0.40, 0.4, 0.48, 052, 0.56, 0.60, 0.64. 0.68
B 0.74, 0.80, 1.00

Theoretically, Normal (0,1) and Gamma(2,1) have an infiniterange. In practice, truncation
at one or both the extreme is necessary as a result of the measurement mechanism or from

physical considerationsor by experimental convenience. Accordingly, we ded only with



truncated forms of these distributions by eliminating valueslower than X, or greater than
X (thisimpliesthe additional condition that A4,A5=0). Furthermore, the simul ated distri-
butions were discarded when they presented one or more zero observed frequencies.

For each GLD model the various estimates of A were compared to the true vaueh
Two simple cofficients of performance have been considered for comparison: the mean

relative bias and the standard deviation

O O :

1 N)\ij_)\oj . D\O- if )\0-¢O
Mrb(A ) =— H tha; =" ) 41
rb( ') NQE a; WM AT = 5 otherwise (41)

1

with Ay =13 (42)

The former quantifiesthe average magnitudeof the estimator’saccuracy for each param-
eter and the latter reflects the estimator’svariation from sample to sample. Most of the
investigations involving properties of multiparameter estimators have employed overall
criteria One commonly used measure of the goodness of a vector estimaor isthe relative

mean square error

O
O
20
=18

Mz

s
MSE(A) = @ C 43)

Zl~

Thestatisticsin (41)- (43) were calculated by generating N=1000 different random samples
for each number of class, for each samplesize, for each GLD model, and each estimation
scheme. The number of replications of 1000 may arguably not be large enough to establish
the actual values of Mrb, Sd and MSE, but would suffice to assess shortcomings and

relative merits of the various estimators.
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The numerica optimization routines involved in the various methods of estimation re-
quire that initial guesses on the parameter estimates be made. In order to initialize the
iteration processfrom a sufficiently good value we took a slight modification of the true

values of the parameters

A?=0.001u +Ag[1+0.25usgn(v—-05)],  j=12...,5 (44)

for each of the sdected models. The quantities u and v are two independent random vari-
ables on (0,1).

Regrettably, it ispossible for both the downhill simplex procedure and the Newton-
Raphson method to approach a solution very far from A, To reduce the impact of such
behavior on performance comparisons, the optimization dgorithms were initidized from
five different starting pointsand the one corresponding to the lowest Eudidean distance
from the true value was retained as the optima solution.

The fast multiple recursive generator (FMRG) proposed by Deng and Lin (2000)
was applied to produce uniform pseudorandom number on the unit intervd. The choiceof
thestarting va ues was based on the Wichmann-Hill dgorithm (Wichmann and Hill, 1982).
The seeds of the pseudo random sequences ensure that all the estimation schemes operate
on exactly the same samples and start from the same initid parameter combinations. All
the software hasbeen written in Future Basic 7 running on a G4 (one processor, 1GHz)
computer using Mac 10.3 operating system. Program codes as well as numerical reaults

are available from the author on request.

Results

Table 2, intwo parts, showsthe relaivemean bias (41) and the standard deviation (42) for
the 36 configurations considered in the simulation plan. Actudly, the two indices have
been averaged over the five parameters to obtain summary measures. Table 3 reports the

M SE obtained by the various methods.



Several points are worthy of note based on a thorough inspection of the findings in the
tables.

1. The most obvious point to be noticed is tha the GLD parameters were generally esti-
mated with reasonable accuracy regardless the shape of the histogram of the generated
data Both the relaive bias and the standard deviation decrease asthe size of the samples
increases (an indication that al of the methods provide consistent estimators). However,
the generd quality of the resultsrapidly deteriorates with increased popul ation skewness.
For the PLS method, all indicators achieve the best vd ues. The MCM and PWM methods,
in thisorder, have the worst performance among all six methods.

2. Therdaiveperformance of the methods did not greatly depend on thenumber of dasses.
Thisissurprising since adecrease in efficiency isexpected in using fewer classes, a |east
for skewed distributions. The scarce or null influence of k on the behavior of the param-
eter estimators should be primarily ascribed to the large size of the samplesused in our
simulation plan. Also, the unbalanced partitions used for G(2,1) and B(2,4) have limited
the negative effect of anincrease of the variance due to an increase of k.

3. The method of percentiles has several advantages. For example, the outliers are given
lessweight than in the moment estimates; in fact, thePM estimators can still be computed
when moments do not exist. Yet, the validity of this method is seriously hampered by the
lack of a theoreticd justification in selecting a given set of percentiles. The sextiles em-
ployed in our experiments havegiven satisfactory results for symmetric distributions, but
the performance dropped down for the positively skewed distributions. Gaswirth,1972
pointed out that the practice of equally spaced percentiles is not an optimal choice for
highly skewed distributions.

4. The method of moments produced good estimates in our experiments, but it is not
recommendablefor a general use with grouped data from continuous di stributions. In part
because, to operateat its best, themethod requires corrections which are difficult to estab-
lishandin part because of the numerica and statistical instability of high order moments.

Also, there isarbitrarinessin the choice of the moments to equate.
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5. The probability-weighted moment matching is not very accurate in estimating the GLD
parameters for grouped data. However, sincethe PWM estimates can be cdculated with
relative easy, they can sarve as a good automated routine to determine initial guessesfor
the parameters to be used with other methods.

6. The Cramér-von Mises method yields reliable estimates (at least for symmetrical
distributions), but is hard to apply because of the intricate form of the Hessian matrix
involved inthe iteration process. In fact, the MCM method encountered the worst conver-
gence problems of any of the techniques considered.

7. The scoring method employed to determine the maximum likelihood estimates has
given resultswhich are slightly better than those obtained by MCM, but not by an amount
of likely practicd importance. Both ML a d MCM are computationaly demanding be-
causeof the complex and unwiel dy objectivefunction, but the former off ersa well estab-
lished theoretical background. Infact, it iscommon to use the asymptotic properties of the
ML estimates to construct confidence regions for parameters.

8. In the vast mgority of cases, the pseudo least squares method provided the best result.
Inthis sense, we suggest PL Sthe asthecandidate procedure to edimate the parameters of
a GLD from grouped data. An attractive property of thismethod isthe possibility that the
initia guesses must be supplied only for the exponentid parameters. Furthermore, the
PLS method has the practicad advantage of being simply executable using a nonlinear
regression routine implemented in several statistical packages. On the other hand, the
sample and asymptotic properties of the PLS method have as yet to be extensively ex-

plored. More theoreticd work needsto be done.



Table 2a meanrelative biasfor the 36 experiments

Model k n PM MM PWM _ MCM ML PLS
N(0,1) 8 1000 0.0715 0.1136 0.1256 0.1273 0.1660 0.1170
2000 0.059C 0.0985 0.1191 0.1138 0.1088 0.0987

4000 0.050¢ 0.0875 0.113C 0.1105 0.0994 0.0857

14 1000 0.0708 0.1131 0.1243 0.1236 0.1479 0.1153

2000 0.0572 0.0980 0.1162 0.1145 0.1071 0.099C

4000 0.0471 0.0878 0.112C 0.1168 0.1042 0.083¢

20 1000 0.0728 0.0955 0.1236 0.1229 0.1311 0.1083

2000 0.0603 0.0955 0.1138 0.1146 0.1093 0.1202

4000 0.0513 0.0879 0.1094 0.1186 0.0996 0.0866

B(2,2) 8 1000 0.171¢ 0.0912 0.0726 0.0928 0.0776 0.1100
2000 0.1396 0.0709 0.0573 0.0866 0.0761 0.0958

4000 0.1037 0.0547 0.044S 0.0828 0.0772 0.0840

14 1000 0.172C0 0.0890 0.0722 0.0914 0.0701 0.1013

2000 0.1301 0.0688 0.057C 0.0834 0.0752 0.0907

4000 0.0974 0.0482 0.0435 0.0816 0.0760 0.0802

20 1000 0.177C 0.0905 0.0694 0.091C 0.0692 0.0995

2000 0.1411 0.0672 0.054C 0.086¢ 0.0741 0.0924

4000 0.1093 0.0487 0.0436 0.0845 0.0753 0.0895

G(2,1) 8 1000 0.1718 0.1010 0.1078 0.3146 0.2604 0.1034
2000 0.1515 0.1012 0.0962 0.3091 0.2191 0.0874

4000 0.1337 0.1027 0.0888 0.2942 0.1897 0.0763

14 1000 0.1815 0.0993 0.106C 0.3016 0.2355 0.0936

2000 0.1443 0.1019 0.0911 0.2885 0.1812 0.0803

4000 0.1152 0.1013 0.0794 0.2818 0.1447 0.0708

20 1000 0.160C 0.0999 0.1022 0.304¢ 0.3197 0.090C

2000 0.1353 0.1007 0.0873 0.2826 0.2275 0.0782

4000 0.1084 0.1008 0.0812 0.3150 0.1912 0.0702

B(2,4) 8 1000 0.1418 0.0946 0.0828 0.1173 0.0879 0.1044
2000 0.1225 0.0960 0.0678 0.1122 0.0722 0.0937

4000 0.112C 0.0954 0.0592 0.1045 0.0681 0.0854

14 1000 0.1550 0.0953 0.0915 0.1128 0.0855 0.0958

2000 0.121C 0.0955 0.0867 0.1054 0.0703 0.0875

4000 0.0982 0.0942 0.0806 0.0985 0.0668 0.0812

20 1000 0.1558 0.0949 0.0806 0.1103 0.0904 0.0951

2000 0.1254 0.0957 0.0685 0.1035 0.0752 0.0876

4000 0.1024 0.0962 0.0602 0.1020 0.0720 0.083¢

Total 4.2189 3.2732 3.0895 5.5026 4.4013 3.3228
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Table 2b: mean standard deviation for the 36 experiments

Model k n PM MM PWM MCM ML PLS
N(0,1) 8 1000 0.095¢ 0.2031 0.2253 0.202 0.283 0.2148
2000 0.0867 0.1398 0.219C 0.186 0.183 0.1751

4000 0.0765 0.0954 0.2093 0.190 0.166 0.1507

14 1000 0.116C 0.1975 0.2238 0.199 0.276 0.2023

2000 0.1031 0.1402 0.2142 0.194 0.186 0.1755

4000 0.094C 0.1004 0.209C 0.193 0.175 0.1469

20 1000 0.1222 0.1934 0.2244 0.198 0.270 0.1940

2000 0.1149 0.1428 0.2085 0.189 0.200 0.2174

4000 0.1114 0.1023 0.2044 0.193 0.175 0.1559

B(2,2) 8 1000 0.1096 0.0504 0.0438 0.055 0.045 0.0552
2000 0.0862 0.0397 0.0342 0.052 0.044 0.0431

4000 0.0644 0.0295 0.0267 0.050 0.045 0.0328

14 1000 0.1077 0.0510 0.0433 0.055 0.041 0.0478

2000 0.0806 0.0408 0.0341 0.050 0.044 0.0360

4000 0.0616 0.0290 0.0260 0.049 0.044 0.0286

20 1000 0.1105 0.0519 0.042C 0.054 0.041 0.0444

2000 0.088C 0.0398 0.0324 0.052 0.043 0.0387

4000 0.0667 0.0295 0.026C 0.051 0.044 0.0349

G(2,1) 8 1000 0.4391 0.8184 0.5738 1.014 0.957 0.5548
2000 0.4305 0.8399 0.5572 1.035 0.879 0.4932

4000 0.4024 0.8321 0.5517 1.030 0.830 0.5082

14 1000 0.473C 0.8236 0.5654 1.167 0.918 0.5409

2000 0.4352 0.8193 0.5516 1.134 0.793 0.5333

4000 0.3904 0.8032 0.5364 1.103 0.740 0.4999

20 1000 0.4538 0.8115 0.5583 1.067 1.011 0.5330

2000 0.4188 0.8164 0.5444 1.068 0.879 0.5082

4000 0.4012 0.8316 0.5545 1.101 0.813 0.4835

B(2,4) 8 1000 0.0656 0.0508 0.0432 0.065 0.043 0.0423
2000 0.0532 0.0516 0.0355 0.073 0.037 0.0357

4000 0.0437 0.0509 0.0308 0.059 0.034 0.0308

14 1000 0.0831 0.0514 0.043C 0.062 0.042 0.0386

2000 0.0668 0.0511 0.0383 0.059 0.035 0.0340

4000 0.053¢ 0.0503 0.0345 0.056 0.033 0.030¢9

20 1000 0.0848 0.0508 0.0423 0.061 0.045 0.0379

2000 0.0694 0.0509 0.0353 0.057 0.038 0.0332

4000 0.0578 0.0513 0.0308 0.056 0.036 0.0313

Total 6.1187 9.5315 7.5736 12.480 10.468 6.9638




Table 3: mean square error for the 36 experiments

Model k n PM MM PWM __ MCM ML PLS
N(0,1) 8 1000 0.0622 0.1343 0.1865 0.2437 0.3458 0.1591
2000 0.0416 0.0925 0.1776 0.1792 0.1293 0.1160

4000 0.0298 0.0664 0.1565 0.1548 0.1039 0.0854

14 1000 0.0573 0.1229 0.1802 0.209¢ 0.2572 0.1569

2000 0.0343 0.0892 0.1606 0.181C 0.1180 0.1164

4000 0.0220 0.0665 0.1550 0.2315 0.1098 0.0806

20 1000 0.0570 0.0870 0.1851 0.2013 0.2072 0.1438

2000 0.0375 0.0844 0.1552 0.1710 0.1272 0.2057

4000 0.0275 0.0652 0.1423 0.2016 0.1006 0.0897

B(2,2) 8 1000 0.3041 0.0897 0.0442 0.0716 0.0473 0.0967
2000 0.1930 0.0582 0.0277 0.0641 0.0443 0.0737

4000 0.1043 0.0350 0.0173 0.0586 0.0451 0.0576

14 1000 0.2854 0.0868 0.0432 0.070C 0.0395 0.0802

2000 0.1634 0.0561 0.0272 0.0594 0.0437 0.0644

4000 0.0928 0.0289 0.0162 0.0578 0.0437 0.0519

20 1000 0.3097 0.0895 0.0404 0.0681 0.0387 0.0741

2000 0.1985 0.0533 0.0242 0.0633 0.0428 0.0652

4000 0.1114 0.0294 0.0160 0.0604 0.0433 0.0616

G(2,1) 8 1000 0.6005 0.0752 0.1291 2.6568 2.3653 0.1258
2000 0.4633 0.0753 0.0989 2.9661 1.6327 0.0815

4000 0.3214 0.0768 0.0822 2.4534 0.9792 0.0560

14 1000 0.6473 0.0728 0.1249 2.6114 2.0890 0.0936

2000 0.4243 0.0764 0.0920 2.5488 0.9789 0.0618

4000 0.2499 0.0755 0.0691 2.1998 0.4114 0.0476

20 1000 0.5364 0.0739 0.1165 2.0654 3.7986 0.0853

2000 0.3625 0.0745 0.0822 1.651¢ 1.5767 0.0591

4000 0.2147 0.0751 0.0686 2.4292 0.9067 0.0460

B(2,4) 8 1000 0.2052 0.0659 0.0618 0.1287 0.0673 0.0848
2000 0.143S 0.0676 0.0414 0.1288 0.0457 0.0694

4000 0.1133 0.0669 0.0309 0.1031 0.0393 0.0601

14 1000 0.2639 0.0672 0.0732 0.1158 0.0627 0.0727

2000 0.1608 0.0672 0.0659 0.101¢ 0.0431 0.0620

4000 0.0961 0.0655 0.0555 0.0905 0.0390 0.0545

20 1000 0.2667 0.0668 0.0581 0.107¢ 0.0693 0.0711

2000 0.1711 0.0669 0.0418 0.0980 0.0479 0.0622

4000 0.1099 0.0681 0.0326 0.0945 0.0440 0.0579

Total 7.4830 2.6132 3.0801 24.8991 17.0844 3.0305
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