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Abstract: In this paper we consider the problem of fitting a five-parameter generalization

of the Lambda distribution to data given in the form of a grouped frequency table. The

estimation of parameters is done by six different procedures: percentiles, moments, prob-

ability-weighted moments, minimum Cramér-Von Mises, maximum likelihood, and pseudo

least squares. These methods are evaluated and compared using a Monte Carlo study where

the parent populations were GLD approximations of Normal, Beta, Gamma random vari-

ables and for nine combinations of sample sizes and number of classes. Of the estimators

analyzed is concluded that, although the method of pseudo least squares suffers from a

number of limitations, it appears to be the candidate procedure to estimate the parameters

of a GLD from grouped data.
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1. Introduction

The generalized lambda distribution (GLD) is a flexible and manageable tool for model-

ing empirical and theoretical distributions. In empirical work the data on continuous vari-

ables are generally presented in one of two ways: individual observations are reported or

the data are summarized in a grouped form with the frequency associated with each group

being reported as it is frequently the case for size distribution. The estimation of the pa-

rameters of the GLD for continuous data has been discussed in several papers (e.g. Lakhany

and Mausser, 2000) and there are several methods to estimate the parameters when grouped

data only are available (e.g. Berkson, 1980). Things are more difficult in the case of the

GLD because the density and the distribution function are not available directly except in

a few special cases and must be determined by numerical methods. This paper analyzes

and compares traditional and new methods of parameter estimation from grouped data for

a quantile function. More specifically, our purpose is to determine the method of estima-

tion that preserves the versatility and the effectiveness of the GLD in fitting continuous

variables when

i) the data are collected or published in a histogram form or in the form of a grouped

frequency table. Individual observations are unrecoverable or permanently lost;

ii) the grouping is not fine enough to be negligible.

The GLD appears to be most useful when the form of the empirical distribution is

found to vary considerably and it seems likely that a model with four or five parameters

would be needed to describe the data.

The content of the present paper is organized as follows: in Section 2 the properties

of a five-parameter GLD model are described and the main analytical and statistical pecu-

liarities are summarized. Section 3 contains a discussion of six estimation procedures in

the case of grouped data paying special attention to the extension of these methods to a

random variable defined by its quantile function.  A limited series of Monte Carlo experi-

ments is undertaken in Section 4 with the objective of identifying the most effective esti-

mator for the parameters of a GLD model.
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2. The generalized lambda distribution (GLD)

In this section we shall outline the defining properties of a five-parameter generalization

of the lambda distribution in order to obtain smoothed analytic representations for grouped

data. The GLD is specified by the quantile function

X p,λ( ) = λ1 + λ2 pλ4 − λ3q
λ5     0 ≤ p ≤1, q = 1 − p                        (1)

where  λ1 is a location parameter,  λ2, λ3 are linear parameters prevalently related to the

scale of the variable and λ4, λ5 are exponential parameters determining the shape of the

quantile function. The two linear parameters contribute to specify the relative weights of

the tails and to avoid imposing upon the fitted curves constraints not present in the data.

Since the GLD features four shape parameters, we can expect this model to assume a wide

variety of shapes.

The expression (1) readily yields X(p,λ) in terms of a uniform random variable p

on the interval [0,1]. This fact is particularly relevant not only for simulation experiment,

but also for order statistics, optimal grouping, inequality measures, heavy tail behavior

analysis, loss distributions, osculatory interpolation, Q-Q plotting.

The following conditions are imposed:

If  λ2 → 0  then  λ4 > −∞; If  λ4 → ∞  then  λ2 < ∞;   If  λ4 → −∞  then  λ2 ≠ 0

If  λ3 → 0  then  λ5 > −∞; If  λ5 → ∞  then  λ3 < ∞;   If  λ5 → −∞  then  λ3 ≠ 0
 (2)

The support of the GLD random variable is  (λ1- λ3, λ1+ λ2) if λ4, λ5 >0 and is the real line

if λ4, λ5<0. Hence, the extremes of X(p, λ) are finite or infinite according to the sign of the

exponential parameter.

Analytic expression for the cumulative distribution function F(x,λ) of a GLD model

is in general not available.  However, the fact that the GLD is not invertible is not a serious

drawback because the same is true for many popular models such as normal, lognormal,
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generalized gamma, generalized beta. The limiting forms as λ4 and/or λ5 tend to zero or

diverge to ∞  are

GLD (λ1, λ2, λ3, ∞, ∞) = GLD (λ1, 0, 0, λ4, λ5) = degenerate

GLD (λ1, λ2, 0, λ4, λ5) = GLD (λ1, λ2, λ3<∞, λ4,∞) = power function

GLD (λ1, 0, λ3, λ4>-∞, λ5) = GLD (λ1, λ2<∞, λ3, ∞, λ5) = generalized Pareto

GLD (λ1, λ2, λ3, 1, 1)= uniform (λ1-λ3, λ1+λ2)

GLD (λ1, λ2=λ3, 2, 2)= uniform (λ1-λ2, λ1+λ2)

Other versions of the uniform distribution are present. The GLD has been found to adapt,

by suitable choice of λ, to a wide variety of theoretical and practical distributions (Karian

and Dudewicvz, 2000). For example, if we let λ2λ4=β, λ3λ5=γ,  λ1=α-β/λ4 +γ/λ5 then

GLD (α, β=γ, 0, 0) = logistic

GLD (α, 0 , γ, λ4, 0) = exponential

GLD (α, β, 0, 0, λ5) = reflected exponential

There are several parameterization of the asymmetric lambda distribution: Shapiro-Wilk

(1965), Joiner-Rosenblatt (1971), Ramberg-Schmeiser (1974), Filliben (1975), Hoaglin

(1975), Lam et al. (1980), Freimer et al. (1988),  Sarabia (1996), Devroye (1996), Gilchrist

(2000).  All of these versions can be obtained as special cases of (1).

Although the GLD is very versatile and flexible in curve fitting, the estimation of

its parameters can be difficult. In particular, the large number of parameters can generate

high variability of the estimates, strong correlation between those estimates, numerical

singularities due to heavy cancellation in X(p,λ), and time consuming optimization algo-

rithms. Of course, if the histogram of the data or theoretical considerations suggest fitting

simpler models (e.g. exponential, Pareto or generalized Pareto or a symmetric distribu-

tion) then the more parsimonious parameterization should be employed.
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Shapes of the GLD model

The probability density function of a GLD random variable is defined implicitly by the

density quantile function (d.q.f), that is the density expressed in terms of p

                    

1
dX p; λ( )

dp

= h X p;λ( )[ ] =
1

λ4λ2pλ4 −1 + λ5λ3qλ5−1
                           (3)

See Parzen (1979) for a general definition of this function. The parameter λ1 exerts its

influence on the density function via the quantile function X(p, λ).

If λ2=λ3 and λ4=λ5 then the GLD is symmetric about the pole X=λ1 because the

quantile function satisfies the condition X(p, λ)- λ1=-X(1-p,λ)+ λ1. Hence interchanging

(λ2, λ4) and (λ3, λ5) in (3) we obtain a d.q.f. that is the mirror image of the original d.q.f.

When scale and location are changed we transform the variable Y=a+bX. The transformed

distribution is another member of the GLD family with λ1, λ2, λ3 replaced by a+bλ1, bλ2,

bλ3 respectively. Expression h[X(p, λ)] represents a legitimate probability density func-

tion if and only if it is nonnegative and integrates to one. The latter condition follows

directly from (3). Regions in which h[X(p, λ)] is non negative are

V1 : λ4λ2 > 0, λ5λ3 ≥ 0 V2 :λ4 λ2 ≥ 0, λ5λ3 > 0

V3 : sgn λ4λ2( ) ≠ sgn λ3λ5( ), λ4 < 1,λ5 > 1

 provided  that

− λ4 λ2

λ5λ3

>
1 − λ4( )1−λ4 λ5 − 1( )λ5−1

λ5 − λ4( )λ5 −λ4

V4 : sgn λ4λ2( ) ≠ sgn λ3λ5( ),λ4 > 1,λ5 < 1

 provided  that

− λ3λ5

λ2λ4

>
1− λ5( )1−λ5 λ4 − 1( )λ4 −1

λ4 − λ5( )λ4 −λ5

 (4)

In particular, regions V3 and V4 are based on a result of Karian, Dudewicz, McDonald

(1996). The ordinates of the density quantile function at the extremes of the range of

variation are (1/λ5λ3, 1/λ4λ2) if λ4, λ5≥1 and zero for λ4, λ5<1.
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The parameters λ4 and λ5 determine the type of tails of the GLD. For example, if λ4, λ5> 0

then (3) has increasingly peakedness and short tails; if λ4, λ5<0 the tails have increasingly

heaviness.

The density tends to zero both as p→0 and as p→1 if, respectively, λ4<1 and λ5<1,

provided that λ2 and λ3 are finite. On the other hand, if λ4≥1 (λ5≥1) the density has trun-

cated left (right) tail. In particular, the case λ4>1 allows model (1) to describe the actual

distribution with a range equal to the closed-open infinite interval  [λ1-λ3/λ4, ∞] which is

physically reasonable for many applications. The relative weights of the tails are con-

trolled via λ2 and λ3.

The derivative of the quantile-density function (3) is

       h' X p,λ( )[ ] = h X p, λ( )[ ]{ }3
λ3λ5 λ5 − 1( )qλ5 −2 − λ2 λ4 λ4 − 1( )pλ4 −2[ ]              (5)

If p→0 or if p→1 then h’[X(p, λ)] tends, respectively,  to

                

−
λ4 − 1( )

sgn λ2 λ4( ) λ2 λ4( )2
p−2λ4 +1  for  p → 0 if   λ4 < 1

 
λ5 − 1( )

sgn λ3λ5( ) λ3λ5( )2 q−2λ5 +1  for  p→ 1 if   λ5 < 1
                          (6)

Therefore, the slope at the lower (upper) extreme of a GLD random variables is zero,

nonzero but finite, or infinite if, respectively, λ4<0.5, λ4=0.5, 0.5<λ4<1 (λ5<0.5, λ5=0.5,

0.5<λ5<1). If 1< λ4<2 then h’ [X(p, λ)] diverges to -∞ when λ2>0 (or + ∞ when  λ2<0)  for

p→0. If 1<λ5<2 then h’[X(p, λ)] diverges to +∞ when λ3>0 (or -∞ when  λ3<0)  for p→1.

The derivative (5) is always finite at p=0 and p=1 if λ4, λ5≥2.

If pc is such that  h’[X(pc, λ)]=0 then

h" X pc; λ( )[ ] = −h3 X pc; λ( )[ ] λ2λ4 λ4 −1( ) λ4 − 2( )pc
λ4 −3

+ λ3λ5 λ5 −1( ) λ5 −2( )qc
λ5 −3 

  
 
     (7)
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Hence, the density is unimodal if λ4, λ5>2 and λ2, λ3>0 or if  λ4, λ5<0 and λ2, λ3<0 or if

0<λ4, λ5<1 and λ2, λ3>0. The density is zeromodal if 0<Min{λ4, λ5} and Max{λ4 λ5}>1

and λ2, λ3>0 or if λ4=1,2 and sgn(λ3λ5)>0 or if  λ5=1,2 and sgn(λ2λ4)>0.

The moments of the GLD random variable

The mean and the median of a GLD random variable are

µ = λ1 +
λ2

λ4 + 1( )
−

λ3

λ5 + 1( )
;    Me = λ1 + λ20.5λ4 − λ3 0.5λ5                    (8)

Consider the linear transformation Z=X-λ1. The expected value of  Zi is given by

           µ i λ( ) =
i

j

 
 
 

 
 
 −1( ) jλ2

i− jλ3
j

j=0

i
∑ B λ4 i − j( ) + 1, λ5 j + 1( )                             (9)

where B(x,y) denotes the complete beta function. Since Z-E(Z)=X-E(X) the central mo-

ments of X coincide with the central moments of Z (Freimer et al., 1988). More specifi-

cally

σ 2 =α 1 − 2cB λ4 +1,λ5 + 1( )

γ 1 = α2

σ3 − 3c2

σ3

B 2λ4 +1,λ5 +1( )
λ3

−
B λ4 +1,2λ5 +1( )

λ2

 

 
 

 

 
 

γ 2 = α 3

σ 4 − 4 c3

σ 4
B 3λ4 +1,λ5 +1( )

λ3
2 +

B λ4 +1,3λ5 + 1( )
λ2

2 −
3B 2λ4 +1,2 λ5 +1( )

2c

 

 
 
 

 

 
 
 

αi = λ2
i+1

i +1( )λ4 +1[ ]
+ −1( )i+1 λ3

i+1

i +1( )λ5 +1[ ]
,i =1, 2,3;  c = λ2λ3

        (10)

It is evident that the i-th moment of the GLD exists if and only if min(λ4,λ5)>1. In addi-

tion,1 + γ
1

2 ≤ γ 2  as for all random variables. In spite of its versatility, the GLD cannot be

fitted to all data sets because there are moment values that no GLD random variable can

achieve. For example, symmetric distributions with a kurtosis value of γ2<1.75 (Joiner and
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Rosenblatt, 1971). The coefficient of skewness γ1(λ) is function of four parameters which

makes it difficult to establish what shape changes occur as two or more parameters vary

simultaneously (see, for example, MacGillivray, 1982). Moreover, for each value of

sgn[γ1(λ)] the shape of a GLD can range from normal curve to decidedly non-normal

curve either positively or negatively skewed. Nevertheless, ever, the degree of skewness

can also be measured by a more stable index

µ − Me

SMe

= b λ( ) =

λ2

λ4 + 1( )
1− λ4 + 1( )0.5λ4[ ] −

λ3

λ5 + 1( )
1 − λ5 + 1( )0.5λ5[ ]

λ2

λ4 + 1( )
1− 0.5λ4[ ] + λ3

λ5 + 1( )
1 − 0.5λ5[ ]          (11)

where SMe is the mean deviation about the median. Index b(λ), suggested by Bonferroni

(1940-41, p. 79, p. 116) and Groeneveld (1986), varies between -1 and 1 with values near

-1 indicating a truncated J-shaped density and near 1 for a truncated L-shaped density.

For the GLD, interchanging λ2 and λ3, other things being fixed, reverses the type

of the skewness. In fact, b(λ2, λ3, λ4, λ5) = -b(λ3, λ2, λ4, λ5); also, b(λ2,-λ3, λ4, λ5)=b(-λ2,

λ3,λ4, λ5). For the special case of λ2=λ3 the coefficient (11) depends only on (λ4, λ5).  If the

distribution is symmetric (that is, λ2=λ3, λ4=λ5) then b(λ)=0. The converse is not necessar-

ily true unless λ4=λ5. In fact, if λ2≠λ3 then b(λ) vanishes if and only if λ4=λ5=1, but for this

parameter combination the GLD becomes the uniform distribution which is symmetric.
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3. Parameter estimation

In this section we show how to determine unknown parameters when the GLD is fitted to

empirical distribution reported in the form of a frequency table. Suppose that a sample of

size n from a GLD is grouped into k intervals

Xi−1, Xi( ],  ni,   Ni = n j
j=1

i
∑ ;   pi = f j

j=1

i
∑ ,    fj =

n j

n
    i = 1, 2,… ,k                 (12)

The values {Xi, i=0,1,2, ..., k; Xi-1<Xi} are the boundaries of k exhaustive and non-over-

lapping classes and k≥3 is limited in practice (Kariya, 1986). In the present paper the

number of classes is fixed in advance and the Xi’s are known constants and we will con-

sider the problem of estimation of the parameter λ when the available information consists

only of the number of observed values Xi falling into the various classes. The probability

mass assigned to the i-th class can be written as

F Xi;λ( ) − F Xi−1;λ( ) = πi λ( ) > 0,  i = 1, 2,… ,k;   πi λ( ) = 1
i=1

k
∑                   (13)

We suppose that λ ∈Λ  ⊃ R
5
 and we think of λ0 ∈Λ  as the true but unknown value of the

parameter λ. Clearly, the grouping scheme may significantly affect the parameter estima-

tion and the variance of estimators (e.g. O’Neill and Wells, 1972). For instance, if the

observations cluster significantly around particular values producing multimodal distri-

butions, no GLD can give an acceptable agreement with this behavior.

Percentile matching estimates (PM)

This method consists of equating a selection of five empirical Xi and five theoretical per-

centiles X(pi,λ) provided that Xi is a good approximation of the unknown empirical order

statistic corresponding to pi.

Xij = λ1 + λ2 pi j

λ 4 − λ3qi j

λ 5 ;    j = 1,…,5                                    (14)
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Where ij∈(1,2,…,k’) and k’=k if the upper bound of the variable is known and finite

otherwise k’=k-1. The PM method has the advantage of being operative without the ne-

cessity of knowing every measurement (for example, the endpoints of the terminal classes

can be ignored). On the other hand, the PM estimates depend markedly on the particular

choice of percentage points. If the selected percentiles favor the central part of the distri-

bution then the estimation is better for the values around the mode, but at the cost of being

much worse in the tails. If more constraints are placed on the tails then fewer conditions

can be imposed on remaining percentiles.  In addition, the use of too extreme percentiles

would lead to very inaccurate estimates because of the high variance of the corresponding

order statistics. The grouping effect increases in the central classes because of the in-

creased crowding of the order statistics (David and Mishriky, 1968). If k’>5 is not too

large then all the k’C5 combinations of the k’ observed percentiles taken five at a time could

be investigated to establish the “optimal” subset of percentiles (supposing that at least one

set gives an admissible value for λ). Alternatively, one may select (systematically or at

random) a prespecified number of five-percentile solutions. These values are then com-

bined in a suitable way to produce more efficient estimates (see for example Castillo and

Hady, 1996). No distribution theory seems to be available for this procedure.

To keep the computation at a reasonable level, the PM estimates were obtained

applying system (14) to the five sextiles  w1, w2, w3, w4, w5  computed by

ws = 1 − βs( )X j−1 + βsX j;    βs =
ps − p j−1

fj
, ps = s

6
; j =

0< i≤k
Min pi ≥ ps{ },  s =1, 2,…,5   (15)

We have considered other methods for interpolating quantiles (Schmeiser and Deutsch,1977;

Harrell and Davis, 1982; Korn et al. 1997) but did not offer any improvement over the

linear interpolation. It is important to note that, as five percentiles of the GLD tend to

coincide with the corresponding observed percentiles, the remaining empirical percentiles

do not necessarily concentrate more and more about their theoretical true value. Since

(14) is a nonlinear system of equations in λ, one needs to use an iterative procedure to
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solve for λ. To calculate the PM estimates of λ we have applied the downhill simplex

minimization to the following criterion

SQM λ( ) =  
1≤s≤5
Max ws − X ps, λ( ){ }                                          (16)

under the constraint  that min(λ4,λ5)>-1. This method is a well-known derivative-free op-

timization algorithm due to Nelder and Mead (1965). It requires only function evaluations

and has a wide applicability for general function minimization (Olsson and Nelson, 1975).

A limitation of the direct-search approach is the lack of guarantee that the global optimum

will be achieved, though it works very well on a range of practical problems. Note that

there may be more than one value for which the minimum of the criterion is attained

(Karian and Dudewicz, 1999) and that there is no assurance that the algorithm will termi-

nate in the interior of the appropriate parameter space. In many cases, a typical data set

will lead to parameter estimates satisfying their natural constraints (4). For other cases the

constraints must be explicitly imposed. To limit the evaluations of the objective function

in the required region, the direct-search algorithm handled the constraints by setting the

objective function equal to 1042 whenever an inequality was violated.

Moment matching estimates (MM)

This method suggests that empirical moments should be found from observed data and the

GLD model employed which has the closest theoretical counterparts. The empirical mo-

ments are calculated using the class midpoints

m1 = cj f j
j=1

k
∑ = m1;     mi = c j − m1[ ]i

j=1

k
∑ fj ,  i = 2,… ,5                     (17)

The grouping errors introduced by the use of the class midpoints in skewed distributions

can be significant though, as the greatest class width goes to zero while the number of

observations is limited, the bias tends to zero.
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The computation of the moment estimates involves the solution of

µ i(λ) = mi,    i=1,…,5                                               (18)

Under the restriction min(λ4,λ5)>-0.20. A set of roots of (18) can be obtained  by applying

the downhill simplex by to the objective function defined as

SMM λ( ) = µi λ( ) − mi( )2
i=2

5
∑                                             (19)

Several other objective function can be used to find MM estimates, but expression (19)

has proved to be the most convenient criterion function for the particular problem we are

solving. The presumed value of λ1 is quickly computed from (8) once the other parameters

have been estimated. It should be remarked that (18) can have multiple solutions or no real

solution for some data sets (Ramberg et al., 1980). Even when a solution exists, the nu-

merical procedure devoted to its search may miss it because of convergence failure

(Ramberg et al., 1979). However, Karian et al. (1996) state that the possibility of multiple

solutions to (18) it is not a problem, but can be an opportunity.

The classical method of moments is restricted to distributions possessing fairly

light tails because they must have a finite fifth moment. Moreover, the sample moments

are sensitive to extreme observations or other contamination in data and sampling vari-

ability in high order moments can be very large. If the interval lengths are unequal, then

the estimated moments admit of no simple “Sheppard’s-like” corrections. Thus, using

sample estimates of µ3, µ4, µ5 in a fitting procedure may lead to extremely biased esti-

mates. Another possible drawback  is that, even though the discrepancy between empirical

moments and theoretical moments is extremely low, there is no guarantee that the corre-

sponding model fits adequately the data. Also, the method of moments assumes the avail-

ability of specific measurements for each class; consequently, if X0 and/or Xk are omitted,

then the MM estimates will be biased as long as their imputation or the centering of the
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extreme classes does not typify adequately the tails of the distribution. Often the method

of moments fails because of the lack of information on the larger values.

Probability-weighted moment estimates (PWM)

The method of probability-weighted moments proposed by Greenwood et al. (1979) pro-

vides a viable alternative to the traditional method of moments when the tails of the em-

pirical distribution indicate that high order moments of the population may not be finite.

In fact, PW moments can be defined for any random variable whose mean exists in the

finite sense. For the GLD it is convenient to work with the probability-weighted moments

τi = E Q p;λ( )pi[ ] = λ1

i +1
+ λ2

λ4 + i + 1
− λ3i!

λ5 + j + 1( )
j=0

i
∏

   i = 0,1,…, 4              (20)

Expression (20) shows that this type of moments is particularly of interest for a random

variable known in terms of its quantile function. Sample probability-weighted moments

for grouped data can be given as follows

t0 =
c j

j=1

n
∑

n
;      ti =

c j j − r( )
r=1

i
∏

 

 
 

 

 
 

j= i+1

n
∑

n −r( )
r =0

i
∏

,  for  i = 1, 2,3,4                        (21)

In practice, the empirical PWM’s for grouped data are computed on the basis of no group-

ing effect in the data collection and using class midpoints as “observed values” with a

GLD density. Thus n1c1’s, n2c2’s, …, nkck’s constitute the sample to which the PWM esti-

mators have been applied.

In the method of PW moments, the vector λ  is estimated by computing the first

five sample PW moments (21), setting them equal to the population PW moments (20)

and solving the system of equations
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 τi(λ)= ti,   i= 1, …,4                                                (22)

for λ2, λ3, λ4, λ5. An estimate for λ1 is then obtained by means of (8). In  general, the PWM

estimates for  λ  do not  lend themselves into the explicit forms. To determine the PWM

estimates we proceed analogously to the method of moments. More specifically, the down-

hill simplex algorithm is applied to the criterion

SPWM λ( ) =  
2≤s≤5
Max ti − τi λ( ){ }                                             (23)

subject to min(λ4,λ5)>-1. The main advantage of using PWM is that the parameter esti-

mates are more reliable than the MM estimates for heavy-tails distributions because the

observed values appear linearly in (21). Furthermore, the equations associated with PWM

estimators  are simpler and the computational techniques devoted to their solution experi-

ence less convergence difficulties than the traditional moment estimators. A possible draw-

back is that the sampling and asymptotic properties of the PWM estimators for grouped

data are not yet well established.

Minimum Cramér-von Mises estimates (MCM)

The quality of fit can be measured by the discrepancy between the empirical distribution

function and the predicted cumulative frequencies thought to be an element of the GLD

family. In particular, we can use the minimum distance estimation method based on a

grouped-data version of the Cramér-von Mises statistic (see Duchesne et al. 1997). The

corresponding estimator is chosen to be that value of λ that minimizes

SMCM λ( ) = pi − F Xi , λ( )[ ]2
i=1

k
∑ , F Xi ,λ( ) > F Xi-1, λ( ),  F X0, λ( ) = 0               (24)

where F(Xi,λ) denotes the estimated p value that would generate the observation Xi for the

given λ. Expression (24) weights each deviation equally; other interests may suggest a
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different weighting scheme. If S MCM(λ) attains its minimum at an interior point λ∈Λ then

λ is also a solution of

∂SMCM λ( )
∂λr

= − pi − F Xi, λ( )[ ]
i=1

k'
∑

∂F X, λ( )
∂λr

= 0     r = 1, 2,…,5                   (25)

According to Eubank (1998) we have

∂F X ,λ( )
∂λr

= −h X Fi ,λ( )[ ]Xr
' Fi ,λ( )      with    Xr

' Fi ,λ( ) =
∂X p, λ( )

∂λr

 

 
 

 

 
 

p=Fi

            (26)

where h[X(p,λ)] is the density-quantile function and Fi= F(Xi,λ). To find  λ  we can use the

Newton-Raphson iterative procedure. The elements of the gradient and Hessian can be

written as

gr λ( ) = pi − Fi( )
i=1

k '
∑ h X Fi ,λ( )[ ]Xr

'
Fi ,λ( )     r = 1, 2,… ,5                         (27)

Wr,s λ( ) = h2 X Fi , λ( )[ ] Xs
' Fi ,λ( )Xr

' Fi , λ( ) 1 − h X Fi, λ( )[ ]A Fi , λ( ) pi − Fi( )[ ] +{
i=1

k '
∑

                     − pi − Fi( )Xs
' Fi ,λ( )Br Fi ,λ( )}       (28)

Where

A Fi ,λ( ) = λ3 λ5 λ5 − 1( ) 1− Fi( )λ 5−2 − λ2λ4 λ4 − 1( )Fi
λ 4 −2

Br Fi,λ( ) =
dXr

' p ,λ( )
dp

 

 
 
 

 

 
 
 

p =Fi

;     r = 1, 2,…,5

                   (29)

Given a preliminary estimate λ
0
 for λ then an algorithm to obtain the MCM estimates is

described by the recursion

λ m+1 = λm − Bmδ λ m( );           with     δ λm( ) =  W λm( ) + γ mI[ ]−1
g λ m( )         (30)
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where Bm is a diagonal matrix of correction factors which fixes the step length of each

parameter and γm is a positive scalar large enough to make [W(λ
m

)+γmI] positive definite

when W(λ
m

) it is not. It should be remarked that the parameter estimates are highly corre-

lated and have relatively large variances because of the extreme susceptibility of the GLD

to even small changes in λ. The nonzero elements of Bm  can be selected by performing a

systematic search along the Newton direction by means of Faure quasi-random sequences

(Faure, 1982; Fox, 1986). More precisely, we have considered a Faure sequence of 1000

points in the region [-δ(λ
m

),δ(λ
m

)]. The computation of Fi  cannot be directly carried out

because the cumulative distribution of the GLD model is not analytically invertible. To

solve Xi=X(Fi,λ) for Fi>Fi-1 and F0=0  we have used a combination of bisection and

Newton’s method (see Press et al., 1993, p. 366-367)

The estimators that minimize (24) belong to the family of minimum distance meth-

ods (Parr, 1981). These methods of estimation, under modest regularity conditions, are

strongly consistent, asymptotically normal and perform well in a variety of settings. Fur-

thermore, The procedure outlined above is close to the starship technique discussed by

King and MacGillivray (1999).

Maximum likelihood estimates (ML)

The class frequencies can be thought of as a random sample of size n from a multinomial

distribution specified by a vector [π1(λ),π2(λ),…,πk(λ)] of probabilities of k mutually

exclusive events. The negative log-likelihood function is of the form

SML λ( ) = − ni
i=1

k
∑ Log F X i ;λ( ) − F Xi -1;λ( )[ ] = − ni

i=1

k
∑ Log πi λ( )[ ],          ni

i=1

k
∑ = n      (31)

This can be minimized over λ through application of the scoring method (Rao, 1973, 366-

374; McDonald and Ransom, 1979). The efficient score for the parameter λr  and the (r,s)-

term of the information matrix are
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gr λ( ) = ni

πi λ( )
∂πi λ( )

∂λr

 

 
 

 

 
 

i=1

k
∑

Wr ,s λ( ) = n

πi λ( )
∂πi λ( )

∂λr

 

 
 

 

 
 

i=1

k
∑

∂πi λ( )
∂λs

 

 
 

 

 
 
                                   (32)

∂πi λ( )
∂λr

= − h X Fi , λ( )[ ]Xr
' Fi,λ( ) − h X Fi−1, λ( )[ ]Xr

' Fi−1,λ( )[ ]                    (33)

The method of scoring is very similar to the Newton-Raphson procedure and we can again

use the recursion (30) to achieve the minimization of (31). Gilchrist (2000, p. 295-298)

describes a more direct approach to the ML estimation for the quantile function based on

individual observations. By standard theory, the ML estimators will be asymptotically

normal, unbiased, consistent and efficient. See also Cheng and Iles (1987).

Pseudo least squares estimates (PLS)

The vector λ can be estimated taking up a nonlinear regression framework

Xi = E Xi( ) + ei,     i = 1, 2,…, k'                                            (34)

Since we ignore if some observation is equal to Xi, the value of Xi is not necessarily the

order statistics corresponding to the observed pi and E(X i) may not be the value predicted

by (34). Yet, for a sample size sufficiently large and if the grouping is not too coarse, Xi

can be considered a reasonable approximation to X(pi , λ) (David and Mishriky, 1968). It

should be emphasized that classical assumptions on the error terms {ei} are inappropriate

because the {X i} will not have equal variance nor will they be uncorrelated or come from

a symmetric distribution. Since our purpose is to obtain an approximate solution, we ig-

nore these violations. The expected value of order statistics from a GLD is available in

closed form and we may write (34) as

X pi, λ( ) = λ1 + λ2

Γ λ4 + Ni( )Γ n+ 1( )
Γ Ni( )Γ λ4 + n+ 1( )

 

 
 
 

 

 
 
 − λ3

Γ λ5 + n + 1− Ni( )Γ n + 1( )
Γ n+ 1− Ni( )Γ λ5 + n + 1( )

 

 
 
 

 

 
 
             (35)
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provided that  min(λ4,λ5)>-1. The computation of E(X i) requires repeated evaluations of

the gamma function. Nevertheless, it is well known that for continuous random variable,

E(X i) converges to X(pi,λ). Thus, for large samples, we have

                           Xi = λ1 + λ2 pi
λ4 − λ3qi

λ5 + ei ;    i = 1,…,k'                                 (36)

The least squares approach calls for choosing λ to minimize

SPLS λ( ) = Xi − X pi , λ( )[ ]2 fi
i=1

k'
∑                                           (37)

The {fi} in (37) take into account the fact that there are unequal counts in the intervals.

The distinguishing features of many real data sets are a heavy thickness of the tails and an

accentuate peakedness. It would be interesting to incorporate in the PLS method an inge-

nious system of weights so that the tails become adequately detectable.

Since (λ1,λ2,λ3) are in linear form, minimization of SPLS(λ) can be achieved by first

assuming that (λ4,λ5) are known constants and then solving the minimization problem as a

linear regression of X i  on X(pi,λ) ( Lawton and Sylvestre, 1971). The parameter reduction

has the additional benefit that it is necessary to supply an initial guess value only for

(λ4,λ5). The values of (λ1,λ2,λ3) are then inserted into the minimization function (37) and a

new value of (λ4,λ5) is computed. The process is repeated until an optimum of the criterion

is reached. The current estimate of (λ4,λ5) can be determined  using  the Newton-Raphson

algorithm described in the preceding section.

The criterion SPLS(λ) is the squared Samuel-Bachi distance (Samuel and Bachi, 1964)

between the observed quantile function and the GLD. If X i were the order statistic corre-

sponding to pi then the vector λ which minimizes S PLS(λ) would coincide with the weighted

L2 quantile distance estimator discussed by LaRiccia (1982). Oztürk and Dale (1985) used

(26) for microdata. Oztürk and Abouammoh (1987) considered the absolute version of

(26) for estimating λ in the Ramberg-Schmeiser parameterization of the GLD.
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4. Comparison of the methods

A good fitting procedure is not very useful unless one can assess its standard error by

Monte Carlo methods. This, however, is possible only when the procedure is completely

automated and its execution time is foreseeable and compatible with an adequate number

of replications. Unfortunately, the estimates for grouped data must be developed on a

case-by-case basis because the results are not invariant under different grouping schemes

even though the individual observations are the same. Consequently, only a limited simu-

lation study was conducted to compare the performances of the alternative estimation

techniques and investigate their properties.

Monte Carlo experiments

Random samples were obtained from GLD models which were good substitutes of two

symmetric distributions: Normal(0,1), Beta(2,2) and two positively skewed distributions:

Gamma(2,1), Beta(2,4).

Model Density range

Normal(0,1) 2π( )−0.5  e−x2
−∞ ,  + ∞

Beta(2,2) 6x 1 − x( ) 0, 1

Gamma 2,1( ) xe− x 0, ∞
Beta(2,4) 20x 1− x( )3 0, 1

                                  (38)

We believe that the above models are illustrative of a range of commonly encountered

situations.

Parameters of the GLD models were selected by considering the closeness of the

quantile function X(p,λ) to F-1() where F() is the cumulative distribution function of the

random variable being approximated. To check the closeness we have followed the same

idea as Karian and Dudewicz (2000, p.66-67) and used the criterion

d GLD,F( ) =
1≤i≤499
Max h pi , λ( ) − f X pi ,λ( )[ ];   pi =

i

500
,  i = 1, 2,… , 499          (39)
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Where f()  is the probability density function corresponding to F. Parameter values used in

simulations  are reported in the following table.

Simulations were performed for samples of size n∈(1000, 2000, 4000) classified into k

classes where k∈(8, 14, 20). All in all, we have examined 36 distinct configurations. The

boundaries of the grouping intervals are as follows

Model                                class  boundaries

Normal(0,1) Xi = −3.1 + 6.2
i

k

 
  

 
  ,  Xn − i = 3.1 − 6.2

i

k

 
  

 
    i = 0,1,2,…, k / 2  

Beta(2, 2) Xi = i

k

 
  

 
      i = 0,1,2,…, k

Gamma(2,1) Xi =

k = 8 ⇒  0.0,  0.3,  0.7, 1.1, 1.9,  2.9,  4.2, 5.6, 8.4

k =14 ⇒ 0.0,  0.2, 0.4, 0.6,  0.8, 1.2, 1.6, 2.0,  2.4

               3.0,  3.4, 3.9, 4.8,  5.6,  8.4

k = 20 ⇒ 0.0,  0.2,  0.3,  0.4,  0.5, 0.6, 0.7,  0.8, 0.9

               1.0,  1.2,  1.4, 1.6,  2 .0,  2.4,  2.8, 3.4, 4.0
               4.8,  5.6, 8.4

 

 

 
 
  

 

 
 
 
 

Beta(2, 4) Xi =

k = 8 ⇒  0.00, 0.08,  0.16,  0.24,  0.32, 0.45, 0.60, 0 .75, 1.00

k =14 ⇒ 0.00, 0.04,  0.08,  0.12, 0.16, 0.22, 0.28, 0.34,  0.40

               0.45,  0.50,  0.58,  0.67,  0.75, 1.0

k = 20 ⇒ 0.00,  0.04,  0.08,  0.12, 0.16, 0.20,  0.24,  0.28,  0.32

               0.36,  0.40,  0.44,  0.48, 0.52, 0.56, 0.60,  0.64.  0.68

               0.74,  0.80,  1.00

 

 

 
 
  

 

 
 
 
 

     (40)

Theoretically, Normal(0,1) and Gamma(2,1) have an infinite range. In practice, truncation

at one or both the extreme is necessary as a result of the measurement mechanism or from

physical considerations or by experimental convenience. Accordingly, we deal only with

Table 1: experimental cases from the GLD model

Model             λ1              λ2              λ3           λ4              λ5          d(GLD,F)

Normal(0,1)   0.0000000  4.65 25421   4.65254 21  0.149201 0  0.1492010     0.00044 30

Beta(2,2)   0.5000000  0.50 95575   0.50955 75  0.448009 5  0.4480095     0.00609 18

Gamma(2,1) 24.034 5788  1.087 5235 24.0 726325  0.4 043437  0.05 47165    0.002248 0
Beta(2,4)   0.7617832  0.27 07079   0.76625 56  0.446243 9  0.2448268     0.00598 50
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truncated forms of these distributions by eliminating values lower than X0 or greater than

Xk (this implies the additional condition that λ4 ,λ5 ≥0). Furthermore, the simulated distri-

butions were discarded when they presented one or more zero observed frequencies.

For each GLD model the various estimates of λ were compared to the true value λ0

Two simple coefficients of performance have been considered for comparison: the mean

relative bias and the standard deviation

Mrb λ j( ) =
1

N

λij − λ0 j

αji=1

N
∑

 

 
 
 

 

 
 
 ;          with  α j =

λ0 j  if   λ0 j ≠ 0  

1 otherwise

 
 
 

            (41)

Std λj( ) =
λij − λNj( )2

i=1

N
∑

N
        with   λ Nj =

λij
i=1

N
∑

N
                          (42)

The former quantifies the average magnitude of the estimator’s accuracy for each param-

eter and the latter reflects the estimator’s variation from sample to sample. Most of the

investigations involving properties of multiparameter estimators have employed overall

criteria. One commonly used measure of the goodness of a vector estimator is the relative

mean square error

MSE λ( ) =
1

N

λij − λ0 j

α j

 

 
  

 

 
  

2

j=1

5
∑

 

 

 
 
 

 

 

 
 
 i=1

N
∑                                        (43)

The statistics in (41)- (43) were calculated  by generating N=1000 different random samples

for each number of class, for each sample size, for each GLD model, and each estimation

scheme. The number of replications of 1000 may arguably not be large enough to establish

the actual values of Mrb, Std and MSE, but would suffice to assess shortcomings and

relative merits of the various estimators.
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The numerical optimization routines involved in the various methods of estimation  re-

quire that initial guesses on the parameter estimates be made. In order to initialize the

iteration process from a sufficiently good value we took a slight modification of the true

values of the parameters

λ j
0 = 0.001u + λ0 j 1+ 0.25usgn(v − 0.5)[ ],       j = 1, 2,… ,5                   (44)

for each of the selected models. The quantities u and v are two independent random vari-

ables on (0,1).

Regrettably, it is possible for both the downhill simplex procedure and the Newton-

Raphson method to approach a solution very far from λ0. To reduce the impact of such

behavior on performance comparisons, the optimization algorithms were initialized from

five different starting points and the one corresponding to the lowest  Euclidean distance

from the true value was retained as the optimal solution.

The fast multiple recursive generator (FMRG) proposed by Deng and Lin (2000)

was applied to produce uniform pseudorandom number on the unit interval. The choice of

the starting values was based on the Wichmann-Hill algorithm (Wichmann  and Hill, 1982).

The seeds of the pseudo random sequences ensure that all the estimation schemes operate

on exactly the same samples and start from the same initial parameter combinations. All

the software has been written in Future Basic 7 running on a G4 (one processor, 1GHz)

computer using Mac 10.3 operating system. Program codes as well as numerical results

are available from the author on request.

Results

Table 2, in two parts, shows the relative mean bias  (41) and the standard deviation (42) for

the 36 configurations considered in the simulation plan. Actually, the two indices have

been averaged over the five parameters to obtain summary measures. Table 3 reports the

MSE obtained by the various methods.



23

Several points are worthy of note based on a thorough inspection of the findings in the

tables.

1. The most obvious point to be noticed is that the GLD parameters were generally esti-

mated with reasonable accuracy regardless the shape of the histogram of the generated

data. Both the relative bias and the standard deviation decrease as the size of the samples

increases (an indication that all of the methods provide consistent estimators). However,

the general quality of the results rapidly deteriorates with increased population skewness.

For the PLS method, all indicators achieve the best values. The MCM and PWM methods,

in this order, have the worst performance among all six methods.

2. The relative performance of the methods did not greatly depend on the number of classes.

This is surprising since a decrease in efficiency is expected in using fewer classes, at least

for skewed distributions. The scarce or null influence of k on the behavior of the param-

eter estimators should be primarily ascribed to the large size of the samples used in our

simulation plan. Also, the unbalanced partitions used for G(2,1) and B(2,4) have limited

the negative effect of an increase of the variance due to an increase of k.

3. The method of percentiles has several advantages. For example, the outliers are given

less weight than in the moment estimates; in fact, the PM estimators can still be computed

when moments do not exist. Yet, the validity of this method is seriously hampered by the

lack of a theoretical justification in selecting a given set of percentiles. The sextiles em-

ployed in our experiments have given satisfactory results for symmetric distributions, but

the performance dropped down for the positively skewed distributions. Gaswirth,1972

pointed out that the practice of equally spaced percentiles is not an optimal choice for

highly skewed distributions.

4. The method of moments produced good estimates in our experiments, but it is not

recommendable for a general use with grouped data from continuous distributions. In part

because, to operate at its best, the method requires corrections which are difficult to estab-

lish and in part  because of the numerical and statistical instability of high order moments.

Also, there is arbitrariness in the choice of the moments to equate.
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5. The probability-weighted moment matching is not very accurate in estimating the GLD

parameters for grouped data. However, since the PWM estimates can be calculated with

relative easy, they can serve as a good automated routine to determine initial guesses for

the parameters to be used with other methods.

6. The Cramér-von Mises method yields reliable estimates (at least for symmetrical

distributions), but is hard to apply because of the intricate form of the Hessian matrix

involved in the iteration process. In fact, the MCM method encountered the worst conver-

gence problems of any of the techniques considered.

7. The scoring method employed to determine the maximum likelihood estimates has

given results which are slightly better than those obtained by MCM, but not by an amount

of likely practical importance. Both ML a d MCM are computationally demanding be-

cause of the complex and unwieldy objective function, but the former offers a well estab-

lished theoretical background. In fact, it is common to use the asymptotic properties of the

ML estimates to construct confidence regions for parameters.

8. In the vast majority of cases, the pseudo least squares method provided the best result.

In this sense, we suggest PLS the as the candidate procedure to estimate the parameters of

a GLD from grouped data. An attractive property of this method is the possibility that the

initial guesses must be supplied only for the exponential parameters. Furthermore, the

PLS method has the practical advantage of being simply executable using a nonlinear

regression routine implemented in several statistical packages. On the other hand, the

sample and asymptotic properties of the PLS method have as yet to be extensively ex-

plored. More theoretical work needs to be done.
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Table 2a: mean relative bias for the 36 experiments
  
Model k n PM MM PWM MCM ML PLS
N(0,1) 8 1000 0.0715 0.1136 0.1256 0.1273 0.1660 0.1170

2000 0.0590 0.0985 0.1191 0.1138 0.1088 0.0987
4000 0.0509 0.0875 0.1130 0.1105 0.0994 0.0857

14 1000 0.0709 0.1131 0.1243 0.1236 0.1479 0.1153
2000 0.0572 0.0980 0.1162 0.1145 0.1071 0.0990
4000 0.0471 0.0878 0.1120 0.1168 0.1042 0.0839

20 1000 0.0728 0.0955 0.1236 0.1229 0.1311 0.1083
2000 0.0603 0.0955 0.1138 0.1146 0.1093 0.1202
4000 0.0513 0.0879 0.1094 0.1186 0.0996 0.0866

B(2,2) 8 1000 0.1719 0.0912 0.0726 0.0928 0.0776 0.1100
2000 0.1396 0.0709 0.0573 0.0866 0.0761 0.0958
4000 0.1037 0.0547 0.0449 0.0829 0.0772 0.0840

14 1000 0.1720 0.0890 0.0722 0.0914 0.0701 0.1013
2000 0.1301 0.0688 0.0570 0.0834 0.0752 0.0907
4000 0.0974 0.0482 0.0435 0.0816 0.0760 0.0802

20 1000 0.1770 0.0905 0.0694 0.0910 0.0692 0.0995
2000 0.1411 0.0672 0.0540 0.0869 0.0741 0.0924
4000 0.1093 0.0487 0.0436 0.0845 0.0753 0.0895

G(2,1) 8 1000 0.1718 0.1010 0.1078 0.3146 0.2604 0.1034
2000 0.1515 0.1012 0.0962 0.3091 0.2191 0.0874
4000 0.1337 0.1027 0.0888 0.2942 0.1897 0.0763

14 1000 0.1815 0.0993 0.1060 0.3016 0.2355 0.0936
2000 0.1443 0.1019 0.0911 0.2885 0.1812 0.0803
4000 0.1152 0.1013 0.0794 0.2819 0.1447 0.0709

20 1000 0.1600 0.0999 0.1022 0.3049 0.3197 0.0900
2000 0.1353 0.1007 0.0873 0.2826 0.2275 0.0782
4000 0.1084 0.1009 0.0812 0.3150 0.1912 0.0702

B(2,4) 8 1000 0.1418 0.0946 0.0828 0.1173 0.0879 0.1044
2000 0.1225 0.0960 0.0679 0.1122 0.0722 0.0937
4000 0.1120 0.0954 0.0592 0.1045 0.0681 0.0854

14 1000 0.1550 0.0953 0.0915 0.1128 0.0855 0.0958
2000 0.1210 0.0955 0.0867 0.1054 0.0703 0.0875
4000 0.0982 0.0942 0.0806 0.0985 0.0668 0.0812

20 1000 0.1558 0.0949 0.0806 0.1103 0.0904 0.0951
2000 0.1254 0.0957 0.0685 0.1035 0.0752 0.0876
4000 0.1024 0.0962 0.0602 0.1020 0.0720 0.0839

Total 4.2189 3.2732 3.0895 5.5026 4.4013 3.3228
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Table 2b: mean standard deviation for the 36 experiments
  
Model k n PM MM PWM MCM ML PLS
N(0,1) 8 1000 0.0959 0.2031 0.2253 0.202 0.283 0.2148

2000 0.0867 0.1398 0.2190 0.186 0.183 0.1751
4000 0.0765 0.0954 0.2093 0.190 0.166 0.1507

14 1000 0.1160 0.1975 0.2238 0.199 0.276 0.2023
2000 0.1031 0.1402 0.2142 0.194 0.186 0.1755
4000 0.0940 0.1004 0.2090 0.193 0.175 0.1469

20 1000 0.1222 0.1934 0.2244 0.198 0.270 0.1940
2000 0.1149 0.1428 0.2085 0.189 0.200 0.2174
4000 0.1114 0.1023 0.2044 0.193 0.175 0.1559

B(2,2) 8 1000 0.1096 0.0504 0.0439 0.055 0.045 0.0552
2000 0.0862 0.0397 0.0342 0.052 0.044 0.0431
4000 0.0644 0.0295 0.0267 0.050 0.045 0.0328

14 1000 0.1077 0.0510 0.0433 0.055 0.041 0.0478
2000 0.0806 0.0408 0.0341 0.050 0.044 0.0360
4000 0.0616 0.0290 0.0260 0.049 0.044 0.0286

20 1000 0.1105 0.0519 0.0420 0.054 0.041 0.0444
2000 0.0880 0.0398 0.0324 0.052 0.043 0.0387
4000 0.0667 0.0295 0.0260 0.051 0.044 0.0349

G(2,1) 8 1000 0.4391 0.8184 0.5738 1.014 0.957 0.5548
2000 0.4305 0.8399 0.5572 1.035 0.879 0.4932
4000 0.4024 0.8321 0.5517 1.030 0.830 0.5082

14 1000 0.4730 0.8236 0.5654 1.167 0.918 0.5409
2000 0.4352 0.8193 0.5516 1.134 0.793 0.5333
4000 0.3904 0.8032 0.5364 1.103 0.740 0.4999

20 1000 0.4538 0.8115 0.5583 1.067 1.011 0.5330
2000 0.4188 0.8164 0.5444 1.068 0.879 0.5082
4000 0.4012 0.8316 0.5545 1.101 0.813 0.4835

B(2,4) 8 1000 0.0656 0.0508 0.0432 0.065 0.043 0.0423
2000 0.0532 0.0516 0.0355 0.073 0.037 0.0357
4000 0.0437 0.0509 0.0308 0.059 0.034 0.0308

14 1000 0.0831 0.0514 0.0430 0.062 0.042 0.0386
2000 0.0668 0.0511 0.0383 0.059 0.035 0.0340
4000 0.0539 0.0503 0.0345 0.056 0.033 0.0309

20 1000 0.0848 0.0508 0.0423 0.061 0.045 0.0379
2000 0.0694 0.0509 0.0353 0.057 0.038 0.0332
4000 0.0578 0.0513 0.0308 0.056 0.036 0.0313

Total 6.1187 9.5315 7.5736 12.480 10.468 6.9638
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Table 3: mean square error for the 36 experiments

  
Model k n PM MM PWM MCM ML PLS
N(0,1) 8 1000 0.0622 0.1343 0.1865 0.2437 0.3458 0.1591

2000 0.0416 0.0925 0.1776 0.1792 0.1293 0.1160
4000 0.0298 0.0664 0.1565 0.1548 0.1039 0.0854

14 1000 0.0573 0.1229 0.1802 0.2099 0.2572 0.1569
2000 0.0343 0.0892 0.1606 0.1810 0.1180 0.1164
4000 0.0220 0.0665 0.1550 0.2315 0.1098 0.0806

20 1000 0.0570 0.0870 0.1851 0.2013 0.2072 0.1438
2000 0.0375 0.0844 0.1552 0.1710 0.1272 0.2057
4000 0.0275 0.0652 0.1423 0.2016 0.1006 0.0897

B(2,2) 8 1000 0.3041 0.0897 0.0442 0.0716 0.0473 0.0967
2000 0.1930 0.0582 0.0277 0.0641 0.0443 0.0737
4000 0.1043 0.0350 0.0173 0.0586 0.0451 0.0576

14 1000 0.2854 0.0868 0.0432 0.0700 0.0395 0.0802
2000 0.1634 0.0561 0.0272 0.0594 0.0437 0.0644
4000 0.0928 0.0289 0.0162 0.0578 0.0437 0.0519

20 1000 0.3097 0.0895 0.0404 0.0681 0.0387 0.0741
2000 0.1985 0.0533 0.0242 0.0633 0.0428 0.0652
4000 0.1114 0.0294 0.0160 0.0604 0.0433 0.0616

G(2,1) 8 1000 0.6005 0.0752 0.1291 2.6568 2.3653 0.1258
2000 0.4633 0.0753 0.0989 2.9661 1.6327 0.0815
4000 0.3214 0.0768 0.0822 2.4534 0.9792 0.0560

14 1000 0.6473 0.0728 0.1249 2.6114 2.0890 0.0936
2000 0.4243 0.0764 0.0920 2.5488 0.9789 0.0619
4000 0.2499 0.0755 0.0691 2.1998 0.4114 0.0476

20 1000 0.5364 0.0739 0.1165 2.0654 3.7986 0.0853
2000 0.3625 0.0745 0.0822 1.6519 1.5767 0.0591
4000 0.2147 0.0751 0.0686 2.4292 0.9067 0.0460

B(2,4) 8 1000 0.2052 0.0659 0.0618 0.1287 0.0673 0.0848
2000 0.1439 0.0676 0.0414 0.1288 0.0457 0.0694
4000 0.1133 0.0669 0.0309 0.1031 0.0393 0.0601

14 1000 0.2639 0.0672 0.0732 0.1158 0.0627 0.0727
2000 0.1608 0.0672 0.0659 0.1019 0.0431 0.0620
4000 0.0961 0.0655 0.0555 0.0905 0.0390 0.0545

20 1000 0.2667 0.0668 0.0581 0.1079 0.0693 0.0711
2000 0.1711 0.0669 0.0418 0.0980 0.0479 0.0622
4000 0.1099 0.0681 0.0326 0.0945 0.0440 0.0579

Total 7.4830 2.6132 3.0801 24.8991 17.0844 3.0305
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