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1. Introduction
The goal of cluster analysis for a given set of dataisto verify the presence (or the absence) of
natural organization in afixed number of groups. The data set D consists of n distinct entities
D={X}, X,,...X,} 00 R" where, for each r, X gives the observed values of m real-valued charac-
teristics on the entities which are assumed to be known and fixed.

Relative geometric arrangements, causing concentration and dispersion of the entities in

different regions, produce clusters.
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Figure 1: clusters of different shapes and sizes

The figure above depicts a strongly clustered data set consisting of clusters which are homoge-
neous and well separated. Homogeneity implies that entities in the same cluster are near each
other. Separateness implies that entities in different clusters are farther one from the other.

The entities are unlabeled. All we have is a collection of vectors associated with a given
set of variables without knowing if the entities belong to different categories, if there is more
than one category and the category membership of the entities included in the data set.

1.1 Overview

To learn something from such an unpromising basis depends upon the assumptionsoneis
willing to accept. Suppose that the entities came from a distribution for which the multivariate
second moments exist. Then acompact description of the data set can be obtained by the sample
mean and the sample covariance matrix.
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Figure 1bis: single tridimensional distributions

The two graph above represent a sample of n=120 entities from, respectively, auniform and a
norma 3-dimensional distribution having t=(5,10,15) and }= (aij), 0,=10, 0,=5 for i4. In
general, second-order statistics are incapable of revealing all of the structure in a set of data
since other distribution may differ for other important features then mean and covariance. If we
assume that entitiesfall in hyperellipsoidally shaped clouds we can approximate a great variety
of situations.

Uniiorm distributions

Normal distributions

Figure 1ter : two-group tridimensional distributions

C



Fortunately, the type of approximation we are looking for is not hard to please. The only thing
that must be learned isthe values of an unknown parameter vector which maps the set of entities
to the set of group labels. Figure Iter illustrates the problem. The two clusters in both graphs
have different means and different variance-covariance matrices. If the normal distribution is
used to approximate the uniform distribution the results can be very misleading. But, this is not
the case. The normal distribution is used for an easier task: distinguishing the entities which fall
into the first cluster from the entities falling into the second cluster and this can be fully
accomplished even if the approximation of the vector means and the variance-covariance matri-
ces are poorly estimated.

The present paper assumes that the data set has clusters which tend to take the form of
hyperellipsoid of various size, but with the same orientations which is the essence of the Fried-
man-Rubin approach to cluster analysis.

A brief outline of my method of working will help explain the contents of the article. The
rest of this section reviews the problem of assessing the partitional adequacy of the subdivision
into afixed number of groups of a data set.

In section 3 a new method for relocative scheme which minimizes the determinant of the
sample within-group dispersion matrix is proposed and tested by looking at various real and
simulated applications. The main difference with other k-means is a transfer technique which
realizes aglobal best step instead of alocal best step.

Section 3 describes the initialization methods. Section 4 outlines the stopping rules and
studies their shortcomings and merits in connection with problems arising in practical applica-
tions. The software which implements the algorithmsis described in section 5.

1.2 The partition of a data set

Seber (1984, p. 379) stated that the major weakness of agglomerative hierarchical methods is
the constrain that the (k+1)-partition must be included in the k-partition so that an improper
fusion at an early stage cannot be corrected later. On the contrary, the essence of a k-means
algorithm is the relocation of entities which gives these techniques an immense advantage over
the others. This section reviews the general framework of the k-means algorithm for the subdi-
vision of the data set into a fixed number of mutually exclusive and exhaustive clusters. A
partition (or a clustering) y of a finite set of n entities D=(X,X,,....X ) is a collection of &

subsets, called the clusters of ), such that

Kk
Ciz0, & k n jL_JlCJ: D; Cn CFO & ) (1)
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where [] is an empty set. The cardinalities Mofy ey N of the clusters satisfy

a) 1snpsn-k+1 i=12..k b) ﬁnﬁn ()

i=1

This implies that each entity is assigned to one cluster, each cluster contains at least one entity
and the partition contains all entities.

A partition can be succinctly expressed by the classification vector y=(! Vo Vg woos )r/1) which
maps the set of entities to the set of cluster labels X V. =jif X DC
The number of clusters & is assumed to be given as 1nput although it is often unknown and its
estimation is a topical problem in cluster analysis. The program, as such, is not able to merge
small clusters that are very close and no larger clusters are broken up. The approach suggested
by DetClus s to run the program for a range of values of &

25k <k s (n-k) 3)

and to empirically determinethe best number of clusters. The upper (lower) limit for k should be
at least 3 or 4 more (less) clustersthan are ultimately suspected (these limits are necessary since,
if kisexcessively large or small, spurious or unnatural clusters tend to appear). For each k the
program carries out the clustering regardless of the previous grouping and computes a series of
clustering quality indiceswhich allow the user to decide the appropriate value (or values) for the
number of clusters.

1.3 Thedefinition of a cluster

It is amost a commonplace that there exists no agreed upon idea of a cluster and that,
according to the scope of the analysis, different type of clusters are allowed (atypica example
of such vagueness is the distinction drawn between natural and arbitrary clusters proposed by
Kruskal (1977):" ... We call clusters natural if the membership is determined fairly well in a
natural way by the data, and we call the clusters arbitrary if there is a substantial arbitrary
element in the assignment process'.

The k-means approach to cluster analysisis based on a"metric" concept of acluster. The
n entities are confined to an m-dimensional parallel epiped

={X|Xi D[x'i,x}']; i =12,...,r‘r}; with x; =]|\S/Iri<nn{xri}, Xi =J|\_</|rei>é{xri} (4)
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Clustersare accumulations of pointsin distinct regions of R entirely surmounted by empty space
(seefigure 2).

Cluster analysis techniques search partitions characterized by remoteness in which, as
was observed by Cormack (1971), two conflicting requirement are involved: internal compact-
ness or cohesion (i.e. object belonging to the same cluster are in some operational sense similar
to each other) and external isolation (very dissimilar entities must be placed in different clus-
ters). Thetwo factor are dependent: a highly dense accumulation of points (A) needslessisola
tion to be considered a proper cluster, and, sometimes, avery sparse group (B) is accepted asa
single cluster only for the substantial gap between its entities and the others. The size of the
clusters is also important: internal homogeneity tends to be greater for small clusters than for
large ones; external isolation has an opposite tendency. According to Ling (1973) a cluster is
judged real if it issignificantly compact or isolated or both.
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Figure 2: compactness and isolation of clusters

The concept of remoteness is vague as amost is everything referred to in cluster analysis. For
instance it is not clear how to deal with the disturbing (but inescapable in rea applications)
phenomenon of intermediate entities (borderline or hybrid clusters) linking two cohesive and
otherwise isolated clusters.




A c3 The cluster G in Figure 3ais an object
. G o.ﬁ'i': .:.3,3. which depi ctsthe transformation process

.: :-:’:. o p4 v.:: :’." followed by the entities in passing form
‘,'.::.:o: . status C1 to C3 (or vice versa). Theclus-
C°1‘0 .‘:::0:: ter H isastructure formed by the entities
which sharethe characteristics of both C1

:: .:. . .cz and C2. If theclustering algorithmissuch

H -:.::u:. ::.% that the entitiesin the chain cluster G and

eSS > hybrid cluster H have to be assigned to

. _ one of thetwo magjor cluster, C1 and C2,
Figure 3a: hybrid clusters o o
their isolation is doubtful.
Cluster Y rises another question. Is such structure shared by enough entities to be consid-
ered real and worthy of attention or is it a mere product of random turbulences in data collec-
tion? NO easy answer exists.

Another somewhat undesirable

phenomenon isthe presence of outliers A
or singletons (Figure 3b) that is, clus- N
) ] e®e¢’e e
ters formed by a single entity whose ® u:.: ‘h.:.
[
distances from the other (n-1) entities ces’ X

are al significant. What is the correct

» spea®
number of clusters? Three (ignoring X), .: 2 : :-.-.-
or four (considering X agenuine clus- @Y .-..-::.: :..-

[ ]
ter)? If one considers X a unique case .: :.:.: M

which does not reserve further treat-

A\

ment then the clustering algorithm can  Figure 3b: a singleton and a small cluster

run on a reduced dataset from which X has been eliminated. This has the advantage of limiting
the number of contenders to whom an entity could be assigned. If X cannot be discarded then
this has dramatic effects on the general lookups of the clustering.

In this sense, the requirement of exclusive assignment 2b is particularly strong because every
entity is forced to join a cluster whereas one would ordinarily be inclined to separate out outliers
(entities which fits badly into existing clusters) or being just naive or intermediate entities link-
ing two or more otherwise isolated clusters. Applications of k-means to real data should be able
to handle “nuisance” entities from further clustering runs (Bayne et al, 1980), although such
question represents an important research challenge. Since some clustering criterion is very
sensitive to the presence of outliers, some attempt should be made to remove these. It is clear
that choices made at this stage can have adetermining influence on the output of the subsequent
analysis.
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1.4 Perfect and admissible clustering
Clustering methods have a common intuitive requirement: entities in the same cluster should be
closer than entities in different clusters. Rubin (1967) called "well-structured" such partitions.
Ideally (Rubin, 1967; Van Rijsbergern, 1970) one would ask that the maximal distance between
entities in the same cluster be lower than the minimal distance between entities in different
clusters.

Let

A; = Max {d(X;,Xs); r,s=1....,rt; Ji,j)= Min {d(X;,Xs); r,s=1,...,
J %=L%=ﬁ ( r S) d ) %ih%:ﬁ ( r s) d (5

denote, respectively, the diameter and the moat of the cluster C.. Two type of ideal clustering can

be defined. The first is the “perfect clustering”
Aj < % 1=12,...,k (6)

An example of perfect clustering is the disjoint partition consisting of each entity in a separate

cluster. In this case A =0, j=1,2,....kand S >0, j=1,2,...,n, supposing that the X's are distinct.
J J

Nonetheless, perfect clustering is too restrictive (Bailey and Dubes, 1982; Tarsitano and Anania,

1995) since it eliminates many reasonable groupings.
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Figure 4: Admissible, but non perfect clustering
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Aless stringent definition, also useful from a computational point of view, is the string condition

(Rao, 1971): in an admissible clustering, each group consists of at least one entity (i such that
J

the distance between it and any entity that does not belong to the same cluster is not less than the

distance between U and any entity within the same cluster.
J

w;rj]{d(xr,uj); r:L...,r} ZI)\//rIzzpj({d(Xr,uj); r:L...,r}; =12,k @

According to this definition (see Figure 4), the problem addressed by k-means algorithms is to
discover, for each cluster, a representative or typical entity for whom is minimized a known
function of the dissimilarities between an entity in the cluster and the centroid.

The centroid can be either a hypothetical entity which is not an entity in the cluster (e.g.
the vector of the arithmetic mean of all entities currently in the cluster) or an existing entity (e.g.
the most typical entity that is the entity with the smallest average or total distance between itself
and the other entities in the cluster). When centroids are defined the classification vector y is
determined by assigning all entities to the most similar centroid.

The ability of a centroid to summarize the information content of the cluster depends on
the actual spread of the data in the given variable space. Usually, the centroids, the cluster
membership, and the variance-covariance structure are unknown and must be estimated from
the data set. Since each partition provides an estimate of the parameters, some selection is nec-
essary. A comparison can be accomplished using an objective function L()): y[P(n,k) —[0,0)
(here y denotes the cluster membership assigned to X ) such that L())<L(J) meansthat y pro-
vides k;etter estimates than & (where P(n,k) denotes ;he set of partitions of n entities into k
clusters). Since the cardinality of P(n,K) isfinite, it exists at least one partition y* such that

y')= min {L(} ®

yOP(n,k)

The most straightforward way to find y* isto evaluate L()) for all y[P(n,K). It is well known,
though, that thisis not aviable solution since the cardinality of P(n,k) growsrapidly (it isof the
order kn/k!) and becomes prohibitively high even for moderate values of n and k. The k-means
partitioning is a “NP-hard problem” for which no a priori guarantee can be given in terms of
solution quality and running time. Although the dividing line between things which are practical
to compute and things which are not is continuously pushed forward, the search for y must still
be conducted over a small subset of P(n,k) using strategies which find solutions that are often
good, but not necessarily optimal.

10
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2. Characteristics of a k-means algorithm

There is a wide choice of clustering methods which have different adaptability to the data and
different requirements of computer resources. Given an initial partition ¥ with ¢g=0, k-means
algorithms compute the criterion value L()"). Another partition 7" !is obtained by transferring
a single entity (or block of them) from one cluster to another. The transition from )}q) to )}q+ Y
can be realized by means of up- and down-dating formulae for the exchange of entities between
clusters. The new partition is accepted if L(y™ l)< L(y") and the procedure is repeated until no
further reduction of L(y") can be obtained.

The algorithm terminates after a finite (typically small) number of iterations. It is worth
pointing out that the k-means partitioning is a“NP-hard problem”, that is, there is no absolute
guarantee in terms of solution quality and running time.

There are many variations of, and extensions to, this approach and the lack of investiga-
tions into their propertiesis, in large measure, due to the excess of options which form an k-
means algorithm. The DetClus, aswith any program implementing arel ocation scheme, hasthe
following essentia phases.

0) Feature selection

1) Determining the criterion (distance measure)

2) Starting the process

3) Reassigning entities

3.1 Distribution of the entities among clusters
3.2 Updating the centroids, cardinalities and scatter matrices

4) Overcoming local minima

5) Validation of the results

6) Interpretation of the results

The variables must be properly chosen so as to englobe as much information as possible con-
cerning the difference between entities, but, with the minimum number of uncorrel ated features.
These issues are, however, outside the scope of the present section.

2.1 Determining thecriterion
Iterative schemes are concerned with making membership changes which optimize anumerica
criterion. The choice of the objective function L()) iscrucia for aK-meansagorithm becauseit
must take into account two requirement which may be difficult to reconcile. One goal (internal
cluster cohesion) can conflict with another (separation between clusters).

Severa criteria have been proposed and each of them is predisposed to finding certain
type of clusters and has specific properties. DetClusis based on the criterion proposed by Fried-

11

G



man and Rubin (1967)

L(y) = Min{ g (v}
k n t Z_Xr 9
Wo= 3 W W= 3 (xo-pd )X -pd )i = j=r2 kO

=1 . : r=1 nj

Where W, is the pooled dispersion matrix across the & clusters (or “within-group” dispersion
matrix) for the g-th classification vector. In order for (9) to be non-singular, it isrequired that (n-
k) >m otherwise the estimate is singular regardless the true value of W. Naturally, since total
dispersion matrix T isfixed for every partition of the given data set, Min{|\W())|} is equivalent
to Max{| T|/\W(y)|}. A ssimple variation of (9) was proposed by Symons (1981)

g
L[yq] = nLn[W( yq)] - 2j E 1nJ(Q)|_nan(Q)E

Some empirical results does not support such criterion since relocations based on it stop after
surprisingly few iterations.

The minimization of the determinant of W(}))| does not make such restrictive assumptions
about the shape of the clusters as does Min{Tr[W())]} assuming only that the clusters has the
same shape and orientation, but not that they are spherical. Although computationally more
involved and expensive, the criterion Min{|W())|} is invariant under the affine transformations
Y=AX+b where A is non singular (this allows the question of standardization of the variables to
be overcome and the results do not depend on arbitrary factors such as the units of measurement
used for data acquisition). Furthermore, it reduces the repetitive effect of several highly corre-
lated attributes by considering sums of cross products in addition to sums of squares (Arnold
1979).

The use of (9) implies that the dissimilarities between the entities are measured by the
generalized (Mahalanobis) distances, each centroid coincides with the averages of all entities
within the cluster and the clusters have the same variance-covariance matrix. In fact, Mahalano-

bis distances are equivalent to the Euclidean distances between the transformed entities:

Y=HX, i=12..,m
where HH' isthe Cholesky factorization of W.
The generalized distance introduced by Mahalobis (1936) is a distance measure corrected

in terms of the group structure of the data. Additionally, it is appropriate when the variables are

12

C



correlated because it takes into account the variability of the values in all dimensions. The point
C in figure 5, which clearly lies in the domain of cluster B would be allocated in cluster A if the
Euclidean metric were used. If the within-cluster covariance matrix is known, the data can be
transformed Y= HX, to make the clusters spherical so that the Euclidean distance can be used.
But when we are doing a cluster analysis, we do not know what the true cluster membership is
and we cannot calculate W so that an approximation should be used.

A\

Figure 5: Euclidean vs Mahalanobis distance

Since

where A is the i-th eigenvalue of the within-cluster scatter matrix, the criterion Min{|W(y)|}
tries to minimize the volume of the hypercube defined by the variances in the direction of the m
principal axes of the data set. This means that (9) is appropriate when the variables are corre-
lated because it takes into account the variability of the values in all dimensions. However, since
the within-group dispersion matrix W is an average of the variance-covariance matrices of the
clusters, correlated variables in the clusters generate multicollinearity in W. In other words, |W/|
will approach to zero as correlations grow stronger. The Mahalanobis distance between the
centroids, calculated by using W, tends to infinite; as a consequence, the only clustering com-
patiblewith such conditionsisthe digoint partition. However, since the within-group dispersion
matrix W is an average of the variance-covariance matrices of the clusters, correlated variables
in the clusters generate multicollinearity in W. In other words, |W| will approach to zero as
correlations grow stronger. The Mahalanobis distance between the centroids, calculated by us-

13
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ing W, tendsto infinite; as aconsequence, the only clustering compatible with such conditions
isthe digoint partition.

In the general case, when the centroids U, i=1,2,...,k and the matrix W are completely
unknown, the number of unknown parameters t(l) be estimated equals km+m(m-1)/2 and, there-
fore, reliable estimates are possible only if # is much more greater than this threshold. If Wis ill-
conditioned and one supposes that the & clusters lie in the same subspace, redundant features can
be eliminated by representing the data in a new coordinate system in which the effective de-
scription can be given by applying techniques to reduce the dimensionality of the data. An
evident technique is to apply Principal Component Analysis and to perform the cluster analysis
on the factor scores of the first few leading factors instead of the complete data (the use of PCA
as well as factor analysis is contraindicated if each variable is endowed of a useful and indepen-
dent discriminating power). While this can be helpful for finding clusters it can make results
difficult to interpret.

Dimension reduction has, however, many positive implications. Firstly, for the computa-
tional effort because reduced data require less storage space and can be manipulate more quickly
than the original set of variables. Secondly, a limited set of selected features may alleviate the
influence of irrelevant information (features showing little differentiation across the data set or
highly correlated with other features) to whom the Mahalanobis norm give the same relative
importance as the other variables thus degrading the grouping ability of the most salient fea-
tures. Third, to avoid implicit weighting: if two collinear features are used, then their common
dimension is effectively double weighted (Heeler and Day, 1975). In addition, eliminating re-
dundant variables helps to interpret and compare the configurations derived by cluster analysis.
Finally, some validation tests (e.g. the C3 clustering criterion) designed for uncorrelated vari-

ables, becomes applicable to orthogonal principal components.
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Example 1:
Economics of Cities. (http://lib.stat.cmu. edu/
DASLY/).

The data represent the economic condi-
tionsin 46 citiesaround in world in 1991. The
variables are: work (weighted average of the
number of working hoursin 12 occupations),
price (index of the cost 112 goods and services
excluding rent, Zurich =100), salary: (index of
hourly earningsin 12 occupations after deduc-
tions (Zurich =100). If al the PC’s are used
for the cal culations the M ahal anobi s distances
between the point of the figure 6b are equiva
lent to the Euclidean distance between the
points of Figure 6a.

However the appearance of the data sets
in the normalized PC space is different from
the original space, since now, along each PC,
the points have the same variance.
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Figure 6: cities data set.

Original an normalized PC spaces
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Example 2:
Sexual activity and the lifespan of male fruitflies. Source: “Sexual Activity and the Lifespan of
Male Fruitflies” by Linda Partridge and Marion Farquhar. Nature, 294, 580-581, 1981. Size:125
observations, 5 variables: number of partners (0, 1 or 8), Type of companion: O=newly pregnant
female; 1= virgin female:9: not applicable (when partners=0), lifespan, in days, length of tho-
rax, percentage of each day spent sleeping. The first two variables are used as if they were
quantitative, although is questionable as to how far these variables can be ¢ as metric.

The pooled within-cluster scatter matrix is singular for any value of k and criterion (9)
cannot be applied to this data set. However, the the first four principal components of the corre-
lation matrix (explaining the 93.2% of the total variation) indicate the presence of a group struc-

ture although the number of clustersis uncertain. DetClus run plainly on the reduced data set
ensuring a perfect revovery of the five cluster present in the data.

353
Figure 7: fruitfly reduced data set
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2.2 Interpretation of the criterion

Friedman and Rubin relate Min{[W/[} to Wilks’ lambda statistic encountered in the multivariate
analysis of variance. In this context, the hypothesis that the means of & normal multivariate
distributions with a common dispersion matrix are equal HO.‘ H]: u2= = uk Versus HI : at least

one | Z|L is available is tested by considering
i

j —H
r=1 r=1 j=1 (10)

where U is the total mean and B is the “between” dispersion matrix. Specifically, Ho is rejected
if A=[W}W+B|is too small. Since W+B 1is fixed, minimizing the determinant of the within
dispersion matrix is equivalent to minimizing the p-value of the Wilk’s lambda.

The minimization of [W/ searches for clusters that are hyper-ellipsoidal with equal orien-
tations. Everitt (2001), Chernoff (1970), Chen et al. (1974), Symons (1981) points out that the
metric W could produce incorrect and misleading results when the dispersion structures of the
clusters are markedly heterogeneous. In fact, the algorithm is destined to find football-shaped

clusters sharing a common orientation even if there were no trace of them in the data set.

Example 3:

Diday and Govaert’'s data. Fifty observations from each of three bivariate normal distributions,
asdescribed in Diday and Govaert, RAIRO Informatique/Computer Sciences, 11, 329-49 (1977).
The data have been studied also in Gordon (1999, 46-48). The phenomenonisclearly illustrated
in Figure 8 where the minimization of the determinant has driven the algorithm aong the axis of
maximal dispersion.

6- 6
53 53
43 43
33 33
2] 23
13 13
GE 18— 03
] | ® ]
1 3al 13
] | 3 |
-2 — 23 — X
5 True cluster membership i Estimated cluster membership
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Figure 8: peculiarity of Min{IWI}
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Several authors have pointed out that if the condition of homogeneity for the within-group dis-
persion matrices is not satisfied, the clustering based on Min{|W|} may impose artificial struc-
ture which precludes uncovering patterns hidden below the surface of data

Scott and Symons derived the criterion within the context of the maximum likelihood
estimation of yassuming a multivariate normal distribution for each clusters. Bayne et al. (1980)
found that | W] and Tr(W) do not differ significantly. Zemroch (1996) notes that the Mahalanobis
distance is attractive because it emphasizes the unusualness of those entities that most defy the
intrinsic relationships among the variables. Marriott argues that if one of the variables is strongly
grouped, the minimum partition defined by (3) would be entirely based on that variable. Such a
partition obeys the string condition, but the clusters might be unrecognizable if viewed against
the entire space of the variables. Scott and Symons (1971) conjecture that the criterion encour-
ages the formation of partitions with clusters of equal size which is not necessarily a curse,
especially in many experimental designs. Exhaustive experimentation with | W] used jointly with
an efficient procedures (see section 3) for determining the initial configuration, does not con-
firm such a tendency, at least for well structured data set.

Example 4.

Fishcatch data set (available from the data archives of the Journal of Statistical Education). A
sample of 157 fishes of 7 species are caught and measured. All the fishes are caught from the
same lake (Laengelmavesi) near Tampere in Finland. The best solution for k=7 and k=5 are
shown in figure 9. In the first case the data are weakly clustered and the tendency to nearly equal
sized clusters 8 column “E”) is confirmed. For /=5 the group structure is more pronounced and
the clustering based on Min{| W(y)| }recognizes both small and large clusters.

Figure 9: best solutions for k=7 and k=5
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Example5: Dudaet al. (2001, pp. 543-548) discuss various criterion functionsfro clustering by
applying the criteriato a simple data set. The raw data does not exhibit any obvious clusters.
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For k=2 the clusters found by minimizing the sum os squared errors (Tr(W)) tend to favor clus-
ters of roughly equal number of entities; in contrast, Min|W| favors one large and one fairly
small cluster (Bayne et al. 1980 found that | W| and 7r(W) do not differ significantly). The clus-
tersin the figures are stretched horizontally because the variation of the data set is greater along
the V1 axis than along the V2 axis (the solution found by Detclus is different from that pre-
sented by Dudaet al. 2001). For k=3 the difference between the clusters determined by the two
criteria becomes smaller (thefirst cluster on the left isamost the same). According to Duda et
al. thisisagenera tendency.
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2.3 Reassigning entities

The essence of a k-means algorithm is the reallocation phase and, in fact, the type of pass is a
distinctive feature of the method. There are a number of schemes in common use to relocate
entities, each reflecting a different trade-off between classification capability that can be achieved
and computer time consumed. Most methods differ basically in the number of criterion evalua-
tions required to reach a minimum and the accuracy of this minimum.

The schemes considered by DetClus are based on a combination of two distinct stages:
transfers and swaps. Transfers consist of moving one entity from one cluster to another; swaps
involve the exchange of two entities from different clusters.

Let |Wq+ ;| the determinant of the within-cluster dispersion matrix after that the transfer of

X, from cluster j to i has taken place (the transfer from a singleton is not considered).

Dg(r.jii) = War = (1+aiy}Wq_1Yi )(1_ajythq_1Yj) +aia | (yith_lyj )2

Wa

n_q nq (11)
a = | a; = J : - =X, — q, =X, - q
i (niq N 1) j (njq B 1) Yi r Y r ~Hj

If Aq(r, 7,i)<p <1 then | Wq+1|<‘ Wq\. This condition ensures that the procedure does indeed pro-
duce progressively better partitions. Moreover, since | W | is bounded by zero, the process must
converge in a finite number of steps. (Obviously it is no?[ the convergence itself, but the rate of
convergence that justifies this method in practice). A threshold lower than one (e.g. p=0.9999)
prevents cycling divergence (that is, catastrophic recurrence of partitions which were aban-
doned at an earlier stage) due to numerical problems; additionally, it may help to regulate the
running time of the algorithm.

The change in the scatter matrix, its inverse, centroids and cardinalities is easily computed

from the following relations
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To avoid the accumulation of rounding errors, the quantities are computed directly from the data
after a number V of transfers depending on the data set. DetClus uses V=200vn*m.

The sequence of the entities within the data set may exert a profound influence on k-
means. An algorithm is said to be combinatorial (MacQueen, 1967) if the criterion, centroids,
cardinalities and within-group scatter matrices are updated immediately after a move has been
executed in order to take account of the new situation. As a result, the trajectory of the iterative
process is dependent, to some extent, on the sequence in which entities are processed and differ-
ent orderings may yield different clusterings. This problem can be mitigated by randomizing the
choice of the entities to be reallocate or by applying data reordering techniques.

In a noncombinatorial k-means algorithm (Forgy, 1965) the moves are executed in paral-
lel in the sense that the entities do not actually change to their new cluster membership until
destinations for all entities have been determined. Hence, not only the calculations are substan-
tially simplified, but the iterative process does not suffer from ordering effects. However, unless
certain conditions are satisfied (Selim and Ismail, 1984), there is no guarantee of a net improve-
ment in L()) and no guarantee that the k-means process converges.

A relocation of the entity Xr from cluster i to cluster j causes consequential changes to the
centroids /,li and [,lj : the former is pulled toward Xr and the latter is pushed away from it. This

causes the distances from the centroid of other entities in clusters i and j to decrease, such that

the criterion is decreased. If X 1is shifted to its nearest cluster centroid but the centroids are not
r
upgraded the combined effects of several moves like this may actually increase the criterion or,

worse, the same reallocations are reproposed in two or more successive steps and no further
improvement may be obtained by the algorithm.

Another drawback of the Forgy step is that during the relocation phase it is possible that
all entities of a cluster are assigned to other clusters and at the same time no other entity is
assigned to the centroid of this cluster. In this way the procedure ends up with an empty clusters
and the partition is discarded.

In spite of this potential weaknesses, the Forgy approach can generate fast and reliable k-
means algorithms which, nonetheless, tend to be less efficient than algorithms implementing the
McQueen approach (Anderberg, 1973, p. 166). On the other hand, it has been experimentally
observed that algorithms based on a combinatorial scheme are more susceptible of being trapped
in local minima. At present, the effect of the choice combinatorial/non combinatorial reassign-

ment of the entities for the criterion (9) has not yet fully established.

21



Option 1: first improving

The simplest reassigning pass merely consists of scanning -in a random or systematic order- the
data set and computing A (7,i) for i=1,2,...,k, i#Zj; r=1,2,...,n. where the order in which the
cluster are tried can also bg sequential or random. If A (7j,i)<p then Xr is immediately reclas-
sified from its present cluster j to cluster i without checking to see if some other transfer would
be better. The » entities are then checked in turn to see if another transfer decreases the criterion.
For each entity, DetClus examines at most (k-1) partitions (neighborhood set) derived from the
current partition by moving an entity from one cluster to another. It should be noted that when
the starting partition is inadequate the “quick” transfers can be slower than more complex searches
executed under the other options.

The results of TFI may depend on the sequence in which the entities are processed. If the
data sets are formed by compact and isolated clusters, there is a high chance that any arrange-
ment of the data may lead to a global minimum (MacQueen, 1967). Nevertheless, more consis-
tent and reliable comparisons can be performed if the way the entities are selected for the updat-
ing phase does not interfere with the minimization process. Pefa ef al. (1999) suggested trying
many runs with different arrangements to marginalize out ordering effects, but the number of
repetitions deserves further exploration. Fisher ef al. (1992) argued that arrangements so that
consecutive entities are dissimilar lead to good clustering. Further work remains to be done on
connections between sorting strategies of the data and recovery rate of combinatorial k-means
algorithm based on the determinant. Normally, the transfers are executed in the order in which
they appear in the data set, but the flow can be altered by the user. In fact, to reduce the impact
of the entity order DetClus, allow randomizing both the choice of the entity to be considered for
a move and the choice of the destination cluster. The current configuration of the entities is
obtained by shuftling the set of entities. Let y=(" V) Yy oo yn) be a vector of integers between 1
and n. By using the technique suggested by Knuth (1981, p. 139) random permutations of the yr’
s is considered. In the same way, the current sequence of the destination clusters is determined
by shuffling a vector of integer between 1 and k. To alleviate the burden of computations the

shuffling of the clusters is performed each five transfers and that of the entities each 20 transfers.

Option 2: local best-improving

A first-improving policy may lead to premature convergence of the k-means process. The trans-
fer algorithm can be more effective if a local search is included between iterations. This moti-
vated the development of several search methods to solve the problem of Min{|W(})|}. Rubin
(1967) suggested examining the potential effect of switching Xr from the cluster it occupies to
each other cluster and finding the value satisfying Min{A(7,j,i)|A(r;j,i)<p, i=1,2, ...,k; jZi} Thus

each entity is transferred (if transferred) to the cluster which maximizes the impact on [W())| of
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the transfer. The entities can be considered either in natural or in a random sequence. If such
transfer exists then the process is moved from the current partition to the best partition among
the (k- 1) partitions belonging to the neighborhood set. When thereis more than one entity whose
transfer gives the same decrease of the criterion, the gaining cluster is selected by choosing the
transfer with the smallest i among the competitors. The search is repeated -using either deter-
ministic or stochastic sequences- for each entity of the data set. It is evident that option 2 is more
computer demanding than option 1 since the latter is interrupted if also the former is interrupted,

but this may continue to evaluate transfers also when the TFI does not.

Option 3: Best global improving

DetClusperforms a complete scanning of the entities and produces the set of candidate transfers
E= {A(rh,jh, ih)Sp, h=1,2,...,}. Then the elements of £ are sequenced in ascending order and the
corresponding transfer executed (provided that A(7,j,i)<p after each transfer) starting from the
first, but discarding those affecting clusters already involved in a reassignment. When thereis
more than one entity whose transfer gives the same decrease of the criterion, the gaining cluster
is selected by choosing the transfer with the smallest i among the competitors. The process is
iterated until all entities no longer change their membership. Iterations are also stopped if | W] <
10-?? to avoid looping and overflowing. Clearly, global strategies are expected to give better
results than local ones since an improvement of the local search do not necessarily mean an
improvement of the total k-means algorithm. However, global strategies may be questionable
under the request of computer resources. In fact, for each pass through the data set DetClus
moves at most /k/2] entities which could seem unsatisfactory compared with the number of
potential relocations considered by a local search. It should be pointed out, though, that after
some initial iterations characterized by quick refinements, local searches tend to settle into se-
quences of very few and often ineffective moves even when the process is not in the vicinity of
a minimum partition. In addition, the results of DetClus are invariant with respect of the entity
order (except when multiple equivalent solution exist), whereas the final solution of combinato-
rial algorithms incorporating local searches may feel the impact of order dependency.

To avoid array overflow errors the number of transfers between cluster i and j to be
retained should have a fixed upper bound because the number of potential moves (its maximum
is (k-1)n ) could be greater then the available temporary storage). DetClus considers a maxi-
mum of 1°124°250 moves. The option of retaining only the best transfer for each entity although
parsimonious in terms of memory storage and execution time, has been proved much less effi-

cient than considering all the transfers (allowed by the memory size of the program).
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2.4 Swapping entities
Banfield and Bassil (1977) proposed that the interchange of cluster membership between enti-
ties is a useful tool for reassigning entities. DetClus offers the opportunity of a mixed scheme
alternating transfers with swaps.

Consider the swap of entity Xr with y=i and entity XS with y=J, i7. The effect on the

dispersion matrix is

Wq+1 =Vvq _:B(xr _Xs)(xr _xs)t +(Xr _Xs)(uj _.ui)t +(uj _:ui)(xr _Xs)t (13)

where B=(n+n)/(nn). The inverse of (13) and its determinant can be computed by repeated
1 1
applications of the Sherman-Morrison formula.
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For each scan of all possible interchanges between different clusters DetClus implements the
swaps (if any) which most reduce the criterion, provided that no cluster is involved in more than
one swap and that A(zs,j,i)<p after each swap. This condition ensures that the procedure does
indeed produce progressively better partitions. Since the criterion Min{W(})} corresponds to a
sum of squares, the process of relocating only those entities which yield a reduction must con-
verge because a sum of squares cannot be indefinitely reduced.

As was previously noted, the k-means algorithm can be interrupted after the first improve-
ment found in the neighborhood set or after examining the whole neighborhood set. In the
former case, a maximum of n(n-1)/2 candidate partitions are evaluated while, in the latter,
exactly n(n-1)/2 alternatives must be analyzed. In the first case, an order dependency may be

introduced which can be ameliorated randomizing the choice of the pairs to be swapped.
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Option 1: Post processing stage

With this option the user activates a hybrid process oscillating between the transfers stage and
the swaps stage. The whole data set is reprocessed until there is no further improvement in the
quality of the clustering by means of a transfer; only then the swaps stage is executed repeatedly
for all pairs of entities until a new convergence occurs. If one or more swaps are found benefi-
cial, then the transfers stage is restarted. The iterations continue until the membership of the
clusters stop changing. The hybrid scheme denoted as option 1 should be essentially considered
as a way of overcoming a local minimum. The swopping, is a heuristic technique in the sense
that its failure to produce a better solution does not mean that the actual partition is the best.

However, it reinforces our confidence in it.

Option 2,3. Mixed strategies: transfer+swaps

The transfers are applied for the first pass across all entities then the swaps for the second, and
proceed in this fashion until a minimum of the criterion is reached. Banfield and Bassil (1977)
considered a single search of the n(n-1)/2 pairs of entities although further repetitions (after

recomputing the centroids) could led to better partitions.

Option 4,5. mixed strategies: swaps+transfers
In this case the swaps are used for the first stage then transfers for the second and continue
oscillating until there are no entities that change their cluster membership. The mixed strategies

should help in applying k-means with inadequate starting partitions.

The swapping pass (options 2-4) can be combined with the transferring pass (option 1-3)
generating 12 mixed schemes: TFI+SFI, TFI+SGBI, TBLI+SFI, TLBI+SGBI, TGBI+SFI,
TGBI+SGBI, SFI+TFI, SGBI+TFI, SFI+TLBI, SGBI+TLBI, SFI+TGBI, SGBI+TGBI. The pure
schemes: TFI, TLBI, TGBI reprocess the whole data set and terminates when there are no enti-
ties that change their cluster membership. The mixed schemes have two distinct alternating
strategies: either the transfers are applied for the first pass across all entities then the swaps for
the second, and proceed in this fashion until a minimum of the criterion is reached or the swaps
are used for the first stage then transfers for the second and continue oscillating until conver-
gence occurs. In both cases, mixed schemes suffer from ordering effects, with the exception of
TGBI+SGBI and SGBI+TGBI.
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2.5 Simulation results

Tarsitano (2002) has analyzed and compare 17 different relocation methods for the k-means
algorithm implementing the Friedman-Rubin criterion (given that the number of natural clusters
is known and the order of entities within the data set is fixed).

The key findings are listed below.

1. The scheme TGBI, unexpectedly, scores top marks in terms of convergence speed signifi-
cantly better than any other scheme. In this sense, it is a natural candidate for clustering large
data sets, at least for applications where a reasonably good initial classification is available.

2. The mixed schemes are uniformly less rapid than pure schemes and the difference between
execution times reaches a maximum -as it should be suspected- when the globally best transfer
is coupled with the globally best swap. On the other hand, when swaps are performed, TGBI+
are faster than TLFI+ which are, in turn, faster than TFI+. The same ranking is found for the
tandems lead by SFI and for those lead by SGBI. The durations of TGBI+ and SGBI+ are higher
than any other mixed scheme by orders of magnitude. It is evident that the swapping stage is a
time-consuming task because it compares an entity with the entire data set. Worth of note is that
the results of combinations S+T compares favorably with those of the reverse combinations
T+S. Banfield and Bassil (1977) have ignored mixed methods of the type S+T which, on the
contrary, seems to generate efficient schemes.

3. Coleman et al. (1999) argue that a TFI strategy seems to be preferred to a TLBI strategy for
the problem of classification to minimize the determinant criterion. Ismail and Kamel (1984)
indicate that TLBI is more susceptible to being trapped at a local minimum than TFI, at least for
algorithm guided by Min{Tr(W(}));}. On the other hand, Zhang and Boyle (1991) found that TFI
and TLBI are indistinguishable. These findings were not confirmed by my experiments. For k-
means algorithms based on Min{|W(})|}, TGBI outperforms all the other methods, regardless
the number of variables, the number of clusters and the structure of the cardinalities. The inclu-
sion of a global search determining a chain of reassignments each of which is the best taken
from among the available reassignments is generally beneficial for improving both the rate of
convergence and the accuracy of the final partition. Moreover, TGBI isindifferent to the order
of data whose influence on other schemesis complex and unpredictable. For medium sized data
setsthe algorithm runs quite efficiently. Huge data sets are precluded because the large values of
nm would require excessive computer resources.

4. The mixed schemes T+ obtain (but non always) some refinement of the final partition over
the respective pure schemes. Similar results are found for SFI+ and SGBI+. Nonetheless the
impact of the swaps over the quality of the solution is limited and the time needed for each
convergence may not be worth the extra computation. Mixed schemes are more likely to work
better for poor starting conditions, but the limited impact on the classification adequacy does not

compensate the extra energy expended for these procedures. The experiments indicate that com-
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binations of different strategies may provide significantly less good performance than do their
isolate application. In particular, the swaps, not only are time consuming, but also tends to block
the process after very few iterations. In practice, the swaps should be essentially considered as a
way of getting out of a local minimum.

5. Schemes of the type S+ tend to yield better solutions in terms of stability and accuracy than
T+. Most likely the phenomenon is due to the major ability of the swaps to use more produc-
tively the fact that most of the changes in cluster membership occurs at the first few iterations
(Anderberg, 1973, p. 163)

6. For data sets divided into even clusters, the recovery rateis steadily higher than for disparate
sized clusters and the differences becomes more pronounced as the number of clustersincreases.
Thisisaligned with the conjecture that Min{|W(})|} encourages the formation of partitions with
clustersof equal sizeif the separation between the clustersisnot large (Scott and Symons, 1971,
Everitt et al. 2001, p. 94).

7. An interesting point is that the dimension of the problems and the number of clusters did not

affect the convergence of either of the algorithms implemented in DetClus..

Overcoming local minima
The problem of IPM's is that the local minimum y* may not be the global minimum. Rubin
(1967) remarked that two type of problems cause local minima:

1) Two homogeneous but unrelated clusters are united while other clusters may be well formed;
2) The centres of the clusters do not allow a very stable classification of hybrid entities.

Thefirst situation affersdirectly with the problem of the number of cluster and will be discussed
in section 4. DetClus. attemptsto circumvent local minimadue to the second situation by swaps.
The swopping, as many other techniques for overcoming a local minimum, is heuristic in the
sense that its failure to produce a better solution does not mean that the actual partition is the
best. However, it reinforces our confidencein it. It must be said that the swopping phase, rarely
provides an improvement and may be ignored if the agorithm starts from a good configuration.

Limitations

An inherent limitation of the k-means algorithms included in DetClus is that their final configu-
ration does not necessarily coincide with one of the desired global minima. Since all the schemes
do only descent moves, they are not able to force the process out of the current valley and
eventually fall into a deeper one. The development of mixed algorithms which combine the best

elements of the transfers/swaps with a non descent technique would be a significant contribu-
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tion. Additional work is needed to determine the most appropriate strategy of alternating trans-
fers and swaps and to keep the algorithms from taking too many iterations in regions where
insufficient progress is being made. For instance, hybrid processes which oscillate between a
trasferring stage which reprocess the whole data set until there is no further improvement in the
quality of the clustering and only then a swapping stage is used repeatedly for all pairs of enti-
ties, should help in applying k-means with inadequate starting partitions. Furthermore, two-
phase strategies in which a first-improving transfer pass is applied if the entity number is odd
otherwise a best-improving pass is executed (or vice versa) can be considered (either as isolate
application or combined with swaps) to devise a better k-means algorithm. Moreover, strategies

in which the swopping phase is done periodically or randomly could be devised.

The performances of iterative partitioning methods are mainly affected by the intensity of
the clustering. The procedures described in this section are all appropriate when the clusters
form essentially compact clouds that are fairly well separated from one another. If the clusters
are close to one another (even by outliers or hybrids), or if their shapes are not hyper-ellipsoidal,
the results of clustering can vary quite dramatically. In fact for poorly defined clusters the mis-
classification rate reaches unacceptablelevelseven if the method isvalid and consistent with the
data-generating process. Furthermore, as Mineo (1986) pointed out, it is more difficult to deter-
mine a good starting point and, as a consequence, the algorithm is more likely to stop on local
minima

3. Initialization methods

The k-means algorithms described in the previous section converge finitely to a partition y* that
is locally minimal for [W(})|. The convergence is deterministic given the initial configuration,
but the quality of the minimum is not guaranteed. The efficacy of a k-means algorithm is influ-
enced by many factors. Most obvious is the starting partition. In fact, k-means algorithms have
differential recovery rates depending on the quality of the starting configuration. So far no at-
tempt has been made to set up a procedure that works well on every occasion.

The reason for this is simply that what is most appropriate for one data set may not be so
for another and, unfortunately, there is no simple, universally good solution to this problem
(Duda et al, 2001, p. 550). In some case it is possible to obtain excellent results by taking the
first & entities as typical representatives; in others, only sophisticated and computationally ex-

pensive methods may provide an initial partition acceptably close to the final solution.
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Furthermore, the concept of “best” is a compromise between accuracy and computation cost
which, for this reason, cannot lead to an initialization method that outperforms all the others on
all the data sets. Many available procedures invite the user to have a hieratic confidence in a
built-in initialization method (no further details) which regularly finds good clusters provided
that they exist and the user gives the correct number of clusters to detect. Such a guarantee
cannot be given.

Asthecluster analysishasevolved, a awide variety of techniques has emerged for choos-
ing the first k centroids (or, aternatively, for specifying an appropriate starting partition )}0)).
Anderberg (1973), Hartigan (1975 Blashfield et al. (1982), and Pefiaet al. giveabrief summary
of a number of different procedures by which an iterative partitioning could be triggered and
more can be found (e.g. Mineo,1985, Al-Daoud and Roberts,1996).

If an inadequate initialization is performed two puzzling phenomena tend to appear. First,
the algorithm may be interrupted at a lower value of the criterion not corresponding to a greater
recovery rate (Coleman et al., 1999). Second, the minimum partition found may not be unique
as other partitions may give the same criterion value which, in addition, may be associated with
a different degree of clustering effectiveness. There is little chance to avoid these problems
because the surface defined by |W(y0)| is usually flat and contains many local minima.

Repetition of the procedure with different partitions appear to be a reasonable method to
face this problem. Moreover, it can give good indication of the sensitivity of the final solution y*
to the starting partition. It should be emphasized, though, that |[W( y0)| < |W(6O )| does not neces-
sarily imply that |W(y*)| < |W(6*)|. Therefore, auser isadvised to try severa initialization meth-
ods on a given data set. In fact, DetClus uses each starting partition as a separate basis for the
subsequent phases and the classification vector corresponding to the lowest value of |W())| is
chosen asfinal clustering. It hardly need adding that the search of theinitial configuration takes
very much longer then the entire algorithm (the problem is even serious when n, k, and mare
large). However, the advantages in terms of partitional adequacy of the final solution far out-
weigh the consumption of computer time. Of course, multiple restarts may beincompatible with
large data sets, at least for the actual technology of the combination hardware/software.

DetClus determines y0 by trying several effective techniques which can be classified in

two categories: deterministic and random.

3.1 Deterministic techniques.
The deterministic techniques yield an initial partition which is unique in that it is found optimiz-
ing a suitable objective function. The partition for which DetClus obtains the best results is

written in the output file as optimal solution for the given value of £.
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3.1.1 Best among naive methods
This command calls three different procedures characterized by rapid movements of the entities
and quick computations. To avoid generating unfeasible partitions all clusters with no entities

assigned to them receive a randomly chosen entity from the largest cluster.

Option 1: mean entity

Hartigan (1975, p. 88) proposed a quick initial clustering based on the simple arithmetic mean
of the variables for each entity. DetClus uses a weighted average of the variables which stan-
dardizes the variables by their sample variances. In particular, the observed value of the m
variables for the r-th entity is summarized by

§5=5 o =12
= 2 WX i Wj = =
j=1 ZUI (16)

=1
where Gj %isthe sample variance of Xj. The r-th entity is assigned to the cluster Ci if

gk DS = Sin

Esmﬁg"'lﬂ_' =Yy, =12, (17)

Option 2: leading component
Hartigan (1975 p.102). Let w forj=1,2,...,m be the factor loadings of the first principal compo-
nent of (n-1) T and let

m
Sf:jélwixﬂ’ r=12,..n (18)

The cluster membership is given by (17). Of course, if the variables have been expressed as
factor score, the rule (17) applies to the first variable of the transformed data set. It must be said
that the averaging features applied by option 1 and 2 could destroy information contained in the

multivariate data.

Option 3: quantiles
The ordered scores S, =1,2, ...,n of the dominant factor of (n-1 )_]T are divided into £ slices with
approximately the s;me number of entities. The membership of the entities is determined ac-
cording to the rule
Ve =1 1T S5-10S9 <S55 20 =Shin S0 = Snex (19)
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3.1.2 Best among built-in techniques (simple methods)

These methods are considered “simple” because they perform asingle passthrough the data set,
but require an estimate W* of W. Since the cluster membership is unknown before the analysis
some approximate procedure must be used (see section 3.1.3)

Option 1. Sequential splitting
Let g be the number of clusters already formed and let 4 and i indicate, respectively, the cluster

and the variable where the coefficient

ol

CD = (20)

| Mh Sy g o o o
ULih"'"Uihu ,Lih—br/llzrrl]{xri,l—l,...,nh},Uih—wil%({xr,,l L....ng

is higher. Index (20) increases as the relative variability increases and it is immune from stan-

dardization bias; moreover, the denominator does not vanish unless X [0 (in this case CD=0).
rt

The denominator of CD is not an average since its value may fall outside the sample range.

Suppose that the current number of entities in cluster Ch is nh> [ and that X is not constant in Ch'
1

Then cluster Ch can be splitted as follows

BE% n) ke 0

o if ;<M = X(t)i N D: X(t)i 0 0

=0 . . . =h M= Max it U Uy
g+1if xi>M ist<n,j U n-t g (21)

[l [

0] U

Formula (21) maximizes the between-group sum of squares for the i-th variable (Engelman and
Hartigan, 1969; Anderberg, 1973, pp. 45-46 ). The split separates the cluster of points above the
mean U from the cluster of points below the mean. Centroids are then computed for each cluster
by averlaging coordinates of its members. In practice, a Forgy step though the data is executed,
that is the entities do not change to their new cluster membership until all assignment have been
evaluated. The assignment of the entities to the clusters is based on Mahalanobis distance with
metric (W* )-I. At the end of step the cluster centroids are updated to be the averages of entities
contained within them. No further iterations are performed. Splitting continue until g+ /=k. A

clusters that has less than one entities as its members id discarded.

Option 2: ordered distance from the total mean
This procedure was proposed by Hartigan and Wong (1979). The entities are first sorted by their

distances to the overall mean vector U of the data set; then, the cluster centroids P , j=1,2,...,k,
J
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are chosen to be the entities labelled /+ (j-1)b, j=1,2, ...,k with b= [n/k]. The classification vector
y is derived according to
. (22)
v = if (% -B)wrt(x, - Pj)s{(xr ~R)w*(x, - F?)} 1=12,...,g

Formula (22) implies that an entity which need to be assigned to one of the clustersisidentified
with the cluster to which it is closest as judged by the Mahalanobis distance based on the metric
W*. If an entity isat the same distance from several centroidsit is by convention assigned to the
cluster CJ_ with the smallest index j among the competitors.

Option 3-6: farthest neighbor

These procedures consist of 3 steps.

Step_1. Determine the first centroid P1' Two aternatives may be considered:

a) the first centroid is the entity which is nearest to L, the mean vector of the data set.

R=X 0 (Xsp )W (Xg-p) < (X —p) W* (X —p) r=12,...,n (23)

b) the first centroid is the entity which has the greatest distance from L.
R=XsO (Xsp )W (Xs—p) 2 (X —p) W* (X -p) r=12,...,n (24)

Step 2. Let P= {PI, Pz’ ..., P '} be the current set of centroids. The (g+1)-st centroid may be
g

chosen according two alternative rules

Pys1 = Xs O Qj/“mg (% p’)'W*_l(XS_p’)ZQmag (% —pj)'\,\/*—l(xr -R) 25)

e P’jﬂégél(xg 2wt -p)2 Qﬂégél(xr - W (% -R) 2

Step 3. Execute a Forgy steps through the data set i.e. the changes caused by each entities are
accumulated and executed at the end of the cycle. The classification vector is determined by
assigning all entitiesto the most similar centroid. Only one complete pass through all the entities
is executed. The assignment of the entities to the clusters with the nearest centroid is based on
(22). Step_2 and Step_3 are repeated until £ centroids have been selected.
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Methods implementing the farthest-neighbor policy have the advantage of ensuring that
extreme entities appear in the initial configuration, but have the drawback of including as cen-
troids atypical entities such as outliers which are unduly emphasized by the Mahal anobis norm.

DetClus uses the following labels:

Option_3: (total mean, maximum distance) Option_4: (total mean, mean distance)

Option_5: (farthest entity, maximum distance) Option_6: (farthest entity, mean distance).

3.1.3 Preliminary estimation of the within-clusters matrix

Art et al. (1982) proposed an agorithm to compute an estimate of W without knowing the
cluster structure but assuming that the clusters have different means and a common covariance
matrix. The standard multivariate analysis decomposition (10) can aso be made in terms of
pairwise differences:

-1 n-1 n 1n-1 n
V5 3 o) =35 8 o)+ 8 o)
Within Between (27)
=W*+B*

Thefirst term on the right side of (27) involves al the pairs which belongsto the same clusters,
and the second term involves all the distance measurement occurring between those pairs where
one entity comes from cluster i and the other entity comes from cluster j with iZ. No explicit
indication is made to the classification vector. The left sides of (10) and (28) are equal. There-
foreT W +B Under normal sampling assumptions, with X N(u Q) the expected values of
W and W are

0k
n?-n

U

ALENE
EW)=(n-Ko EWw)= %TDQ
Hence W and W can be used to construct an unbiased estimate for Q, but W gives relatively
more weight to large clusters than does W. Naturally, since the cluster structure is unknown

neither W nor W can be computed. The initialization of an iterative partitioning, however,
requires something of less stringent and even a a crude estimate of 2 can be very helpful. Gen-

(28)

eralizing the idea of Art et al (1982) a first approximation to W* can be obtained by

() :1211] %16'1(X X )(Xi _Xi)t; h=j+(i _1)n_i(i;l)

G

(29)
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with O =

g;%xi—x,-)tM'l(Xi-xj)E” h<a. 550 h§16n=1 (30)

if h>q

where Xi and Xj are among the closest g pairs in terms of the metric M. The weight function is
such that f’(x)<O0 for x>0, that is, the weight db is a non increasing function of the distance
between the pair (i,j): the larger the distance is the smaller is the weight attached to the pair.
Then (n-1)/2 possible pairs of entities need not to be sorted as long as it can be established that
h>q or not. The integer ¢ is chosen conservatively small to avoid contamination by between-
cluster pairs.

Next V\/(*z) is formed in the same manner except that a new squared generalized distance is

used to define the coefficients dh , thatisM :W(*l)

o= 1 =) ] (x5 (1)
The algorithm continues in a like manner until the process stabilizes, which it usually does
rather quickly.
The estimation procedure is controlled by the following parameters:
1) The first metric. Art et al. (1982) used M=I, that is the first allocation is made by using
Euclidean distance, although M=T seems a more plausible choice when the data consist of a
number of variables measured in different scales and T is well-conditioned. Using the total
covariance matrix as the first estimate, while simple and obvious, also ends up ignoring possible
clusters in the data. Another plausible choice is M= V= diag(vl,vj ...,vm). It should be noted that
choosing a diagonal is justified only when the variables are uncorrelated or weakly correlated. If
this fact is not taken into account, the measure of closeness of the entities suffers.
2) The number of pairs. Art et al. (1982) and Gnanadesikan et al. (1993) suggested g=(n/3)(n/k-
1) neglecting the number of dimensions. More reasonable values can be found in the range
4+ m(2k-1)]< g<(n-k) (n-k-1)/3.
3) The weights. Art et al. used dh: 1/g which have, undoubtedly, some advantages from a com-
putational point of view. In fact, the sorting of the distancesis not necessary because it is suffi-
cient to determine the smallest q distance, and these may be unsorted if the scope is their un-
weighted sum. However, the partial sorting involved in this approach has an high cost in term of
storage and the gain in execution time isirrelevant. Moreover, the heapsort suggested by Art et
al. has amean time which isinferior to the recursive quicksort implemented by DetClus.
After some experiments the following formulahas given better results
a(l-a)"

T8 h=12,...,q, 0<a <l
1-(1-a)%*t “

5h:
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where 4 indicates the h-th closest pairs.

4) The measure of closeness. Art et al. defined

6111 = trace ) Y s A (32)

and convergence is considered satisfactory if E,HSE. An alternative measure is the Jeffreys di-
1

vergence
1 W i
£iq = 2trace%/v [W|+1] |ﬂw ] ey~ 0 (33)

which allow us to measure the distance between two hypothesis W=W vs W= W in the case of
a mult1d1mens1onal sample stemming from one of two schemes relativé to normal distribution in

R”. However, (32) isless computer demanding than (33).
DetClus implements the procedure with M=I, 5h= 1/q , g=min{5 [m2+ m(2k2-] )], n(n-1)/
2}tand (32) with &=0.001. Iterations are also stopped after 30 iterations.

The fact that W* needs a multlphcatlve constant to make it an unbiased estimator of W i 1s
not relevant since a clustering based on W is invariant with respect of the transformation W*=a w'
with a> (0. The main drawback of this procedure is that becomes inapplicable for large data sets
both for the storage and for the sorting of the distances. For n>7500 DetClus chooses the
closest ¢ pairs in a random sample (with replacement) of pairs of size 1' 124’ 250. The weights
are given by (32) with a=0.0001. The procedure is stopped after ten iterations or if EHISE.
A similar method for obtaining an estimate of W is available in the Acelus procedure imple-
mented in the SAS procedure Fastclus. However, if the population clusters have very different

covariances matrices the procedures outlined above is of no avail.

3.1.4 Best among built-in techniques (elaborate methods)

Under this command are comprised four procedures which are computational expensive in that
consider, repeatedly, the Mahalanobis distance among all the pairs of entities. None of them is
practical when it comes to solving large problems as all of them can become prohibitively ex-
pensive even with present-day high-speed computers solution. Moreover, some of them require

a large amount of space for storage purposes.

Option_1: complete link centroids
Kennard and Stone, (1969) proposed a sequential method to select initial centroids having as
even a spread as possible over the variable space. The first two tentative centroids are selected

by choosing the two entities that are farthest apart
R=Xs B=X0 (X X)W* (X —Xy)2(X - X)) W* (X = Xy) (34
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The entities are assigned to the nearest cluster according to (22). Then a Forgy pass is applied

for the reassignment of all entities until all entities. Let P={P, P, ..., P} be the current set of

centroids. The (g+1)-st leader is chosen according to (25). The procedures continue until g=£.

Option_2: average link centroids
Same as option 1, but the (g+1)-st leader may be chosen according to (26). This alternative was
suggested by Sadocchi (1977).

Option_3: representative istances
Kaufman and Rouseeuw (1990). The first centroid is the most typical member of the data set,
that is, the entity PI such that

1( - Xg) W*L(X, = Xg); s=1...,n (35)

3 (% - AW (x - R)s

1 r

||M:>

Let P= {Pl, PZ, ..., P} Dbe the set of the current centroids. A new centroid is chosen among the
g

not yet selected entities according to
n n _
H(+1 = Xr O jzlcjr > jZICji, i=12,...,n Cji = Max{Dj _dij;c}

d; :(Xi —Xj)lw*‘l(xi —X ; Dj = M|n§X W* 1(X P)g (36)

P,OP
The procedures continues until g+1=Kk. By construction, each cluster has at least one entity.
Pefaet al. (1999) state that (36) chooses as|eadersthe entities that promise to have around them
a higher number of other entities.

Option_4: divisive analysis (Di.Ana)
An iterative divisive technique is applied. In practice the Diana algorithm of Kaufman and
Rousseeuw (1990, ch. 6) has been extended to rectangular matrices.

The essence of thismethods consecutive partition into clusters. Initially, set C1: D.DetClus
searches for the entity Xr which hasthe largest average Mahaanobis distance d(Xr,Cl) fromal
other entities belonging to cluster Cl. Theentity Xr isdiscarded from C1 and considered thefirst
entity of the new cluster Cz. Let d(XS,Cl) and d(XS,CZ) be, respectively, the average distance
fromtheentitiesin C1 and the average distancein C2. For XS, s=1.2,...,nisleftin C1 if d(XS,Cl)
<d(XS,C2) otherwise is moved to C2 . If k>2 then the cluster with the largest diameter (5) is
splitted until k clusters have been created.

C

36



3.2. Random procedures

The random technics generate an initial partition which is independent of the data set. in particu-
lar, a pseudorandom sample of v partitions is considered and the algorithm run for every single
partition.

Thesizev iscrucial. A larger set of test partitionswill make it morelikely that y}o) IS near
to y*, but will also increases the time taken to carry out the search. As an example, the well-
known package MIKCA constructed by McRae (1971) starts by analyzing v=_3 different set of
randomly chosen leaders; Symons (1981) selected the initial solution from among v=32 ran-
domly-generated partitions. Casgrain (Le Progiciel R v4.0d6, 2001) has a default value of 100
for v. Spéth (1985, p. 155) criticized heuristic and more elaborate methods for finding asingle
"good" starting partition and preferred repeating (in his examples, for 20 times) the entire pro-
cess choosing at random the initial configuration. These values are too small to bereally useful.
Pefiaet al. (1999) used v=1000 initial partitionswhich isperhapstoo large for many data sets. If
our objectiveisto find a partition that is in the top a% of P(n,k) and we test arandom sample
without repetitions of v partitions belonging to P(n,k) then the probability of getting such a
partition is p=1-(1-a)" whichimplies v=[ Ln(1-p)/Ln(1-a)]. If a=0.01 and p=0.99 then thereis
abetter than 99% chance that v=458 will provide a partition which liesin the top 1% of P(n,k).
Of course, the top percentile may include highly unsatisfactory partitions.

In a sense [ V(nmk)] represents a reasonable compromise between the accuracy of the
preliminary search and the duration of a computer run. It hardly need adding that the search of
the initial configuration takes very much longer then the entire algorithm (the problem is even
serious when n, k and m are large). However, the advantages in terms of partitional adequacy of
the final solution far outweigh the consumption of computer time.

In DetClus the number of partitions to be tried is supplied by the user (the default value

is [\;’ nmk2] ).

3.2.1 Random points methods
These method sample the space of the variables determining a centroid as a random point in the

convex hull defined by the observed values of the variables.

Option_1:

Anderberg (1973, p. 157) suggested the following method to determine the first centroids. Let
L and U represent the minimum and maximum values of the i-th variable for the given data set.
Tlhen Ri=l Ul -Li is the sample range of Xl .

The coordinates of the leader P for the i-th variable are given by
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m; = L +uiJR; i=1..m j=1...k 37)

where u  is a uniform random number from /0, /. The starting classification vector is deter-
ij
mined according to (22).

Option_2:

The total mean of the data set /,l:(u], Ky H ) is chosen as reference point a randomly per-
m

turbed to define the centroids of the clusters. More specifically, the coordinates of the k m-

dimensional centroids are given by

= +uij(Ui - ) if g <05

i~ ; i=1...m j=1...,k
E gli_uij(ui_Li) if g 205 =1 =4 (38)

where u and z_ are independent uniform random number from (0,1).

Thje difﬁcjult with these schemes is that the resulting centroids are different estimates of
the total mean vector and their separateness is questionable. Moreover, unless the data set “fills”
the m-dimensional space, some of the centroids may be quite distant from any of the entities and
the clusters built around them will have no members. This problem can be attenuated by consid-
ering more centroids and eliminating the candidates that are too close. To this end, DetClus
generates 4k candidates and, among these, selects the best & centroids by applying the Kennard-
Stone procedure of section 3.1.2 (option5) but ignoring the Forgy step which would be scarcely
useful in this context. All clusters with no entities assigned to them receive a randomly chosen

entity from the largest cluster

3.2.2 Random permutation of representative values
The range of each variable X, j=1,2,...,m is divided into k group. With the i-th group associate
a value m_and imagine that Jeach entity put in the i-th group is given the value m _ for the j-th
variable. "i{hen we have a matrix (kxm) of representative values which express thel]peculiarities
of the data set.

Consider a random integer /<'s <t and convert s into the subscript vector I= (i ; i2, ...,ik)
with ISihsk, h=1,2,....k (see O’Flaherty and MacKenzie,1982).

Then the i-th coordinate of g-th centroid is defined Fyj = M,.j forj=1,2,...,m. Finally, a random
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samples without replacement of k£ vector I from the set of K possibilities (cf. Bissell, 1976) is
generated to define the k& centroids. The initial classification vector yo is obtained by applying
(22). The number of repetitions V of this procedure is specified by the user. If v> C (km, k) then all

the combinations are considered as candidate block of centroids.

Option 1: uniform distributions

The values of each variable are arranged in ascending order and divided into & blocks. The first
(k-1) blocks include nj= b=[n/k], j=1,2,...,k-1 whereas the remaining n= n-(k-1)b entities are
allocated to the last block. Suppose that n= I and let ml_j be the partial mean of the block

mj="0 =12,k =12,..,m (39)

Option 2: partial medians
It is similar to the first option, but the centroids (31) are replaced by the medians of the blocks.

™= ooy )) i | TR T =12k (40)

Option 3: Gaussian distributions.
For n — oo with one Gaussian variable the cut points for the optimal partition of a data set into

k=2,3,...,6 clusters have been computed by Cox (1967) under the condition that

k

piEpi —H EF=maximum 41)
= UJ H

where u and O are, respectively, the mean and the standard deviation of the j-th variable, u is
J
the i-th eond1t10nal mean of X given L <X <U i=1,2,....,k and P denotes the probability of an
J
observation falling in the i- th group. I have extended the work of Cox for 2<k <25.
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k

2 (-0,0) (0,0)

3 (-»,-0.61) (-0.61,0.61) (0.61,0)

4 (-,-0.98) (-0.98,0) (0,0.98) (0.98,00)

5 (-o,-1.24) (-1.24,-0.38) (-0.38,0.38) (0.38,1.24) (1.24,»)

6 (-»,-1.45) (-1.45,-0.66) (-0.66,0) (0,0.66) (0.66,1.45) (1.45,)

7 (-»,-1.61) (-1.61,-0.87) (-0.87,-0.28) (-0.28,0.28) (0.28,0.87) (0.87,1.61) (1.61,)

8 (-,-1.75) (-1.75,-1.05) (-1.05,-0.50) (-0.50,0) (0,0.50) (0.50,1.05) (1.05,1.75) (1.75,)

9 +x0.22 +0.68 *1.20 +1.87

10 0.00 +0.40 +0.83 +1.32 +1.96

11 £0.01 +0.41 x0.84 +1.33 +1.97

12 0.00 +0.01 x0.41 x0.84 =+1.33 *1.97

13 £0.01 +0.02 x0.42 +0.85 +1.34 +1.98

14 0.00 +0.01 +0.02 +0.42 +0.85 *1.34 +1.98

15 £0.01 +0.02 +0.03 +0.43 +0.85 *1.34 +1.98

16 0.00 +0.01 x0.02 +x0.03 +0.43 =*0.85 +1.34 £1.98

17 +0.01 +0.02 10.03 +0.04 +0.44 +0.86 +1.35 +1.99

18 0.00 +0.01 +0.02 +0.03 +0.04 +0.44 +0.86 +1.35 +1.99

19 £0.01 +0.02 +0.03 +0.04 +0.05 x0.45 +0.87 £1.35 *1.99

20 0.00 x0.01 +0.02 +0.03 =+0.04 =+0.05 *0.45 +0.87 %1.35 +1.99

21 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.46 +0.88 +1.36 +2.00

22 0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.46 +0.88 +1.36 =+2.00

23 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.46 +0.88 +1.36 =+2.00

24 0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.46 +0.88 +1.36 +2.00
25 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.46 +0.88 +1.36 +2.00

Table 1: optimal grouping for a gaussian random variable

The values in table 1 are accurate to two significant digits. By using these cut points the partial
means of the m variables are computed and inserted in a (kxm) matrix of typical values. If the
first or the last interval were left empty then their mean is set equal, respectively, to the maximi

and to the minimum of the variables.

Option 4: “natural classes”
Mineo (1985). Let x ,n_,r=1.2,.. mJ } bethe frequency distribution of thej-th variable where
Jr g

the values are sorted by size and m denotes the number of distinct values observed for X.

J J

Determine the minimum of
Dr: EL K} X r+1_X'r) , r=12,...m -1 42
j'r + nj1r+1 ], ], ] ( )

The value of x  is replaced by
Jr

= S X

fi with nr,j = nj,r +nj,r+1 (43)

Njr +Njr+1
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The value xj’rﬂ is eliminated and the values above are shifted back to form a new frequency
distribution with m -7 values. These two steps are iterated until the frequency distribution has
only £ distinct Valujes. The same procedure is repeated for the m variables to define the matrix of
(kxm) representative values. A serious drawback of all these methods is that, as dimensionality
increases, the volume of the data concentrates in the external boundary with the consequence
that high dimensional space is mostly empty which, in turn, implies that these methods are
doomed to find most of the partitions invalid because one or more clusters have no entities in it.
To avoid invalid partitions, random entities are selected from the largest clusters and placed in

the empty clusters.

3.2.3 Random combinations of entities.
Let P= {P], Pz’ Pk} a random samples without replacement of & entities from the data set of n
entities; then each entity is assigned to its closest centroid according to (22) (this ensures that
each cluster contains at least one entity). The procedure is repeated until Min{v,C(n,k)} parti-
tions are examined. In particular, if V> C(n,k) then all possible combinations of z entities taken &
at a time are considered as initial centroids. However thereis no guarantee that a"true" centroid
coincides with one of the entitiesto cluster so that even acomplete enumeration of al combina-
tions may result in an inappropriate initial partition. This method presents a similar problem to
that examined in section 3.2.1. In fact, when two or more of the sclected entities are close
together so that there will be two or more cluster close together which not necessarily are present
in the data set. In addition, if clusters are of unequal size, the small cluster have lower chances to
generated a centroid and tend do be absorbed by the larger ones.

To remedy this shortcoming DetClus considers Min{4k,n/2} randomly selected and dis-
tinct entities and choice the best k centroids by applying the Kennard Stone procedure (option
5).

3.2.4 Random partitions

A set of n integers is chosen as follows
W=j if Pu<s@<P, j=12..,k r=12..n (44)

where w is a pseudorandom numbers from /0, /. The quantities PO,P], ""Pk are given by
r
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i=0 SV 45)

where V: i=1,2,...k are random numbers from /0, /]. The previous expressions ensure that each

cluster always contains at least one entity.

3.2.5 Random shuffling
Let y=0" V.V, Y ) be a vector of integers between 1 and k. By using the technique suggested by
Knuth (1981, p. 139) random permutations of the yr’ s are considered. The set of numbers to be

shuffled is chosen as follows

. i .
yo=j for r =N, Nj1 +1,..,N; -1 where N; =izonj; =1 j=12..k

The user must specify the cardinalities of the clusters. This option allows the algorithm to ex-

plore the partitions with the same number of members per cluster.

3.3Applications of the Indifference Principle

Since we ignore the real cluster membership of the entities, each entity should have the same
chances of joining one of the k cluster. An initial configuration based on this policy is free of
overt biases. Leb=[n/k] and s=n-b*k;

Option_1: equal membership partition

Each cluster has the same number of entities except the last group which is assigned all extra
entities. To obtain such a partition the first b entities are assigned to cluster Cl; entities labelled
from b+ 1 to 2b to cluster C2 and so on. The last s entities are added to the last cluster.

Option_2: discrete uniform distribution

For each entity r arandom number j isgenerated from the discrete uniform[ 1,k] distribution and
©)_;
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Option_3: random blocks

Step 1. Set yr:O forr=12,...,n. Set h=1.

Step 2. Generate b distinct random integers u, i=1,2,...,.bintheinterva [1,n].
Step 3. Set r=u. If yr:O then assign entity Xr to cluster Ch . Set y= 1.

Step 4. If h<k-1then set h=h+1 and go to Step_2.

Step 5. If yr:O then assign entity Xr to cluster Ck forr=12,...,n.

Option_4: nested loops
The entitieslabelled {j, k+j, 2k+], ..., (b-1)k+]} are assigned to the cluster Cj:j: 1,2,...k. The
last s entities are added, one for each, to the first s clusters.

3.4 Read centroidsfrom file

The user can provide the estimated centroids from atext file in which the rows are the centroids
and the columns are the variables. This options is allowed for a fixed number of clusters. The
program checks the internal conditions: L < [,l <U,j=1.2,...m; i=12,... k. If thiscondition is
not satisfied then each invalid entry is repl aced by a uniform random number in the interval
[Lj,U_]. The corresponding classification vector is obtained by applying (22). The partition is
discarded if some cluster is empty.

3.5 Read partition from file
Sometimes the entities to be clustered have a-priori labels and one is investigating wether the
cluster membership that can be obtained by the algorithm is consistent with the known labels
(supposing theseto be aplausible classification of the data set). Moreover, this option allowsthe
user to start DetClus from the configuration achieved by another procedure (internal or external
to the program).

The program accepts the proposed partition only if each clusters has at least one empty.
The number of clustersis derived from the number of distinct labels found in thefile.
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4.The quality of a partition

Any clustering algorithm constructs apartition y [1P(n,k) whichisoptimal in terms of the stated
criterion and the initial solution, with as many clusters as desired (virtually every definition of
optimal clustering does not depend on the number of clusters). However, the clustering found
will be useful only if the classes can be substantively interpreted. Fisher and Van Ness (1971)
observed that the main objective of a clustering is to condense information by reducing the
individual description of al X'sto arelatively few general description of k typical representa-
tives, one for each cluster. Paradoxically, if the variables were constant within the clusters, one
entity per cluster would suffice to express any detail of the data set. Asarule, the lower kisthe
stronger is the partition since less information is needed to summarize the data; hence, when
there is more than one optimal solution, the one with the lower number of clusters should be
chosen. Castagnoli (1977) has shown that such a partition always exists. The problem is further
compounded by thefact that, aswe have seen in the previous section, the number and the type of
clustersin the data may depend on the resolution with which we look at the data.

Onemajor problem shared by al methods of cluster analysisisthat an optimal partition of
the data set into a certain number of nonempty subsets with pairwise empty intersectionswill be
developed whether or not a natural clustering exists and whether or not it is possible to select
plausible centroids among the data set.

Example:

In dissection, the data set comprises entities whose distribution into the space of variables is
uniform; the aim is to subdivide the entities into sectors (e.g. Policy precincts, voting districts,
school districts and so forth). Nevertheless, it islegitimate to wonder whether entitiesin differ-
ent sectors of Figure 11 are heterogeneous and whether the clusters obtained have areal exist-
ence.
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Figure_11: artificial clustering
The quality of aclustering is partly intrinsic to the data-generating process, the data collection

equipment, the choice of the variables, and apossible selective identification of the entitiesto be
clustered. These issues are, however, outside the scope of the present section; here the intent is
to devise extrinsic aids (graphical and numerical) for distinguishing meaningful partitionsfrom
those artificially imposed on the entities.

Example:

This experiment was constructed by simulating points from 3-dimensional random variables
having uniform marginal distributions. Let u be a vector of m independent uniform random
variableson (0-1) with E(u. )-O 5 c and E(u u t)—(12)'1I where | istheidentity matrix of order
m; then Y \/12(u -0.5¢ ) |savector of mdependent uniform random varlableswnh E(Y) Oand
E(Y Y ) I Cons der now the affine transformation X HY +d where HH ' isthe Chol eﬁky fac-
torlzatlon of }; then X isaam-dimensional random varlables having un|form marginal distri-
butions with E(X) d and variance-covariance matrix E(X X ) HH' =) Usudly, only syn-
thetic data sets |ncI ude “natural” clusters exhibiting high Ievel of external isolation and interna
cohesion. However, if one encounters such data (and there is no reason to suspect an happen-
stance, an error or ajoke), it would not be hard to find aconvincing post hoc rational explanation
which legitimates the empirical results.
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Though the partitioning of natural clusters appears meaningful and potentially useful, the parti-
tioning of a unimodal or uniformly distributed entities does not appear to have the same basis
(Arnold, 1979).

Example

Spéth data set (Spéth, 1985, p.144). A 3
Two variables for 41 entities randomly 3 3 3 3
scattered over the variable space with- 3
out accumulation zones; none of the 3

interpoint distancesis significant; there ! 1 1
is no natural grouping within the data 1
so that any rule proposing a*“ plausible’ 1 1
partition into k groups should be criti- 1

cally exhamined. DetClus for k=3, has 2 2
produced an arbitrary dissection (fig-
urell) along the axis of maximal dis-
persion. Marriott (1971) noted that mini-
mization of Min{|W()y)|}"... searches
for any natural grouping, not necessar-  Figure 13: results for the Spéth data set

\

ily one based on all the measurement”.

Example A
Unimodal dataset. A sample of 250 bidimensional 3 3?33 TS
entities uniformly (ilistributed within the 3 §§ 33 2 :33 5 3 5 33
ellispoidal region x’' Q "x<1 where %3 3 33, 3",3‘333%3“ 3, .
.Q:@ 3% 3333 3§33§3§11%_1L 33;1 11 li
% 90 3 2313113 1{ 111111 1 1111 %illllL
DetClus hasno protection against finding groups | ; 1t g! 111135; llli' U ;2
in the data when in effect none is present. For 1 1111 1111 ! 1 2111 122 ? g 2
k=3, it findsaseemingly plausible partition which v, 27 2 2, 222; % 3
isactually unexplicablein termsof what isknown 2 2, 2 222223_22 22
on the data. Thefact that the clustering algorithm 22 5 Q% ‘22 > R
>

has found a structure doed not imply that ther
sdtructure isreal.

In both examples it appears difficult to argue that one particular solution has more mean-
ing or stability in either a logicakl or theoreticalk sense that any other clustering that can be

randomly generated.
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In general, each clustering isagood clustering if thereistheoretical and circumstantial evidence
that may convincingly explain the structure obtained; conversely, any clustering, optimal though
it may be, lacking an explanation as to how the member of a group came to be described as
similar, and how these members differ from those of other groups, is merely an artifact of the
algorithm.

Any expert or practitioner of cluster analysisknowsthat the output of a clustering proce-
dureis not the end of the story, but several questions must be answered. Bock (1995) suggests
the following
1) What isthe relevance and significance of the resulting classes?

2) Do they reflect a “true”’ or “natural” grouping structure of the data or just an artifact of the
method selected?

3) How does the clustering perform when compared to random classifications?

4) Which are the strongest or the most doubtful classes?

In general, procedures used to eval uate clusters determined by aclustering method are of
two types. The first one includes procedures for testing the resultant clusters against the null
hypothesisthat the clusters were randomly determined. Procedures of the second type are based
on the assumption that the clustering method in use has attained an optimal partition which is
compared with a given partition for comparison purposes.

4.1 External indices of validation

The effectiveness of relocation procedures can be measured by comparing the final partition y+
generated by the algorithm with the prior knowledge of the true classification d . Sometimesthe
iterative schemeis starting from & which should be, hopefully, in the domain of attraction of a
global minimum. This situation is very unrealistic in that it tacitly assumes that not only the
number of clusters, but also the true cluster membership of all » entities is known. However,
such idealized setting offers a simple benchmark against which the results can easily be com-
pared. In particular DetClus computes the Hubert-Arabie (1985) statistic

nc(n-1)(c-1)-ab.

RHA = n(n-)b-ab
K k n-1 n (46)
a= 3y n{"%}i"'—lg b= Zni(ni —1); c=5 3 e%/:zy;mér =6Sg
=1 =1 r=1s=r +1

where £(X) isoneif xistrueand zero otherwise. The statisti cRHA hasafixed upper bound R " 1
indicating perfect clustering recovery and takes the value zero under the hypothesis that y and

O are picked at random subject to having the true number of clusters and objects in each. In
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addition, DetClus computes a naive index of clustering efficacy

k Lh(y*)U [h (8)0
20 (y )D iB L((S)H
Q:T[C‘T[. T[C:l=1D 2 O S
1_T[|_’ |:n|:|,

O
o o
where percentage T, is the proportion of pairs in which the two entities are in the same clusters
both in y and 0 whlle 7'[ is the percentage of pairs of entities belonging to the largest cluster of
0. In pracgtice, the statlstlcQ compares the goodness of the classification resulting from a k-
means algorithm and the naive classification obtained putting all the entities in one cluster. A
negative value of Q indicates that DetClus was not able to detect any clustering in the data set,
at least for the given starting partition. The user must be aware that (46) and (47), as well as,
many other external indices of agreement, are not a naturally increasing function of the quality

of the partition found by the procedure.

Example:

Ruspini data set. (Kaufman and Rousseeuw, 1990, p. 100). Thisisastandard example consisting
of 75 two-dimensional points making up k=4 natural groups including 23, 20, 17, 15 entities .
Actually thethese data are different form the original data used by Ruspini (Rasson e Kukbushi-
shi, 1994, p. 191).
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Figure 15: results for the Ruspini data

In thisexamplethe groups are well-structured and any reasonable method of cluster analysiscan
isolate them. DetClus does not fail to retriew this obvious structure: RHA: land Q=1.
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Example:

Storm survival of sparrows (Bumpus data set). After a severe storm on 1 February 1898, atotal
of 136 sparrows (Passer domesticus) were taken to Bumpus's laoratory. Bumpus took m=9
morphol ogical measurement on each bird and also weighted them. Manly (1985) reproduced his
data classified according to sex and the age of malesfor atotal of six clusters having the cardi-
nalities. young malesthat survided=16; young malesthat died=12; adult malestha survided=35;
adult males that died=24; adult and young females thad survided=21; adult and young females
that died=28.

The correlation matrix is positive (each elements is greater than zero) so that the first
principal component isan index of size (factor loadings having the same sign and roughly equal
magnitude) whereas the other components are contrast or shape components (at |east one factor
loading has a sign different form the others).

2 3 >
Fact__3 Es 1 6 6 6
6* -
24 6 5 %5 5
13 6
1 1 43 B4 & 6 s
4 3, 636 46 6 5 _
a 6
L 4 3 13\ ? °
338 4° 1 S
0 4
6 @ 886 2y 8 -
% 6 6 3 5 5
3
-1 3
2
-1

15 3
Figure 16:classification of the sparrows

The space of thefirst three PC’s, which explainsthe 76.6% of total variation , does not show any
particular structure. For k=6 DetClus found RHA: 0.075 and Q=-0.012 The quality of the re-
sults does not improve when the final partition of DetClus is compared with the subdvision of
the data set according to the sex or according to survivors/non survivors sparrows.
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4.2 Estimation of the number of clusters

There is no standard way of statistically evaluating the adequacy of the obtained sequence of
partitions. The vagueness of the theoretical basis makes it difficult to achieve analytical results
in thisareaand preference should be given to graphic displays. These techniques are very useful
in the validation of a clustering even though it has proven unreliable to trust intuition or visual
perception alone. Blanshfield et al (1982) have observed that iterative partitioning algorithms
are much better than hierarchical algorithms concerning output descriptive statistics to making
it possible to obtain many graphic views for more intimately inspecting the clustering process.

4.2.1 Complete clustering characteristic graph

One of the most popular methods of choosing the appropriate number of clustersisto plot the
objective function against the number of clustersk for arange of values of k. The true number
of clusters is found by considering those values of k fro which the plot shows a sharp in/de-
crease of the criterion. DetClus considers two indicators

. . Min{ w(i)} .
Friedman — Rubin: C:T*loo; =k, ko (48)

The criterion is normalized by the corresponding value for i=1 so that (48) liesin the interval

(0,100). Expression C isadecreasing function of the number of clusters and an increasing func-

tion of the number of entities and dimensions. Undoubtedly, with every increasein i there will

be adecreasein (48), but the change should beirrelevant for i>k when k isthe number of cluster

which best fits the data. In practice, a discontinuity in slope should correspond to the true num-

ber of clusters, otherwise there no justification for having more than one class (Hardy,1996).
Arnold (1979) proposed the following test statistic

a—LnD T E I T 49
— ; L R
W(i) g “9)

for testing the null hypothesis that the entities are either uniformly distributed or grouped into
clusters. The method of deriving the distribution of a was based on Monte Carlo techniques, but
theresults are not satisfactory. However, the plot of (49) can be used as (48) to correctly estimate
the number of clusters. DetClus writes (48) in the output file, but the user can easily compute
(49) by a=Ln(100/C). The user must be awarethat highly collinear variables can create problem
to the Anderson statistic.
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Example

The statistics of poverty and inequality (Rouncefield, 1995). For n=97 countries in the world,
data are given for birth rates, death rates, infant death rates, life expectancies for males and
females, and GNP, For this example the first four principal components were used (98.9% of
total variation explained). The clustering of the data set appear to be weak and does not corre-
spond to the classification in k=6 clusters proposed by the geographical grouping included in
the data. The value k=4 isa plausible choice because of the sharp decrease noted in (48) and the
progressively reduced incrementsin (49) after i=3, but other choices can easily be made.

14
] 2 13.4148
12 3 3 2.6546
. 4 0.9061
103 5 0.4107
. 6 0.1836
8 7 0.0965
] 8 0.0527
61 9 0.0287
= 10  0.0150
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For the Ruspini data sets, both the indices perform well.
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Examples:

1) Lubishew dataset 1 (L ubishew, 1962). M easurements were made of six variablesinthe males
of three species Chaetocnema concinna, Ch. helkertingeri, and Ch. heptapotamica, The red
composition of the groupsis (21, 31, 22). DetClus correctly assigned to the appropriate cluster
all the entities even though only the first three principal components (89.3% of total variation)
were used to identify the specimen.

2) Fossils data (Chernoff, 1973). Six variables were measured on each of nummulited speci-
mensfrom Eocene Yellow Limestone formation of Northwestern Jamai ca. A ccording to Chernoff
the entities divide into three distinct clusters: {40, 34, 13} with one or two specimen which can
be regarded as singleton or borderline. DetClus has been applied to the first four principal
components (accounting for 94.6% of the variability contained in the data set) providing perfect
recovery of all the entities. However, the largest cluster can be separated into subclusters, but
their number is undeterminate.

3) Chemical and overt Diabetes (Andrews and Herzberg,1985). This data set consists of five

variables (insulin area, glucose area, and steady-state plasma glucose response) measured on
n=145 non obese adult subjects. The subjects were clinically classified as normal (76), Chemi-
cal diabetes (36) and overt diabetes (33). The clusters have various sizes and different non-

ellipsoidal dispersion matrices.
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For the Lubishewl data set k=3 isan evident point of inflection. The Chernoff data set showsa
drop (or ajump if you are looking to the Arnold statistic) at k=3 and at k=4 but it isnon easy to
make a decision without further analysis. The graph for the diabetes data set is confused. How-
ever, apartition in k=3 or k=4 cluster is deemed to be plausible.

53
C




DetClus provides avery raw graph of (48), but the value of the criterion can be copied from the

output file and pasted in one's favorite plotting program (Excel, Statistic, Deltagraph, etc.£
Hall and Khanna (1977) have great confidence on thistype of graph: aknee(i.e. asharp step

from i to (i+1) followed by a marked flattening of the curve suggests that k=i+1 is a good

choice. Other authors(e.g. Everitt, 1979; Gordon, 1999, p. 61) do not recommend great reliance

on this graph. Three good reasons for such reservations are:

a) A data set often exhibits more than one point of diminishing return (that is, the value of k at

which therate of decreasein the slope startsto diminish) and it isdifficult to tell which indicates

the correct number of clusters.

b) Frequently the plot has a knee even if the conjoint cluster solution might be considered the

best partition.

c) It may be difficult to locate the critical point in the graph for large values of k where the

variations are small anyway.

The above-mentioned problems are frequent when the structure of the data set is very compli-

cated. Unfortunately, these are just the occasions when an effective means for comparing alter-

native clusterings becomes more acutely necessary.

The plots by themselves do not rigorously reveal how many clusters are actually present.
Rather, they are useful guidelines in selecting an appropriate number of clusters in a context
where developing inferential methods has proved difficult. The defects of a subjective estima-
tion of k result, in the main, from uncertainty which is demonstrated when different observers
have to decide on the same plot and obtain different answers. In fact, Milligan and Cooper
(1985) excluded from their review any technique requiring human judgement, but took into
consideration analogous procedures, based on “ difference scores’, that are not so different from
visual assessments.

Example: 1753

Egyptian skullsdataset (Hand et al. 1994). 1.50_2 > 105016
Four measurements of male Egyptian 195 3 15872
skulls from five different time periods. ] 4 03726
Thirty skulls are measured from each time 1-00—; 2 8:322;
period (n=150). The elimination of the 75 ; ; 8-8322
point corresponding to k=2 evidentiatesthe ] 9  0.0019

knee at k=5 (the true value of the number
of clusters). However, the recovery rateis  0.253
extremely poor: RHA: 0.0041 and Q=-0.09. .
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