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Abstract

We consider a class S of stochastic processes X := {X (t)}t∈[0,T ]

whose realizations x := x (t) (t ∈ [0, T ]) are real continuous piecewise

linear functions satisfying a particular geometric condition. Let R be

the family of all binary responses Y, Y ∈ {bad, good}, associated to a

process X in S. Basing on data arising from a continuous phenomenon

which can be simulated by a couple (X,Y ) ∈ S × R, we introduce

the notion of adjustment curve for the binary response Y of the process

X, that is a decreasing function γa : [0, T ] → [0, 1] which gives the

probability that a new realization x of X is adjustable at the time

t ∈ [0, T ]. For real industrial processes, which can be modelized by

(X, Y ) ∈ S × R, our model can be used for monitoring and predicting

the quality of the product.
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1 Introduction, notations and definitions

In many real applications we are faced with a continuous phenomenon evolving

in a certain interval of time say [0, T ], and resulting in an outcome not observ-

able before the completion of the process itself. Such outcome, in accordance

with some target-value, in the simplest case can be expressed as negative or

positive, bad or good and so on. We restrict our attention to a class of such

phenomenons each of one can be represented by a stochastic process whose re-

alizations are real continuous functions with {x(0) : x ∈ X} finite, linear on the

intervals [tj, tj+1] with tj = j · T
S

for j = 0, . . . , S−1 and satisfying a particular

geometric condition. In the following S will denote the class of such stochastic

processes, X := {X (t)}t∈[0,T ] a stochastic process in S, x := x (t) (t ∈ [0, T ])

a realization of X and {xi
0 : i = 1, . . . , ÃL} := {x(0) : x ∈ X}. Moreover R will

denote the class of all binary responses Y, Y ∈ {bad, good}, associated to X.

In the following N and R stand for the set of all natural and real numbers,

respectively. For a finite set S ⊂ R, |S|, min S and max S denote its cardinality,

minimum and maximum, respectively. Moreover χA : [0, 1] → R denotes the

characteristic function of a subset A ⊂ [0, 1].

Definition 1 Let A,B be two non-empty finite subsets of R, ε > 0 and m,n ∈
N. The sets A and B are called ε− (m,n) separated if there exist sets Ã ⊂ A

and B̃ ⊂ B, with cardinalities
∣∣∣Ã

∣∣∣ = m and
∣∣∣B̃

∣∣∣ = n, such that

min
(
A \ Ã

)
≥ max

(
B \ B̃

)
or min

(
B \ Ã

)
≥ max

(
B \ B̃

)
(1)

and ∣∣∣∣∣∣
|A|

|A|+ |B| −

∣∣∣A \ Ã
∣∣∣

∣∣∣A \ Ã
∣∣∣ +

∣∣∣B \ B̃
∣∣∣

∣∣∣∣∣∣
≤ ε. (2)

If we can choose Ã = B̃ = ∅ then min (A) ≥ max (B) or min (B) ≥ max (A)

and the sets A and B are called separated.

2



The starting point is the matrix of real numbers (functional data) (for

an exhaustive account to functional data analysis see Ramsay and Silverman,

2002, 2005)

FD :=




x1 (0) . . . x1 (tj) . . . x1 (T )
...

...
...

xi (0) . . . xi (tj) . . . xi (T )
...

...
...

xL (0) . . . xL (tj) . . . xL (T )




(tj = j · T

S
for j = 0, . . . , S)

and the vector

R :=




r1

...
ri

...
rL




where ri ∈ {bad, good} is the outcome associated to the row (xi (0) . . . xi (tj) . . . xi (T ))

for i = 1, . . . , L. We suppose that the data FD and R arise from a continuous

phenomenon which can be simulated by a couple (X,Y ) ∈ S × R. X and Y

are realized via random multiplicative cascades which depend on some con-

stants (obtainable by the data FD and R) and some real positive parameters

obtained by a Monte-Carlo method.

Set

B =
{
xi(T ) : i = 1, . . . , L and ri = bad

}

and

G =
{
xi(T ) : i = 1, . . . , L and ri = good

}
.

In many real cases the sets B and G are not separated. However, if the sets

B and G are ε − (m,n) separated with ε,m, n small enough, we can reduce,

by a proper smoothing of the data, to the separated case.
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Remark 2 In some real cases in the vector

R :=




r1

...
ri

...
rL




we could have

ri ∈ {bad, good, undecidible} . (3)

The set

I =
{
xi(T ) : i = 1, . . . , L and ri = undecidible

}

is not ε− (m,n) separated by the set B = {xi(T ) : i = 1, . . . , L and ri = bad}
(or by the set G = {xi(T ) : i = 1, . . . , L and ri = good}) if we can not choose

the numbers ε,m, n – without modifying the phenomenon in a significant way

– to get I and B (or I and G) ε− (m,n) separated. However, if the sets B and

G are ε − (m,n) separated with a proper smoothing of the data, by deleting

in FD the rows

{(
xi (0) , . . . , xi (T )

)
: i = 1, . . . , L and ri = undecidible

}

Y becomes a binary outcome.

The main aim of this paper is to introduce the notion of adjustment curve

for the binary response Y of the process X, that is a decreasing function γa :

[0, T ] → [0, 1] which gives the probability that a new realization x of X is

adjustable at the time t ∈ [0, T ]. The curve γa is an important tool from a

practical point of view. For example, for real industrial processes which can

be modelized by (X,Y ) ∈ S × R, our model can be used for monitoring and

predicting the quality of the product (several examples where prediction is

useful for controlling process can be found in Box and Kramer 1992, Ratcliffe

et al. 2002, Ratcliff et al 2002, Kesavan et al. 2000).
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A multiplicative cascade is a single process that fragments a set into smaller

and smaller components according to a fixed rule, and at the same time frag-

ments the measure of components by another rule. It is well known the central

role that the multiplicative cascades play in the theory of multifractal mea-

sures (see, for example, Peitgan et al., 2004). In Sec.2 we define a random

multiplicative cascade generating a multifractal measure µ on the family of all

dyadic subintervals of the unit interval [0, 1]. This measure µ is recursively

generated with the cascade that is schematically depicted in Fig.1 at the end

of Sec.2. In Sec.3 we describe how modelize – via the random multiplicative

cascade introduced in Sec.2 – a real phenomenon by a couple (X, Y ) ∈ S ×R.

In Sec.4 we give the definition of adjustment curve for the binary response Y

of a process X. Finally, in Sec.5 we illustrate an application of our method

to the Danone Vitapole kneading process already analyzed in previous works

(see Costanzo er al. 2006, Preda et al. 2007, Saporta et al. 2008).

2 The multiplicative cascade

We start introducing the following rule.

Let α, β ∈ (0, +∞) , k ∈ N, qk ∈ (0, 1) and mk
i ∈ (0, 1]

(
i = 1, ..., 2k

)
such

that
2k∑
i=1

mk
i = 1. Put mk

0 := 0 and

Jk
i :=





[
i−1∑
j=0

mk
j ,

i∑
j=0

mk
j

)
if i = 1, ..., 2k − 1,

[
2k−1∑
j=0

mk
j , 1

]
if i = 2k.

Let posk denote the step-function:

posk (x) :=
2k∑
i=1

iχJk
i

(x) (x ∈ [0, 1]) .

If xk is a random generated number in the interval [0, 1] .We define the
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vectors

Mk =
(
mk

1, ..., m
k
2k

)
;

Qk+1
posk(xk) =

(
qk+1
posk(xk), 1− qk+1

posk(xk)

)
,

where, if k = 0

q1
pos0(x0) := q0,

if k ≥ 1

qk+1
posk(xk) :=





qk +
(
min

{
qk, 1− qk

})α 1

2(posk(xk)β)
,

if 1 ≤ posk (xk) ≤ 2k−1;
qk − (

min
{
qk, 1− qk

})α 1

2((2k−posk(xk)+1)β)
,

if 2k−1 < posk (xk) ≤ 2k.

Let
(
Qk+1

posk(xk)

)T

be the transpose of the vector
(
Qk+1

posk(xk)

)
.We consider the

matrix product

(
Qk+1

posk(xk)

)T

∗Mk =

(
mk

1q
k+1
posk(xk) · · · mk

2kq
k+1
posk(xk)

mk
1

(
1− qk+1

posk(xk)

)
· · · mk

2k

(
1− qk+1

posk(xk)

)
)

.

Put

mk+1
i;posk(xk) :=

{
mk

i q
k+1
posk(xk) for i = 1, ..., 2k

mk
i−2k

(
1− qk+1

posk(xk)

)
for i = 2k + 1, ..., 2k+1.

(4)

We note that

qk+1
posk(xk) ∈ (0, 1) ,mk+1

i;posk(xk) ∈ (0, 1]
(
i = 1, ..., 2k+1

)
,

and
2k+1∑
i=1

mk+1
i;posk(xk) = 1.

Therefore the above procedure can be iterated.

In the following we denote by I the family of all dyadic subintervals

Ik
i =

[
i− 1

2k
,

i

2k

]
:
(
i, k ∈ N; i = 1, ..., 2k

)

of the unit interval [0, 1].
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Let q1
pos0(x0) := q0 ∈ (0, 1) be arbitrarily fixed. Our cascade starts (k = 0)

with a uniformly distributed unit mass, m0
1 = 1, on the interval I0

1 = [0, 1] .

At the stage (k = 1) our cascade splits the interval I0
1 into the intervals

I1
i (i = 1, 2) , and at same time uniformly distributes - according to the eq. (4)

- the mass m0
1, by distributing a fraction m1

1;pos0(x0) := q1
pos0(x0) uniformly on I1

1 ,

and the remaining fraction m1
2,pos0(x0) = 1−m1

1,pos0(x0) uniformly on I1
2 . A this

stage, I1
1 carries the measure µ (I1

1 ) = m1
1;pos0(x0) and I1

2 carries the measure

µ (I1
2 ) = m1

2;pos0(x0). In this process, because µ (I0
1 ) = µ (I1

1 ) + µ (I1
2 ) = 1, the

original measure of the unit interval is conserved; the µ’s appear like probabil-

ities, and one says that µ is a probability measure. At the next stage (k = 2)

our cascade splits the unit interval into the intervals I2
i (i = 1, ..., 4), and at

same time uniformly distributes the masses m1
1;pos0(x0),m

1
2,pos0(x0) - according

the eq. (4) - over the intervals I2
i (i = 1, ..., 4). Precisely, let x1 be a random

number generated in the interval [0, 1]. This second stage of the cascade yields:





m2
1,pos1(x1),pos0(x0) = m1

1;pos0(x0)q
2
pos1(x1),pos0(x0),

m2
2,pos1(x1),pos0(x0) = m1

2;pos0(x0)q
2
pos1(x1),pos0(x0),

m2
3,pos1(x1),pos0(x0) = m1

1pos0(x0)(1− q2
pos1(x1),pos0(x0)),

m2
4,pos1(x1),pos0(x0) = m1

2pos0(x0)

(
1− q2

pos1(x1),pos0(x0)

)
,

where

q2
pos1(x1),pos0(x0) =





q1
pos0(x0) +

(
min

{
q1
pos0(x0), 1− q1

pos0(x0)

})α
1

2((x1)β)
,

if pos1 (x1) = 1,

q1
pos0(x0) −

(
min

{
q1
pos0(x0), 1− q1

pos0(x0)

})α
1

2((2−pos1(x1)+1)β)
,

if pos1 (x1) = 2.

At the stage kth (k ≥ 2) of the cascade the unit interval is split into the in-

tervals Ik
i

(
i = 1, ..., 2k

)
, and at same time the masses mk−1

i;posk−2(xk−2),...,pos0(x0)

(
i = 1, ..., 2k−1

)
are uniformly distributed, according to the eq. (4), over the

intervals Ik
i

(
i = 1, ..., 2k

)
. Let xk−1 be a random number generated in the
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interval [0, 1] .We obtain:

mk
i;posk−1(xk−1),...,pos0(x0) :=





mk−1
i;posk−2(xk−2),...,pos0(x0)q

k
posk−1(xk−1),...,pos0(x0)(

i = 1, ..., 2k−1
)
,

mk−1
i−2k−1;posk−2(xk−2),...,pos0(x0)

qk
posk−1(xk−1),...,pos0(x0)(

i = 2k−1 + 1, ..., 2k
)
,

where

qk
posk−1(xk−1),...,pos0(x0) =





qk−1
posk−2(xk−2),...,pos0(x0)+

+
(
min

{
qk−1
posk−2(xk−2),...,pos0(x0), 1− qk−1

posk−2(xk−2),...,pos0(x0)

})α

1

2(posk−1(xk−1)β)
, if 1 ≤ posk−1 (xk−1) ≤ 2k−2;

qk−1
posk−2(xk−2),...,pos0(x0)+

−
(
min

{
qk−1
posk−2(xk−2),...,pos0(x0), 1− qp−1

posk−2(xk−2),...,pos0(x0)

})α

1

2((2k−1−posk−1(xk−1)+1)β)
, if 2k−2 < posk−1 (xk+1) ≤ 2k−1.

We have that qk
posk−1(xk−1),...,pos0(x0) ∈ (0, 1) ,mk

i;posk−1(xk−1),...,pos0(x0) ∈ (0, 1]

(
i = 1, ..., 2k

)
and

2k∑
i=1

mk
i;posk−1(xk−1),...,posk(xk) = 1.

Set

µ
(
Ik
i

)
:= mk

i;posk−1(xk−1),...,pos0(x0)

(
i = 1, ..., 2k

)
.

We observe that

mk−1
i;posk−2(xk−2),...,pos0(x0) = mk

i;posk−1(xk−1),...,pos0(x0)+

+ mk
2k−1+i;posk−1(xk−1),...,pos0(x0)

(
i = 1, ..., 2k−1

)
,

and therefore

µ
(
Ik−1
i

)
= µ

(
Ik
i

)
+ µ

(
Ik
2k−1+i

) (
i = 1, ..., 2k−1

)
.

Then the above cascade (schematically depicted in fig. 1) produces the mul-

tifractal measure µ which attributes masses according to the eq. (4) to the

family I of all dyadic subintervals of the unit interval [0, 1].
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1 1 1
1
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iJ

i

pos x i xχ
=

= =∑

1
2;1J

•

2
1;1,1J 2

4;1,1J2
2;1,1J 2

3;1,1J

( )2
;1

4

2 2 2
1

( ) 3
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pos x i xχ
=

= =∑
•

0
1J

( )0
1

0 0 0( ) 1
J

pos x xχ= =
•
0x

1x

2x

0
1m

Figure 1: The first four stages of the multiplicative cascade

3 The process X and the associated binary re-

sponse Y

Let

FD :=




x1 (0) . . . x1 (tj) . . . x1 (T )
...

...
...

xi (0) . . . xi (tj) . . . xi (T )
...

...
...

xL (0) . . . xL (tj) . . . xL (T )




(tj = j · T

S
for j = 0, . . . , S)

be the functional data which arise from a continuous phenomenon and let

R :=




r1

...
ri

...
rL




ri ∈ {bad, good}

be the outcome associated to the row (xi (0) . . . xi (tj) . . . xi (T )) for i = 1, . . . , L.

Set

B :=
{
xi(T ) : i = 1, . . . , L and ri = bad

}

and

G :=
{
xi(T ) : i = 1, . . . , L and ri = good

}
.
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We assume that B and G are separated with min(G) > max(B). In this

section we describe how to modelize – via the random multiplicative cascade

introduced in Sec.2 – the real phenomenon by a couple (X,Y ) ∈ S ×R.

Step 1. We use the data FD and R in order to define the following

constants:

q0 :=
|G|

|G|+ |B| and 1− q0 =
|B|

|G|+ |B| ;

a := min
i=1,...,L

(
xi (T )− xi (0)

)− h and b := max
i=1,...,L

(
xi (T )− xi (0)

)
+ h,

where h is a corrective term (the elevation-correction term);

p :=
max

i=1,...,L
(xi (T )− xi (0))− min

i=1,...,L
(xi (T )− xi (0))

δ
,

where

δ :=

L∑
i=1

S∑
j=1

|xi(tj)− xi(tj−1)|

LS
.

Let

si
D : [0, T ] → R (i = 1, ..., L)

be the piecewise linear functions whose node-sets are

N i :=

{(
j, xi(tj)

)
: tj = j · T

S
for j = 0, . . . , S

}
(i = 1, ..., L) .

Set

bD(j) := max
{
xi(tj) : i = 1, . . . , L and ri = bad

}
(j = 0, . . . , S)

and

gD(j) := min
{
xi(tj) : i = 1, . . . , L and ri = good

}
(j = 0, . . . , S).

Now we introduce the definition of the adjustment curve γa,D : [0, T ] →
[0, 1] for the binary outcome R of the functional data FD.
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Definition 3 Let i ∈ {1, . . . , L} and ri = bad or ri = good. The piece-

wise linear interpolant si
D is called adjustable at the time t ∈ [0, T ] (for short

t−adjustable) if there exists tj ≥ t with j ∈ {0, 1, . . . , S} such that

si
D(tj) ≥ gD(tj) or si

D(t) ≤ bD(tj).

Definition 4 The adjustment curve γa,D : [0, T ] → R for the binary outcome

R of the functional data FD is the function

γa,D(t) =
|{si

D : i = 1, . . . , L and si
D is t− adjustable}|

L
(t ∈ [0, T ])

Step 2. Let (α, β) be a pair of random generated numbers in the square

[10−1, 10]× [10−1, 10]. Let

Vp :=
{
(n0, n1, ..., np) ∈ Np+1 : 1 ≤ nk ≤ 2k for k = 0, 1, .., p

}
.

For given α, β and q ∈ (0, 1) our random multiplicative cascade truncated at

the stage p generates a vector

(n0, n1, ..., np) ∈ Vp.

We define the function

ϕa,b,p : Vp → Rp+1

as follows:

ϕa,b,p (n0, n1, ..., np) = (y0, y1, ..., yp) ,

where y0 = 0 and the coordinates yk, for k = 1, ..., p, are recursively defined

by the following formula:

yk =

{
yk−1 + a

p
+ b−a

2p
1

2k−1 (nk − 1 + zk) if 1 ≤ nk ≤ 2k−1,

yk−1 + b
p
− b−a

2p
1

2k−1

(
2k − nk + zk

)
if 2k−1 < nk ≤ 2k,

where zk is a random number generated in the interval [0, 1] . Now we give the

notion of experiment of size L and length p + 1. We introduce the following
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terminology. A realization of the multiplicative cascade truncated at the stage

pth (p ≥ 1) is called a proof of length p + 1 and the vector

(0, y1, ..., yp) = ϕa,b,p (n0, n1, ..., np)

its result. For each ȳ ∈ R the vector

(ȳ, ȳ + y1, ..., ȳ + yp)

is called a result of the proof at ȳ.

For each i ∈ {1, . . . , L}, if ri = good (respectively ri = bad) we start

the cascade with q = q0 (respectively q = 1 − q0) by truncating it at the

stage p. Then for each i = 1, . . . , L we consider the results (0, yi
1, ..., y

i
p) =

ϕa,b,p

(
ni

0, n
i
1, ..., n

i
p

)
of the above proofs and the results (xi(0), xi(0)+yi

1, ..., x
i(0)+

yi
p) at xi(0). The set

Ep =
{
(xi(0), xi(0) + yi

1, ..., x
i(0) + yi

p), i = 1, ..., L
}

is called an experiment of size L and length p + 1.

We consider the matrix SFDα,β of experiment’s data (simulated functional

data):

SFDα,β :=




x1 (0) x1 (0) + y1
1 . . . x1 (0) + y1

p
...

...
...

xi (0) xi (0) + yi
1 . . . xi (0) + yi

p
...

...
...

xL (0) xL (0) + yL
1 . . . xL (0) + yL

p




.

Remark 5 Let

si
p : [0, p] → [

xi(0) + a, xi(0) + b
]

(i = 1, ..., L) ,

the piecewise linear functions whose node-sets are N i
p := {(k, xi(0) + yi

k) : k = 0, 1, ..., p}
(i = 1, ..., L) . We denote by S(Ep) the set of such functions. Let i ∈ {1, ..., L}
and let T i

k (k = 1, ..., p) be the triangle of vertices
(
k − 1, xi(0) + yi

k−1

)
,
(
k, xi(0) + yi

k−1 + a
p

)
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and
(
k, xi(0) + yi

k−1 + b
p

)
. Then it is easy to verify that the following geomet-

ric condition holds:

{(
x, si

p (x)
)

: x ∈ [k − 1, k]
} ⊆ T i

k (k = 1, ..., p).

Step 3. Let Ep be an experiment of size L and length p+1 and let SFDα,β

be its matrix of simulated functional data. We set

mFD = min
i=1,...,L

{
xi(T )

}
, MFD = max

i=1,...,L

{
xi(T )

}

and

mSFDα,β
= min

i=1,...,L

{
xi (0) + yi

p

}
, MSFDα,β

= max
i=1,...,L

{
xi (0) + yi

p

}
.

In order to compare the functional data FD with the simulated functional

data SFDα,β we first use the linear transformation

φFD(u) =
1

MFD −mFD

(u−mFD), u ∈ [mFD,MFD, ]

and the subdivision in K classes
[
0, 1

K

[
, . . . ,

[
K−1

K
, 1

]
of [0, 1] to obtain an his-

togram IFD of frequency distribution of data
{
φFD(x1(T )), . . . , φFD(xL(T ))

}
.

Then we use the linear transformation

φSFDα,β
(u) =

1

MSFDα,β
−mSFDα,β

(u−mSFDα,β
), u ∈ [

mSFDα,β
,MSFDα,β

]

and the same subdivision to obtain the histogram ISFDα,β
of frequency distri-

bution of the data
{
φSFDα,β

(xi (0) + yi
p), . . . , φSFDα,β

(xL(T ))
}
. We denote by

EFD(j), ESFDα,β
(j) the frequencies of the classes

[
j−1
K

, j
K

[
(j = 1, . . . , K − 1),

and by EFD(K), ESFDα,β
(K) the frequencies of the class

[
K−1

K
, 1

]
of the above

data, respectively.

Definition 6 Let

Ep =
{
(xi(0), xi(0) + yi

1, ..., x
i(0) + yi

p), i = 1, ..., L
}

13



be an experiment of size L and length p + 1. One of its proofs (xi(0), xi(0) +

yi
1, ..., x

i(0) + yi
p) is assumed bad (good) if

xi(0) + yi
p <

min(G) + max(B)

2

(
xi(0) + yi

p ≥
min(G) + max(B)

2

)
.

In the following we denote by YEp the vector of outcomes of the experiment

Ep according to the previous definition:

YEp :=




ρ1

...
ρi

...
ρL




(ρi ∈ {bad, good} for i = 1, . . . , L)

Definition 7 Let η > 0, θ > 0 be two fixed tolerances 1. An experiment Ep of

size L and length p + 1 is called admissible if the following conditions hold:

i)

∣∣∣∣
mFD −mSFDα,β

mFD

∣∣∣∣ ≤ η and

∣∣∣∣
MFD −MSFDα,β

MFD

∣∣∣∣ ≤ η,

ii)
K∑

j=1

(EFD(j)− ESFDα,β
(j))2

EFD(j)
≤ θ, i.e. the chi-square value of IFD and

ISFDα,β
is less than or equal to θ.

Remark 8 Admissible experiments Ep can be obtained via a Monte-Carlo

method based on the generated random pairs (α, β) ∈ [10−1, 10]× [10−1, 10].

Definition 9 Let Eη,θ be the set of all admissible experiments Ep of size L and

length p + 1. We define the stochastic process X as the set

X =
⋃

Ep∈Eη,θ

S(Ep).

and the associated binary response

Y : X → {bad, good} , Y (s) = YEp(s).

In the following we assume that the couple (X, Y ) ∈ S × R simulates the

continuous phenomenon from which data FD and R are observed.

1in Sec.5 we assume η = 0.05, θ = 5
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4 The adjustment curve

Let (X, Y ) ∈ S × R. In this section we introduce the notion of adjustment

curve for the binary response Y of the process X.

Let Ep ∈ Eη,θ be an admissible experiment. We start to introduce the

adjustment curve γa,Ep : [0, T ] → [0, 1] for the binary outcome YEp of the

experiment Ep. We set

bEp(k) = max
{
xi(0) + yi

k : i = 1, . . . , L and ρi = bad
}

(k = 0, . . . , p)

and

gEp(k) = min
{
xi(0) + yi

k : i = 1, . . . , L and ρi = good
}

(k = 0, . . . , p).

Since min(G) > max(B), by Definition 6 we observe that the sets

BEp :=
{
xi(0) + yi

p : i = 1, . . . , L and ρi = bad
}

and

GEp :=
{
xi(0) + yi

p : i = 1, . . . , L and ρi = good
}

are separated with min(GEp) > max(BEp). We consider the sets of nodes in

R2

NbEp
=

{(
k, bEp(k)

)
, k = 0, . . . , p

}

and

NgEp
=

{(
k, gEp(k)

)
, k = 0, . . . , p

}
.

Then we denote by sbEp
and sgEp

the real piecewise linear functions on [0, p]

which node sets are NbEp
and NgEp

, respectively. Let

Ep =
{
(xi(0), xi(0) + yi

1, ..., x
i(0) + yi

p), i = 1, ..., L
}

be an experiment of size L and length p + 1. We give the following:

15



Definition 10 Let i ∈ {1, . . . , L} and ρi = bad or ρi = good. The piecewise

linear interpolant si
p ∈ S(Ep) is called adjustable at the time τ ∈ [0, p] (for

short τ−adjustable) if there exists k ≥ τ with k ∈ {0, 1, . . . , p} such that

si
p(k) ≥ gEp(k) or si

p(k) ≤ bEp(k).

Definition 11 The adjustment curve γa,Ep : [0, p] → [0, 1] for the binary out-

come YEp of the experiment Ep is the function

γa,Ep(τ) =

∣∣{si
p(τ) : i = 1, . . . , L and si

p(τ) is τ − adjustable
}∣∣

L
(τ ∈ [0, p])

Clearly
{
γa,Ep : Ep ∈ Eη,θ

}
=: {γ1, γ2, . . . , γN} is a finite set. By the change of

variable τ =
p

T
· t (t ∈ [0, T ]) we get, for every Ep ∈ Eη,θ,

γa,Ep(t) = γa,Ep(
p

T
· t) (t ∈ [0, T ])

We consider the random experiment “obtain an admissible experiment Ep”

whose sample space is the infinite set Eη,θ. Set E i
η,θ :=

{
Ep ∈ Eη,θ : γa,Ep = γi

}

(i = 1, . . . , N). Assume that the numbers νi are the frequencies of the curves

γi (i = 1, . . . , N).

Definition 12 The adjustment curve γa : [0, p] → [0, 1] for the binary re-

sponse Y of the process X is the function

γa(t) =
N∑
1

νiγi(t) (t ∈ [0, T ]).

Remark 13 In practice, given a couple (X, Y ) ∈ S × R we can choose a

tolerance ε > 0 such that, if E1
p = (x1

1, . . . , x
1
L), E2

p = (x2
1, . . . , x

2
L) are two

admissible experiments such that
L

max
i=1

‖x1
i −x2

i ‖∞ ≤ ε (here ‖ · ‖∞ denotes the

usual sup-norm) then E1
p , E2

p can be considered indistinguishable. Therefore

X becomes a process with a discrete number of realizations. Hence we can

assume that for i = 1, . . . , N the frequency νi is computable in experimental

way, i.e.

νi = lim
n→∞

νn
i ,
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where νn
i is the relative frequency of γi observed on a sample (γ1, . . . , γn) of

size n.

Remark 14 Let γn
a :=

n∑
1

νn
i γi (n = 1, 2, . . . ). It is not difficult to see that

the sequence {γn
a} converges to γa on [0, T ] and that the variance V ar(γa)

of the random variable γa is less or equal 2. Therefore the classical Monte

Carlo method can be used to produce approximations of γa with the needed

precision.

5 Application

We present an application of our results to a real industrial process; namely we

will show how our model can be used to monitoring and predicting the quality

of a product resulting from a kneading industrial process. We will use a

sample of data provided by Danone Vitapole Research Department (France)2.

In kneading data from Danone, for a given flour, the resistance of dough is

recorded during the first 480 seconds of the kneading process. There are

136 different flours and then 136 different curves or trajectories (functions of

time). Each one of them is obtained by Danone as a mean curve of a number

of replication of the kneading process for each different flour. Each curve is

observed in 240 equispaced time points (the same for all flours) of the interval

time [0, 480]. Depending on its quality, after kneading, the dough is processed

to obtain cookies. For each flour the quality of the dough can be adjustable, bad

or good. The sample contains 30 adjustable, 44 bad and 62 good observations

(see Fig. 2). With an appropriate smoothing of Danone’s data, i.e. without

modifying the phenomenon in a significant way (see details in Remark 2) we

reduced to a binary outcome R, R ∈ {bad, good} with sets B and G separated

(see Fig. 3). In Fig. 4 we show one admissible experiment Ep obtained by our

2We wish to thank the Danone Vitapole Research Department for kindly furnishing the
data
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method. In Fig. 5 is depicted the adjustment curve γa for the binary response

Y of the stochastic process X related to the smoothed Danone’s data. This

curve has been computed on the basis of n = 100 admissible experiment Ep.

In Fig. 6 we show the corresponding adjustment curves γa,Ep together with

the adjustment curve γa,D of Danone’s data and the adjustment curve γa.

We remark that in order to obtain by application of Monte Carlo Method

the adjustment curve γa with and error less than 10−1 and probability greater

than 90% we need to perform n = 4000 admissible experiments. As we pointed

out in the introduction, the adjustment curve γa is an important tool for the

analysis of a real process which evolves during a time period. In fact in the

cookie’s case, as shown in Fig. 5, the quality of the dough can be forecasted

by the adjustment curve for each given t ∈ [0, T ] with increasing probability.

100 150 200 250 300 350 400 450

Figure 2: Danone’s original
data.

50 100 150 200 250 300 350 400 450

Figure 3: Danone’s smoothed
data.

50 100 150 200 250 300 350 400 450

Figure 4: An admissible exper-
iment Ep
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Figure 5: The adjustment
curve γa.
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100 150 200 250 300 350 400 450

Figure 6: The adjustment curves γa (in blue), γa,D (in dark) and γa,Ep (in red)
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