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Abstract

In this paper we propose a new method of single imputation, reconstruction,
and estimation of non-reported, incorrect or excluded values both in the
target and in the auxiliary variables where the first is on ratio or interval
scale and the last are heterogeneous in measurement scale. Our technique is
a variation of the popular nearest neighbor hot deck imputation (NNHDI)
where “nearest” is defined in terms of a global distance obtained as a convex
combination of the partial distance matrices computed for the various types
of variables. In particular, we address the problem of proper weighting the
partial distance matrices in order to reflect their significance, reliability and
statistical adequacy. Performance of several weighting schemes is compared
under a variety of settings in coordination with imputation of the least power
mean. We have demonstrated, through analysis of simulated and actual
data sets, the appropriateness of this approach. Our main contribution has
been to show that mixed data may optimally be combined to allow accurate
reconstruction of missing values in the target variable even in the absence of
some data in the other fields of the record.
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1. Introduction

Missing values are pieces of information omitted, lost, erroneous, patently
absurd or otherwise not accessible for a statistical unit about whom other
useful data are available. Failures in data collection are a matter of major
concern either because they reduce the number of valid cases for analysis
which, in turn, may result in a potential loss of valuable knowledge, or be-
cause they introduce bias into the estimation/prediction process when there
is a wide difference between complete and incomplete records.

There are various strategies to handle the problems posed by the miss-
ing observations. These include: additional data collection; application of
likelihood-based procedure that allows to model incomplete data; deductive
reconstruction; using only part of the available data; weighting records; re-
vise the data set in an attempt to replace the missing data with plausible
values (imputation). The present paper concerns the latter method.

Imputation techniques have been extensively studied during the last few
decades and a number of approaches have been proposed. For an overview of
the methods, see for example Little & Rubin, (2002) and Kalton & Kasprzyk,
(1982). Some of these methods are nowadays available in standard statistical
software (or could easily be implemented), although there is little consensus
as to the most appropriate technique to use for a particular situation. In the
present paper, we did not perform an exhaustive review of data imputation
methods, but instead discuss only the nearest neighbor hot deck imputation
(NNHDI) that has been used for a number years and enjoys a high prestige
for both theoretical and computational work.

NNHDI is a based on a non-random sample without replacement from
the current data set (it is due to this the term “hot deck” in the name of the
method). More specifically, NNHDI looks for the nearest subset of records
most similar to the records having missing values, where neareness is specified
in terms of minimizing the distances between the formers and the latters. To
this end, a general distance measure for the comparison of two records that
share some, but not necessarily all, the auxiliary variables has to be derived.
Actually this is only a part of the problem. Another is the fact that real-
world data sets frequently involve a mixture of numeric, ordinal, binary and
categorical variables.

To deal with the simultaneous presence of variables with different mea-
surement scales, we take our point of departure from the computation of a dis-
tance matrix restricted to non-missing components for each type of variable:
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binary (symmetrical and asymmetrical), categorical, ordinal, interval/ratio.
Then a compromise distance can be achieved by using a convex combination
of all the partial distances (“partial” because each of them is linked to a spe-
cific type of variables and not to the globality of the issues reported in the
records). We address the problem of specifying differential weights for each
type of variable in order to reflect their significance, reliability and statistical
adequacy for the NNHDI procedure.

The remainder of the paper is organized as follows. The next section
gives a brief overview of the nearest neighbor hot deck imputation method.
In Section 3, we give a description of the methodology used to compute
distances with an emphasis on the measure of distance for mixed data. In
Section 4, we devise a compromise distance between records. In Section 5,
an application of the various systems of weighting is given, followed by an
evaluation of our approach. The objective is to analyze the performance
of the NNHDI as an imputation method. Experiments performed on real
data sets demonstrate the ability of the proposed method to compensate for
missing values when several types of variables occur in the same data set.
Finally, in Section 6, we highlight some areas for future work.

2. Nearest neighbor hot deck imputation

Let Sn be a data set consisting of n records R1, R2, . . . , Rn in which an
interval or ratio scaled variable y (the target variable or variable of in-
terest) is recorded together with other m auxiliary or matching variables
(X1, X2, · · · , Xm). Without loss of generality, we assume that ν of the n
records have a valid observation for the target variable forming the set Sν of
the first ν records of the data set Sn. In practical applications, many factors
influence which value is missing and which is not, so that the lacunae in the
data are usually not confined to particular fields but can be in any position
within the record. As a consequence, one or more auxiliary variables may be
missing, although we have excluded from the set of usable data, the records
that have a missing value for all the auxiliary variables.

For each donee record or receptor Ri = (yi, xi,1, xi,2, . . . , xi,m), i > ν and
yi missing, we select a pool (or reference set) Ji = {j1,i, j2,i, . . . , jk,i} ⊂ Sν
of k similar records (“donors”) where k is the fixed size of all the reference
sets. To be a donor, the record must have a valid value both for y and for at
least one of the auxiliary variables fully present in the receptor. The donors
provide a basis for determining imputed values.
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Bankier et al., (1994), Bankier et al., (1995) pointed out that the im-
puted values of a recipient record should come from a single record donor if
possible rather than two or more donors. Welniak & Coder, (1980) noted
that, if k = 1 then all missing information is imputed from the same donor
favoring the preservation of the interrelationships between variables. As a
confirmation of this strategy, Jöreskog & Sörbom, (1993) introduced a tech-
nique identical to the NNHDI attempting to impute values missing in one
case from another case with similar observed values (if it exists) and doing
so using a minimization criterion on a set of matching variables.

It must be said that when the attributes characterizing the records include
a large number of qualitative, ordinal and quantitative variables, at the same
time or when there are auxiliary variables with many distinct values, it is
extremely difficult to obtain a perfect retrieval i.e. to find a single donor
record that precisely matches the recipient record in any field, particularly
if there can be the impact of a missing value in more than one variables
in the same record. In contrast, the idea of the NNHDI algorithm is that,
to predict whether a record will show a certain type of pattern, implies an
assumption that the intended recipient is not a singleton, but belongs to a
certain type of cluster and will therefore show the certain kind of pattern.
In facts, NNHDI first collects records similar to the receptor making use of
additional information provided by the auxiliary variables and then integrate
the data of alternative records into a consistent and logically related reference
set. Hence, several donors may be involved in completing a single deficient
record. Sande, (1982) suggested that this may be a source of some concern,
but one must take into account the fact that the best donor for a segment
of the record could be different from the best donor for another segment
when incompleteness also affects auxiliary variables. The NNHDI method,
however, does not use an explicit model relating y and x and, hence, it is
expected to be more robust against model violations than methods based on
explicit models, such as ratio imputation and regression imputation. Chen
& Shao, (2000).

The possibility of reducing bias by NNHDI may be improved if unreported
values are characterized by a missing at random (MAR) mechanism. In the
phraseology of the field this means that missing values on the target variable
follow a pattern that does not depend on the unreported data in the target
variable, but only on observed data. The missingness pattern, however, may
depend on auxiliary variables that may be the reason for missingness or are
joint causes and can thus contribute to fill the voids. In fact, the values
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observed for the auxiliary variables both for the donee and for the donors
are compared under the tacit assumption that if distances, however defined,
are small for the auxiliary variables, they will also be small for the target
variable. Consequently, the existence of strong relationships between target
and auxiliary variables has a positive impact on the ability of the NNHDI to
determine more compact and homogeneous reference sets which, as a result,
increase the quality of the imputed values. See Abbate, (1997).

Let ψ a vector of missingness indicator for y

ψi =

{
1 if yi is observed
0 if yi is missing

i = 1, 2, . . . , n. (1)

Under a MAR dynamic, the selection probabilities verify the condition

Pr (ψ|yν ,yn−ν) = Pr (ψ|yν) . (2)

This is equivalent to saying that, given the observed data, the inability to
observe a realization from y does not depend on the data that are not ob-
served. Unfortunately, validation of MAR assumption is difficult because
there is usually a scarce amount of information on the unobserved data.
However, the more relevant and related are the auxiliary variables with the
target variable or with the propensity to give a y response, the more likely
is the MAR hypothesis.

2.1. Formation of the reference sets

In general, NNHDI is implemented as a two-stage procedure. In the first
stage, the data set Sν is searched to form the neighborhood or reference set
Ji for each receptor in Sn−ν . In the next stage, the values of y observed in
the reference set are used to compute the replacement value.

The reference set is built simultaneously for Rν+1, Rν+2, . . . , Rn according
to the rule: record Rs ∈ Sν is added to Ji if |Ji|< k or if

max
j∈Ji

δ (xi,xj) ≤ δ (xi,xs) ; i = ν + 1, ν + 2, . . . , n; s = 1, 2, . . . , nν (3)

where δ (.) is the distance between two records in the space of auxiliary
variables. At the end of the process, the records corresponding to the first k
distances become the neighborhood Ji of Ri. The solutions Ji, i = ν + 1, ν +
2, . . . , n form mathematical (non-random) samples of fixed size k. We admit
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that the Ji’s are artificial and that they may be non-representative samples
of the target variable population because each Ji is a subset of a subset of the
observed records (specifically those having an effective value for y). It must
be emphasized, however, that imputation of missing values is one of those
circumstances in which a biased selection may be preferable to probability
sampling. See Deming, (1960)[pp. 32-33].

A peculiar characteristic of k-NNHDI is the restriction to a predefined
cardinality k of Ji, i = ν + 1, ν + 2, . . . , n that cannot be corrected and
changed later (see, in this respect, Ghosh, (2007) and references therein);
this gives a certain impression since there is no guarantee that each receptor
belongs to a compact and homogeneous cluster formed by at least k records to
be validly employed as donors; in addition, the fact that NNHDI inexorably
finds k donors even if none of them is actually near the receptor, inflates the
risk of irrelevant records in the reference set.

Although there are some rules which link k to the number n of records
of the data set, the size of the reference set remains somewhat arbitrary.
The value of k should be kept small enough to improve the speed of the
imputation process and to bring into the imputation process values derived
by the most similar records. On the other hand, if k is very small and the
donors are not nearby due to data sparseness, the imputed value tends to be
very poor. The robustness of NNHDI to noisy data is expected to improve
with the number of donors used for imputation, but too many donors increase
the computational cost and may enlarge out of proportion the variability of
imputed values. Moreover, as k increases, the mean distance between the
receptor and the donors gets larger. Eventually, as k approaches n − ν, the
NNHDI algorithm converges to ordinary mean imputation where units far
from the receptor are forced to be equally informative as the nearest records.
In this situation, it is likely that implausible imputed values will result.

Literature have tested only small k values (3, 5, 10, 15, 20); after all, single
imputation is very much alike the estimation of a univariate mean, which does
not require large samples. In Little & Rubin, (2002) is suggested that k = 3
to k = 5 will suffice. Wettschereck & Dietterich, (1995) chose k to optimize
the leave-one-out cross-validation performance of the imputation algorithm
(see Section 5.2) by trying all possible of k in a vast range of values and
broking ties in favor of the smaller value of k. Friedman et al., (1977) found
empirically that values ranging from k = 8 to k = 16 work well for nearest
neighbor searching. To determine k in our experiments, we have used the
Sturge’s rule k = 1 + log2 (n) discussed, for example, in Hyndman, (1995).
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The main computational drawback of the NNHDI approach is that the
algorithm searches the donors through all the data set. To form the pools
Ji, i = nν+1, nν+2, . . . , n, (3) it considers nν×(n− nν) distances (although,
only a part of them have to be kept in memory) and compares δ (Xi,Xs) with
the largest element in each pool. With the vast improvement in computers,
NNHDI methods are not nearly as prohibitive as they used to be. Neverthe-
less, if the data set is judged too large to be treated within an acceptable
time limit, the donors can be searched in a subset of Sν . Several works that
aim to solve this limitation can be found in the literature, e.g. Wilson &
Martinez, (2000).

NNHDI does not necessarily produce disjoint reference sets: |Jr ∩ Js|> 0
for r 6= s. Moreover, it leaves unused records that do not fit in any neigh-
borhood. To this purpose, an objection to NNHDI is that data from some
records could be used many times as donors and other records excluded from
“donation” thus depriving the imputation of the benefits that could have
been derived there from. According to Sande, (1982) this will increase the
variance while possibly reducing the bias of the estimate. Also, this may im-
ply inflating the size of certain subpopulations in the data set. Kaiser, (1983)
pointed out that the excessive use of a single donor results in poor estimates;
Schieber, (1978) recommended that each complete record was allowed to be
a donor only once. If repeated donations and omitted contributions are con-
sidered a problem to be alleviated, one can apply the strategy proposed by
Colledge et al., (1978) or Giles, (1988).

2.2. Imputing for missing data

Once the reference sets of Ri ∈ Sn−ν , i = nν + 1, nν + 2, . . . , n have been
formed, the information on y contained in the pool of donors Ji has to be
synthesized into an estimate for the missing value of the target variable ŷi.
The operation consists of replacing the missing value yi in the donee Ri by
ŷi derived from the values of y observed in Ji. These operations must be
repeated for each receptor.

Imputation of missing values should be done with care and control since
imputed values will be treated as really observed values. If the cardinality
|Ji|= 1, then the value ys of the nearest neighbor Rs can simply be copied
into Ri, or a transformation from the auxiliary variables in Rs can be applied
to the correspondent data on Ri to determine the imputed value ŷi from ys.
The same procedure can be applied to the missing values in all the auxiliary
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variables of the recipient record, provided that they are measured on an
interval or ratio scale; for qualitative and binary attributes, the value in the
nearest neighbor may be imputed; for ordinal variables ad hoc procedures
should be applied.

Manzari, (2004) suggested that the recipient record should closely resem-
ble that single donor, but equally good imputation actions, based on available
donors, should have similar chances of being selected. One of those imputa-
tions actions is randomly selected by giving a better chance to records that
are simultaneously closer to a receptor and have a lower number of missing
fields. Many other authors (see, for example, Andridge & Little, (2010), Sid-
dique & Belin, (2008)) suggest performing a random draw from the reference
set. An advantage of this option is that the imputed value would reflect,
at least partially, sampling and imputation uncertainty about the actual da-
tum. On the other hand, random imputation requires the specification of
an appropriate probability model even in situations in which the features
detectable from what is known of the data do not legitimate any specific
distributional assumptions to assist in making imputations.

If ki > 1 then a synthesis of all the evidence acquired on y through the
reference set Ji is needed. A wide variety of estimation methods have been
discussed in the literature. The methods differed from one another in the
way donor records are employed. A common imputation technique is using
a mean ŷi of the values observed in the reference set. In this paper attention
is concentrated on the Lα (least power mean) estimator that minimizes

Sα =
∑
j∈Ji

|yj − ŷi|α α ≥ 0 (4)

with respect to ŷi. See Pennecchi & Callegaro, (2006). The simple mean
imputation ŷi = E (y|Ji) is obtained for α = 2. If we set α = 1, me =
[(ki + 1) /2] and me′ = ki + 1−me we obtain the median imputation:

ŷi =
yme + yme′

2
. (5)

If α = 1 and ki even, the solution of (4) is not unique, but uniqueness is
attained using (5). For α→∞, (4) yields the midrange

ŷi =
ymin + ymax

2
. (6)
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For α → 0 we find a reference to the zero norm and ŷi is the mode (not
necessarily unique) of the target variable. It can be easily seen that (4) does
not necessarily coincide with one of the values of y observed for the donors.
However, by construction, we have

min
j∈Ji

{yj} ≤ ŷi ≤ max
j∈Ji

{yj} . (7)

It follows that, even though ŷi is a fictitious value, it is not too far from
actually observed values. It must be noted that Andridge & Little, (2010) do
not consider methods that impute summaries of values for a set of donors, as
hot deck methods, although they share some common features. ?, (?) noted
that, for point estimation, single random imputation is less efficient than
conditional mean imputation because the random imputation mechanism
introduces extra noise, although not in the extent to which it corrects the
downward bias in variability estimation due to single imputed values.

In our procedure, α is not fixed but must be optimized to fit the observed
values of the target variable. To this end we have used the procedure de-
vised by Mineo & Ruggeri, (2005) (see also Jönnson & Wohlin, (2006)) that
takes into account the relationship between α and the tail behavior of the
exponential power probability density function

f (y) =

exp

{
−|y − µα|

α

ασαα

}
2σαα1/αΓ (1 + 1/α)

α > 0 (8)

fitted to yj for j ∈ Ji. The symbols µα, σα, α denote, respectively, the lo-
cation, scale and shape parameters of the model. The idea underlying (8)
is that the actual probability density function of y in the reference set is,
at least approximately, symmetrical. If α ≥ 1 the densities proposed by (8)
are “bell”-shaped (leptokurtic if 0 < α < 2 and platikurtic if α > 2). A
variable that has this type of distribution has a little or moderate amount of
variability, which suggests a relatively homogeneous cluster of donors. An-
timodal densities (that is, “U”-shaped), are obtained for 0 < α < 1. In
this case, the variable has a very large amount of variability that could be
attributable to two distinct groups of donors. The range of shapes produced
in HDNNI should include J-shaped distributions (L-shaped distributions) in
which most of the variability could be attributable to many potential donors
being almost certain of having (not having) their value selected, while a few
have much lower (higher) probabilities. These shapes, however, are not in the
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family of curves generated from (8) so that there could be a systematic error
in the exponential power approximation when an asymmetric distribution is
approximated by a symmetric one.

In an attempt to improve the reliability of our imputation algorithms, we
have applied more versatile models such as the beta and the two-sided power
distributions that offer simple and flexible curves and enable us to obtain a
reasonable fitting in the presence of a broad range of nonnormalities. The
results, however, were discouraging in the sense that the accuracy of the
imputed values was lower and the computer time required greater than with
the exponential power distribution. A partial explanation of this could be
that Ji is a non-probabilistic sample formed using the subset of records most
similar to the receptor Ri; as such, their distribution, is not seriously affected
by outliers or marked heaviness of the tails.

The index of tail behavior recommended by Mineo & Ruggeri, (2005) is

V Iα =
E|y − µ|√
E|y − µ|2

=
[Γ (1/α) Γ (3/α)]0.5

Γ (2/α)
. (9)

The normalp is an R (R Development Core Team, (2009)) package contain-
ing a collection of tools related to the exponential power distribution. In
particular a command that estimates the shape parameter α by means of the
index of kurtosis (9) and a command that estimates the location parameter
µα = ŷi for fixed α. The procedure is sufficiently efficient and fast to be
applied for small, medium and large data sets.

Once a record has been reconstructed, it can be used to repair other
records. For example, the target variable can exchange its role with an
auxiliary variable and HDNNI can iteratively complete the missing fields of
all records. This is a controversial subject. On one side is the fact that
using an imputed value as if it were an actual value increases the degree of
intervention; in addition, increasing the set of complete records sequentially
implies that the construction of the reference set is now dependent on a
properly ordering of the variables and on the order in which complete and
incomplete records are processed. On the other side is the reiteration of the
algorithm which allows to exploit more efficiently the observed data. In this
paper, we have chosen to neglect the reuse of imputed records, but further
studies should investigate benefits and drawbacks of this option.

It is worth observing that imputation based approaches for handling miss-
ing data are frequently implemented in concert with editing rules, that is,
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logical or consistency bounds for the missing values that must be incorporated
in the imputation process. In the interest of simplicity, our analysis is con-
fined to analytical interrelationships among the variables ignoring edits and
consistency checking. Of course, one must be aware that data repairement
cannot prevent the investigators from false conclusions due to badly designed
instruments, poor data collection, and elusive populations. The analyst has
to keep in mind that, although the sample size is increased, imputation does
not add new genuine information about the data set.

3. Distance measurement for mixed data

Let X be an object-by-variable data matrix containing measurements of n
objects on a mixture of variables types. Without loss of generality, we may
assume that m1 variables are interval or ratio scaled; m2 are ordinal vari-
ables that rank records in terms of degree without establishing the numeric
difference between data points; m3 variables are binary symmetric (0 – 0
and 1 – 1 matches are treated as equally indicative of similarity); m4 are
binary asymmetric (0 – 0 or 1 – 1 matches are not regarded as indicative of
similarity since 1 is used to indicate the presence of some feature and 0 its
absence). It is important to distinguish the two situations: if two records
have few co-presences in a great number of binary variables considered sym-
metric then the similarity between them may be judged quite large even if
they have very little in common. Conversely, if the variables are considered
binary asymmetric, a large number of co-absences could be judged insignifi-
cant. Finally, m5 variables are categorical with three or more categories with
potentially different numbers of states lh, h = 1, 2, . . . ,m5. Of course, some
of the groups may be empty and some others may be split into groups of
variables of the same type. In each case, we have m = m1 + . . .+m5.

Let p be the number of non empty subsets of variables. The measurement
of the dissimilarity through a distance function that depends on the scale of
each group of variables can be realized in several ways. To begin with, it
is possible to perform a separate distance analysis for each group and then
to compare and synthesize imputation results from different sources. A con-
flict may occasionally emerge because of irreconcilable differences between
the patterns discovered in the various distance matrices. The perfect neigh-
borhood obtained by using multistate variables might turn out to be an
inadequate cluster for numerical variables. In real applications, it is unlikely
that a separate NNHDI will generate compatible results. In this context,
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the question arises whether we can avoid the conflict by limiting the scope
of the research (see Anderberg, (1973)[pp. 93-94]). Furthermore, the cost of
repeated analysis of large data sets could be too high. Colledge et al., (1978)
conducted imputation in several phases each corresponding to a group of
variables. Each phase replaced missing values in a particular group by the
values of donors for which the variables in that group were observed. This
method assumes implicitly that the group of variables is conditionally inde-
pendent, given the matching variables (Little & Rubin, (2002)[p. 70]) and
no interactions among the variables of different groups are covered.

The simplest way to deal with a mixture of variable types is to partition it
into types and confine the analysis to the dominant type. Even if it would be
easy to judge which type is “dominant”, this practice cannot be recommended
because it discards data that may be correct and relevant but produced in
the wrong scale.

When simultaneously handling nominal, ordinal, binary, etc. characte-
ristics, one may be tempted to ignore their difference and use a distance
measure suitable for quantitative variables, but incorrect for the other types.
Naturally, this is an absurd solution, but in fact it often works.

Another approach is to convert one type of variables to the other, while
retaining as much of the original information as possible, and then use a
distance function defined on the final type. In a similar vein, Anderberg,
(1973)[p. 94] observed that the primary question to be faced is which vari-
able type should be chosen as the single type of the analysis. For instance,
multistate variables can be transformed into classes coded with 1’s and 0’s
thus treating them as asymmetric binary variables along with the original bi-
nary variables; then, the records now consisting of only numeric variables can
be compared using traditional distance functions for quantitative variables
(see Franck & Todeschini, (1994)[p. 92]). An evident drawback is the use
of a large number of binary variables that are highly interdependent because
they imply a choice between mutually exclusive possibilities. Alternatively,
quantitative variables could be dichotomized at a fixed level so that the new
values can be treated using distance functions devised for symmetric binary
variables. A consequent of this option is that a large number of records will
be considered as alike and, hence, the less influence the quantitative variables
are likely to have on the distance function. In any events, conversion between
scales comports loss of information and knowledge.
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3.1. General distance coefficient

The performance of NNHDI critically depend on the distance/dissimilarity
used to form the reference sets. A reasonable approach is to process all vari-
able together and perform a single imputation procedure using a coefficient of
dissimilarity explicitly designed for mixed data. In this work we have opted
for the following measure of global distance:

δi,j =

p∑
t=1

[
h

(t)
i,j +

(
1 + h

(t)
i,j

)
δ
(t)
i,j

]
(10)

with

h
(t)
i,j =

∑Mt

s=Mt−1
hs,i,j

mt

, Mt =
t∑

s=1

ms, M0 = 0

where δ
(t)
i,j is the t-partial distance between Ri and Rj. The indicator hs,i,j

is zero if the comparison of Ri and Rj is valid with respect of the s-th

variable; hs,i,j = 1 otherwise. Conventionally, we set δ
(t)
i,j = 1 if h

(t)
i,j = 1. The

transformation in (10) has the merit of defining a distance even when none
of the variables of the group is observed for both records. Imputation will
fail if there are no donor records with complete data on one or more of the
variables on which the receptor record is complete. Consequently, missing
values in the auxiliary variables can reduce the pool of donors to the point
where imputation becomes impossible at least for a subset of cases Enders,
(2010)[p. 50]. In this situation, the receptor should perhaps be excluded from
the set of usable records and treated with a different method. Also, hs,i,j = 1
if xi,s and/or xj,s, for a variety of reason, cannot have a real value such as the
number of pregnancy complications for a male respondent in a survey, the
number of years since quit smoking for non-former smokers or the leaf size
for lichens. Distance computation can then be performed reliably without a
possibility that a distance between exactly similar patient cases would not be
zero. If h

(t)
i,j = 0, t = 1, 2, . . . , p then (10) reduces to the all-purpose measure

of dissimilarity proposed by Gower, (1971). See also Kaufman & Rousseeuw,
(1990)[p. 19], Di Ciaccio, (1992), Murthy et al., (2003), Seber, (2004)[pp.
357-358].

Usually, the distances in the right-hand side of (10) have the common
thread of being scaled to vary in the unit interval:

0 ≤ δ
(t)
i,j ≤ 1, t = 1, 2, . . . , p (11)
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where zero is achieved only when the two records are identical in all non
empty fields and one when the two records maximally differ in all fields validly
compared. Condition (11) is necessary, otherwise the combined representa-
tion would copy the structure of the indicator with the largest distances.

Since donors may have missing values themselves, distances are, of neces-
sity, computed over shared variables and values contained in one record but
missing in the other are ignored. Formula (10) is in line with the principle
that the reliability of a distance decreases with the reduction of meaning-
ful comparisons. To illustrate the concept, suppose that xi,s = xj,s, hs,i,j =

0, s = Mt−1, . . . ,Mt then δ
(t)
i,j = 0. The contribution of the t-th group to

the global distance is the fraction of valid comparisons: 0 ≤ h
(t)
i,j ≤ 1; con-

versely, if δ
(t)
i,j = 1 then the contribution becomes 1 ≤ 1 + 2h

(t)
i,j ≤ 3 which

increases with the number of missing values in one or in both the records.
Thus, records having less valid fields are penalized in order to compensate
for their lower usability. This choice has the desirable effect of restraining
selection of donors that share too few features with the receptor.

A limitation of (10) is that variables can substitute each other, that is, a
higher distance on one variable can compensate for a lower value on another.
The influence ofXs can be increased or decreased by rescaling its contribution
with ws and grading it in the range [0, ws]. If the number of variables is high,
however, a very complex process is needed to amalgamate all the partial
distance matrices in a global matrix of distance. To keep computations at a
manageable level, we assign differential weights to the group of the variables,
but not to each single variable

D =

p∑
t=1

wtDt with wt ≥ 0;

p∑
t=1

wt = 1 (12)

with Dt = Ht + (U + Ht) �∆t, ∆t = δ
(t)
i,j . Here, U is a matrix of 1’s and

� indicates the Hadamard product between two matrices. The choice (12)
reduces the flexibility of the general dissimilarity coefficient, but the search
of an optimal weighting system is simplified.

According to Gower, (1971), each d
(t)
i,j should be a dissimilarity coefficient

that generates an Euclidean distance matrix ∆t. Pavoine et al., (2009) show
that if the Dt’s are Euclidean, then D is also Euclidean. Nonetheless, the
status of being a Euclidean matrix for Dt could be modified by the transfor-
mation (10). If Dt is not Euclidean, it is possible to determine constants φ1
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and φ2 such that a matrix with elements

a) Lingoes Condition

[(
d

(t)
i,j

)2

+ 2φ1

]0.5

i 6= j (13)

b) Caillez Condition d
(t)
i,j + φ2 i 6= j (14)

is Euclidean (see Gower & Legendre, (1986)[theorem 7]). In the present
paper, we have used the second option.

3.2. Distances involved in the general coefficient

For the present paper, we have selected some of commonly used distance
functions that have a range of [0, 1], irrespective of the number of variables
so that the distances are unaffected by the number of fields

3.2.1. Ratio and interval scale

Euclidean distance.

d
(1)
i,j =

√√√√ ∑
hs,i,j=0

(
xi,s − xj,s
m1rs

)2

(15)

where rh is the observed range of the h-th variable. The difference in stan-
dardized values may be viewed as the fractional distance relative to the max-
imum possible distance between two records. This transformation effectively
provides more weight to those attributes with a smaller range. Gower &
Legendre, (1986) ensure that (15) forms a Euclidean distance matrix.

The choice (15) does not make any direct use of correlation between
variables; thus two highly correlated variables will contribute twice as much
to the total distance as they should. To overcome this problem one can
perform principal component analysis to reduce the m1 variables to m′1 < m1

uncorrelated factors. Actually, most of the multivariate techniques use the
Mahalanobis distance because it takes into account the variability of the
values in all dimensions, though this would require, among other things, a
number of donors much more greater than m1.
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3.2.2. Ordinal scale

Linear disagreement index.

d
(2)
i,j =

√√√√ M2∑
h=M1+1

[
xi,m1+h − xj,m1+h

m2 (rh − 1)

]2

(16)

where rh = max {Xh}. The values of the h-th ordinal variables are integers
in [1, rh]. Since (16) is just (15) applied to ranks, we can infer that it too
generates a Euclidean matrix.

3.2.3. Binary symmetric

The dissimilarity for binary symmetrical variables is defined as the number
of such variables on which records have different values divided by the total
number of binary variables (simple matching coefficient).

d
(3)
i,j =

√∑M3

h=M2+1 δ (xi,h, xj,h)

m3

; δ (xi,h, xj,h) =

{
1 if xi,h 6= xj,h
0 otherwise

. (17)

It ranges in value between zero, when the two records match on any of the
M3 variables of the group to unity, when they fail to match on every variable.

3.2.4. Binary asymmetric

The dissimilarity is measured by the ratio between the number of binary
asymmetrical variables in which both records have a positive value to the
number of this type of variables.

d
(4)
i,j =

√∑M4

h=M3+1 δ (xi,h, xj,h)

m4

; δ (xi,h, xj,h) = 1−min {xi,h, xj,h} . (18)

This index, known as Russell-Rao dissimilarity measure, is simply the frac-
tion of variables in which both records had the trait of interest. Gower
& Legendre, (1986) established that (17) and (18) form Euclidean distance
matrices.
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3.2.5. Categorical

The distance is given by the sum of the number of states of the politomies
in which the two records under comparison have the same state, divided by
the total number of states across all the politomies (McQuitty coefficient,
Bijnen, (1973), pp. 13-14).

d
(5)
i,j =

√∑M5

h=M4+1 δ (xi,h, xj,h)

m5

; δ (xi,h, xj,h) =


lh
λ5

if xi,h 6= xj,h

0 otherwise
(19)

where λ5 =
∑M5

h=M4+1 lh. Each comparison can be scored as λ5 different
dichotomies by setting lh of these to 1 when Ri and Rj coincide on the h-

th politomy or to 0 when Ri and Rj are different. Then d
(5)
i,j generates an

Euclidean distance matrix (see Gower, (1971)).

4. Combining individual distances

To use the combined distance function (12) a user must supply proper weights
for the various type of variables. Bankier et al., (2000) hypothesized that the
weights should be smaller for variables where it is considered less important
that they match or variables considered more likely to be in error or to
be affected by missingness. Istat, (2004), in respect of the MAR dynamic of
missing values, determined the weights according to the degree of association
between the target and the auxiliary variables in the complete records and,
consequently, a heavier weight is put on variables more strictly linked with
the former For the moment we ignore this weighting scheme, although it is
one that must be considered seriously in future research.

4.1. Equal and proportional weighting

The weights wh, h = 1, 2, . . . , p could be determined on the basis of an a priori
judgment of what is important and what should be prioritized in regard to
the partial distance matrices. In other words, investigators give weights to
groups based on an intuitive understanding of the data, but if they do not
know the context well, their assessment may be inadequate and will introduce
biases. Chiodi, (1990) found equal weighting to be more valuable for his data.

wt =
1

p
, t = 1 2, . . . , p. (20)
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Formula (20) regards all types of variables to be equally important when
determining the global distance matrix. This solution may be a perfectly
reasonable solution given that we rarely know a priori if some types are
more important than others. In fact, equal weighting appears to be a valid
practice when there are no theoretical or empirical grounds for choosing a
different scheme. However, it is inadvisable to equate the weight of the
variables without further understanding their contribution to the variability
of the data set as a whole.

Romesburg, (1984) based the fraction of each type of variable:

wt =
mt

m
, t = 1 2, . . . , p. (21)

If all the auxiliary variables were assumed to be equal in importance (e.g.
when all the auxiliary variables are strictly associated with the target vari-
ables), independently of the scale on which they are measured, then this
option would be the right choice. The original version of the Gower’s coeffi-
cient is a weighted average of three different measures of dissimilarity where
the weights are the fractions of each type of variable.

4.2. Equalizing standard deviations of partial distances

The significance of a group of variables to determine the global distance
depends, among other things, on the variability of the d

(t)
i,j ’s so that types

leading to high variance of pairwise distances will thus be more likely to have
high influence into the global distance. To ensure the respect of this principle
we can use the inverse of a measure of variability of distances. For example

wt =



1

σ
[
d

(t)
i,j

]
∑p

r=1

 1

σ
[
d

(t)
i,j

]
 if σ

[
d

(t)
i,j

]
> 0

0 otherwise

t = 1, 2, . . . , p (22)

where σ
[
d

(t)
i,j

]
is the standard deviation of the distances in the strictly lower

triangular part of Dt. If the weight are determined according to (23) then
the entries of the lower triangular part of all distance matrices are normalized
to have a standard deviation of one.
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4.3. Equalizing mean of partial distances

Clear-cut variables such as binary and categorical variables tend to impact
more on the calculation of the global distance. Kagie et al., (2008) observe
that there is no reason to assume, without reference to particular facts of
the problem at hand, that nominal variables result more important than
quantitative ones. Therefore, an adaptation is necessary. Following Kagie et
al., (2008) and Lee et al., (1978), the distances in the strictly lower triangular
part of Dt can be normalized to have an average value of one in the data set.

wt =

1

µ
[
d

(t)
i,j

]
∑p

r=1

 1

µ
[
d

(t)
i,j

]
 ;

t = 1, 2, . . . , p (23)

where µ
[
d

(t)
i,j

]
is the average entry in the strictly lower triangular part of the

t-th partial distance matrix.

4.4. Distatis weighting

To obtain an optimal system of weights, we need an expression for how much
a type of variables affects the global distance. This can be derived from
the total sum of squares of the elements of the partial distance matrices
Dt, t = 1, 2, . . . , p where the weights are chosen so that the variance of the
elements in D is maximized which, in turn, naturally leads to the Distatis
procedure developed by Abdi et al., (2005) (see also D’Urso & Vichi, (1998)).

In the first step of Distatis each Dt is transformed into the cross-product
matrices St which has the same information content as Dt but is more apt to
the eigen-decomposition. Let un be a n× 1 vector of 1’s and In the identity
matrix of order n. A normalized cross-product matrix for Dt is

Bt =

(
1

λ1,t

)
St, St = −0.5CD2

tC
t, C = In − n−1unu

t
n (24)

where D2
t is the matrix whose (i, j)-th element is the square of d

(t)
i,j and

λ1,t > 0 indicates the largest eigenvalue of St. It is well known (see for
example Albers et al., (2007)) that St is symmetric, positive semi definite
and with zero row-sums.
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Let βt = V ec (Bt) , t = 1, 2, . . . , p be the column vector obtained by stack-
ing the column of Bt on top of one another. These vectors are organized in a
n2 × p matrix Z =

[
β1,β2, . . . ,βp

]
. The central step of Distatis is to create

the aggregate cross-product matrix A = (N−0.5Z)
t
(ZN−0.5) where N−0.5 is

a diagonal matrix whose elements are the square roots of the reciprocal val-
ues in the diagonal of (ZtZ). The generic element ar,s of A is the vectorial
correlation coefficient (Escoufier, (1973)) between the cross-product matrix
derived from the partial distance matrix Dr and Ds, r, s = 1, 2, . . . , p.

ar,s =
βtrβs

‖βr‖‖βs‖
. (25)

Naturally, ar,s = as,r and ar,r = 1, r = 1, 2, . . . , p. Since the scalar product
in (25) verifies the relationship βtrβs = Trace (Bt

rBs) and since Br and Bs

are symmetric and positive semi definite, then

Trace
(
Bt
rBs

)
≥ λn,rTrace (Bs) (26)

where λn,r is the smallest eigenvalue of Br (see Fang et al., (1994)); it follows
that 0 ≤ ar,s ≤ 1.

The scope of Distatis is to find a convex linear combination β = vec (D)
of the vectors in Z that explains the maximum amount of variance possible
of Z. In this sense, Distatis is simple the principal component analysis of
the matrix A that gives A = QΛQt with QtQ = Ip. Since A is positive
or, at least, non negative irreducible, then Perron-Frobenius theorem (see,
for example, ?, (?)) ensures that there is a single eigenvalues, say θ1, that
is positive and greater than or equal to all other eigenvalues in modulo and
that there is a strictly positive eigenvector q corresponding to θ1. The global
cross-product matrix can now be found using

B =

p∑
t=1

wtBt where w =
(
utpq

)−1
q. (27)

The weights w are determined in such a way that the groups of variables
who judge similar to the others get higher weights than those who disagree
with most of the rest of the variables. The related global distance matrix is

D =

p∑
t=1

wtDt. (28)
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Distatis weights are demanding on the computational point of view because
they involve an eigen-analysis of potentially very large matrices. However,
the computational task can be simplified performing the one-time determina-
tion of the weighs on a sufficiently large random sample of complete records.

5. Experimental results

In this section we present results of some numerical experiments to assess
how well NNHDI reconstructs missing values. More specifically, we examine
the five different weighting methods discussed in section 4 to obtain a global
distance matrix in connection with the imputing of the least power mean of
the donors. Of particular interest is determining which weighting scheme of
the partial matrices would have the smallest detrimental effect on the accu-
racy of data when using imputed values. In this regard, we have used data
sets with variables completely known for all units (where necessary, we have
removed incomplete records). The main reason for this choice is to have total
control over the missing data in each experiment. We then create missing
values that follow a MAR mechanism so that it becomes possible to evalu-
ate the performance of NNHDI by computing the extent of the imputation
bias in comparison to the results that would be obtained had there been no
missing data. All simulations were performed using the freely available R
(R Development Core Team, (2009)) statistical software, thus allowing all
researchers access to any suitable methods identified.

5.1. Description of data sets used in the experiments

Our experiments were carried out using ten data sets to represent different
sized files that are commonly encountered. These data sets are interesting
because they exhibit a wide variety of characteristics and have a good mix
of attributes: continuous, binary and multistate. In our study we have em-
ployed actual data sets because of their realism and the ease with which they
could be adapted to the experimental setting. In several cases we have not
used the entire data set, but a subset obtained by drawing without replace-
ment a random sample starting from set.seed(820723) in R-code for each
data set.
(a) Heart dataset (UC-Irvine repository) Frank & Asuncion, (2010). The

variables summarizing the medical symptoms considered as important
indicators of the patient’s condition were classified as metric: (1, 2, 8, 10),
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ordinal: (11, 12), binary symmetric: (2, 6), binary asymmetric: (9, 14),
multistate: (3, c11, 12); the target variable y is supposed to be the serum
cholesterol in mg/dl. The original data set contains 270 records, but we
have analyzed a random subset of n = 30 records.

(b) Diabetes dataset (UC-Irvine repository). The data consist of 16 vari-
ables on subjects who were interviewed in a study to understand the
prevalence of obesity, diabetes, and other cardiovascular risk factors in
central Virginia for African Americans. For more information about this
study see Willems et al., (1997). Only a part of the subjects were the
ones who were actually screened for diabetes. Moreover, some cases con-
tained missing values, therefore they were removed. Of the 366 remaining
cases, we have used a random subset of n = 60. The variables were used
as: metric: (1 : 5, 7, 9, 10, 12 : 15), ordinal: (11), binary symmetric: (8),
binary asymmetric: (6); the target variable is y = total cholesterol.

(c) Cars data set (package MASS of R). Data from n = 93 cars on sale in
the USA in 1993. The variables were metric: (4, 6 : 8, 12 : 15, 17, 19 : 23),
ordinal: (9, 11, 18), binary symmetric: (16), binary asymmetric: (24),
multistate: (1 : 3, 10, 25); the target variable is y = maximum price. Cars
were selected at random from among 1993 passenger car models that were
listed in both the Consumer Reports issue and the PACE Buying Guide.
Duplicate models were listed at most once. Further description can be
found in Lock, (1993).

(d) Demand for medical care (NMES1988, package AER of R). Cross-
section data originating from the US National Medical Expenditure Sur-
vey (NMES) conducted in 1987 and 1988. The NMES is based upon
a representative, national probability sample of the civilian population
and individuals admitted to long-term care facilities during 1987. The
data are referred to individuals ages 66 and over, all of whom are covered
by Medicare (a public insurance program providing substantial protec-
tion against health-care cost). To keep the data volume at a manageable
level we have randomly selected n = 150 records. Variables were used
as: metric: (1 : 6, 11, 15), ordinal: (7, 8), binary symmetric: (9, 13, 14),
binary asymmetric: (12, 17 : 19); multistate: (7, 8). The income of the
individual was chosen as target variable. Details are given by Cameron
& Trivedi, (1998).

(e) German Breast Cancer Study Group. This file contains data on 686
women with breast cancer. We have used m = 15 variables (two variables
were removed because of they showed a constant value across records).
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A detailed description of the study is given in Schumacher et al., (1994).
The classification of the variables is metric: (1, 7 : 10, 12, 15), ordinal:
(4), binary symmetric: (2, 11, 13), binary asymmetric: (5, 6, 14). The
target variable was the tumor size (in mm). The algorithms of HDNNI
were applied to a random subset of n = 220 complete records.

(f) Fatalities in package AER of R. US traffic fatalities panel data annu-
ally for 1982 through 1988. Record 28 has been excluded because of a
lack of valid observations in two fields. All in all n = 335 records with-
out missing values are considered. The classification of the variables is
metric: (3 : 9, 11 : 13, 17 : 25, 27 : 34), ordinal: (10, 32, 33), binary sym-
metric: (2, 11, 13), binary asymmetric: (14 : 16), multistate: (1, 2). The
number of alcohol-involved vehicle fatalities is used as target variable.
See Stock & Watson, (2007) for more details.

(g) Health Care Reform. The variables have been considered as: metric:
(3, 4), ordinal: (6, 8), binary symmetric: (5, 7, 9, 10, 11), binary asym-
metric: (12, 14 : 19); the target feature chosen for prediction was y =
logarithm of monthly gross income. Since the data set is too large, a
Monte Carlo data set is substituted in its place; in particular, we have
sampled n = 450 complete records. Additional information on the data
can be found in Winkelmann, (2004).

(h) House prices (package AER of R). Sales prices of houses sold in the
city of Windsor, Canada. The data consist of n = 546 complete records.
We have classified the variables as metric: (2, 3, 11), binary symmetric:
(12), binary asymmetric: (6, 7, 8, 9, 10), multistate: (4, 5). The role of
target variable has been played by the sale price of a house. For more
information about this data set see Anglin & Gencay, (1996).

(i) Assessing consumer credit applications (UC-Irvine repository) Frank &
Asuncion, (2010). Each case concerns an application for credit card
facilities described by 16 attribute. Metric: (3, 8, 11, 14, 15), ordinal:
(2, 9, 10), binary symmetric: (1, 16), binary asymmetric: (9, 10, 12); mul-
tistate: (4 : 7, 13). The first continuous variable was selected as the target
variable. The data frame contains 690 observations but 37 cases (5%)
have one or more missing values and consequently they were removed
from further analysis. Hence, the effective number of records is n = 653.
More information can be found in Quinlan, (1987).

(j) Household Portfolios. The data used in this case are from the Survey of
Consumer Finances 2004. We used the data aggregated and transformed
by Miniaci & Pastorello, (2010). This file contains 4214 observations
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for 15 variables classified as metric: (2, 3, 13 : 15), binary symmetric:
(5, 7, 11), binary asymmetric: (6, 8 : 10, 12), multistate: (1). The age in
years (multiplied by 100) was selected as target variable. For this data
set we have studied a random subset of n = 850 records.

A brief description of the characteristics of each data set appears in Table 1.
The number of donors k has been established using the Sturge’s rule.

Table 1: Information about the data sets used in the paper.

Data sets n k m Metric Ordinal b. symm. b. asym. Multistate

Heart 30 6 13 4 2 2 2 3
Diabetes 60 7 15 12 1 1 1 0
Cars 93 8 24 14 3 1 1 5
Medi Care 150 9 19 8 2 3 4 2
Gbsc 220 9 14 7 1 3 3 0
Fatalities 335 10 37 26 3 3 3 2
Health Reform 450 10 16 2 2 5 7 0
House Price 546 11 11 3 0 1 5 2
Credit Approval 653 11 18 5 3 2 3 5
Family Portfolios 850 11 12 5 0 3 3 1

It can be seen that metric variables are, by far, the most prevalent fields in
the records and that not all groups are always represented on the various
data sets.

5.2. Experiment 1: leave-one-out cross-validation

In this experiment we have used one record to be the part of the data set with
a missing value on the target variable, whereas nν = n− 1 records were used
as the part without missing information. This procedure is repeated until
every record in the data set has played the role of receptor. To assess the
accuray of the reconstruction process we have calculated the relative mean
error between actual and imputed values:

E
(q)
1 = n−1

n∑
i=1

∣∣∣∣∣yi − ŷ(q)
i

yi

∣∣∣∣∣ 100 for yi 6= 0, q = 1, 2, . . . , 5 (29)

where ŷ
(q)
i is the value obtained from one of the 5 NNHDI procedures com-

pared to the artificially induced missing value yi. Note that when the original
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values of the target variable have r decimal digits, the imputed values were
also rounded to the r-th digit.

It must be pointed out that the deletion mechanism adopted here is of
the missing completely at random (MCAR) type, whereas HDNNI methods
rely on the missingness being of the MAR type. Therefore the results are
likely to underestimate both the magnitude and the statistical significance
of the imputed values.

Table 2: Leaving-one-out experiment. Relative mean error.

Data sets Uniform Proportional Equal. Mu Equal. Sd Distatis

Heart 12.38 12.99 14.02 13.28 12.51
Diabetes 19.41 16.57 18.53 16.95 18.70
Cars 16.92 13.51 17.22 20.23 16.63
Medi Care 112.00 98.75 99.63 124.38 109.29
Gbsc 42.58 43.17 42.77 44.15 43.58
Fatalities 35.92 27.04 43.42 25.73 36.86
Health Care 4.19 4.21 4.26 4.31 4.19
House Price 23.20 23.35 21.51 33.27 24.61
Credit Approvals 28.20 28.03 24.86 27.67 28.54
Family Portfolios 28.21 27.92 24.81 28.19 28.36
Mean rank 2.9 2.3 2.8 4.0 3.0

The findings in Table 2 for what concern E
(q)
1 reveals that only negli-

gible difference can be observed among the alternative implementations of
HDNNI, particularly for moderate or large data sets. It turns also out that
the performance of an aprioristic system of weights (proportional) is remark-
ably good in terms of relative mean error of imputation. If one is reluctant to
use weights that are not data driven, then the mean rank across all imputa-
tions and the ten data sets can instead be considered. The last row in Table
2 indicates that equalizing the mean of the nondiagonal entries of the partial
distance matrices is a good practice for weighting the partial distances, partic-
ularly for larger data sets. The cumbersome technique of Distatis weighting
is not likely to lead to high quality of missing value estimates.

Another interesting result in Table 2 is the tendency of the rate of error
that decreases as the size of the data set increases. This is in line with
the idea that larger data sets permit, as a general rule, the building of a
reference set in a region of relatively small volume around the receptor, so
that sufficiently good resolution in the estimates of the different conditional
densities can be obtained.
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5.3. Experiment 2: random percentage of missing in the
target variable

This experiment involves random deletion of prefixed percentages of entries
in the target variable: (15, 25, 40) for each of the ten data sets described in
Section 5.1. If, for a given data set, there were a strict relationship between
target and auxiliary variables, it could be expected that the exclusion of the
values of the target variables in a simple random sample without replacement,
would automatically produce lacunae in y according to a MAR dynamic.
This is coherent with the fact that all the variables which are correlated
to the target variable are included; variables that have negligible or null
impact on y should be ignored because of the useless (or worse than useless)
dominance they could exert on the selection of the donors. Conversely, if the
target variable has no specific links with auxiliary variables, then the MAR
dynamic has to be artificially induced; in other words, we have to remove
data in such a way that excluded values of the target variable depend on one
or more or all auxiliary variables.

Although we have several reasons to believe that the target variable in
each data set interacts with some, if not all, of the auxiliary variables, we find
it satisfying to inject some MAR behavior into the process of data exclusion.
For a given data set, we assume that the missingness indicator ψi introduced
in section 2 is a Bernoulli random variable B (π) where 0 < π < 1 is a
probability expressed as a function of auxiliary variables only. In particular,
we assume that the missing values derive from a sequence of n independent
Bernoulli random variables with probabilities of success

π (xi) =
1

1 + e−(γ0+
PM4

r=M0
γrxi,r)

; i = 1, 2, . . . , n (30)

where the expression in the exponential includes all the auxiliary variables ex-
cept multistate variables. See, for example, Ambler & Omar, (2007), Khosh-
goftaar & Van Hulse, (2008), Gheyas & Smith, (2009). To render effective the
MAR mechanism, we have to determine the parameters γr, r = 0, 1, 2, . . . ,M4

of (30). For this purpose, we have first obtained the least squares estimates
γ̂ of the parameters in the multiple linear regression model

yi = γ0 +

M4∑
r=M0

γrxi,r; i = 1, 2, . . . , n (31)
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and then substituted them in the missingness model to compute the proba-
bility that yi should be missing

π̂ (xi) =
1

1 + e−ŷi/max(y)
; i = 1, 2, . . . , n (32)

where

ŷi = γ̂0 +

M4∑
r=M0

γ̂rxi,r. (33)

The records of the data set at hand are sorted according to (32) and
divided in two blocks of equal size. The missing data were inserted in y
selecting a random sample without replacement of the given size from the
first block, with inclusion probabilities proportional to (32). To this end, we
have used the Midzuno’s method, Midzuno, (1952), in the package sampling
in R (see also the package samplingbook).

The accuracy of the reconstruction process has been measured by the
mean relative error (MRE)

E
(q)
2 = (n− ν)−1

n∑
i=ν+1

∣∣∣∣∣yi − ŷ(q)
i

yi

∣∣∣∣∣ for yi 6= 0, q = 1, 2, . . . , 5 (34)

where ŷ
(q)
i is the value obtained from one of the 5 NNHDI procedures in which

the i-th value of the target variable was considered artificially missing. The
index E

(q)
2 is related to the sizes of the discrepancies between predicted and

observed values. Clearly a small value of E
(q)
2 represents a successful method.

Table 3 reports the average error measured for 250 distinct replications of
the same scenario to limit erratic fluctuations.

The results shown in Table 3 suggest that the mean relative error of
imputed values is not very sensitive to the weighting scheme of the partial
distance matrices. Other than a slight preference for weights proportional to
the number of features and, limitedly to larger data sets, for weights obtained
equalizing the mean of partial distances, there is no strong discernible pattern
that allows a clear-cut ranking of the other three techniques.

Intuitively, it seems reasonable to expect that the performance of NNHDI
will deteriorate as the fraction of missing values in the target variables in-
creases; this decreased accuracy manifest itself in Table 3, although not to
an overwhelming extent.
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Table 3: Missing values in the target variable. Mean relative error.

Uniform Propor. Eq. Mean Eq. sd Distatis Uniform Propor. Eq. Mean Eq. sd Distatis

Heart Fatalities
M15 10.8 10.3 10.3 11.5 11.7 73.3 47.2 80.8 59.1 73.9
M25 11.0 10.6 11.1 11.4 11.1 105.1 59.7 99.9 89.9 98.4
M40 12.1 11.5 13.1 12.0 11.5 206.4 108.0 158.2 176.1 177.5
Mean 11.3 10.8 11.5 11.6 11.4 128.2 71.7 113.0 108.4 116.6
R15 2.9 2.7 2.7 3.3 3.4 3.6 1.4 4.2 2.3 3.5
R25 3.0 2.6 3.0 3.3 3.1 3.9 1.1 3.6 2.9 3.5
R40 3.1 2.5 3.8 3.0 2.6 4.8 1.0 2.4 3.3 3.5
Mean 3.0 2.6 3.2 3.2 3.0 4.1 1.2 3.4 2.8 3.5

Diabetes Medi Care
M15 18.9 16.6 19.0 18.3 18.9 4.7 4.8 4.8 4.9 4.8
M25 19.0 16.9 18.7 18.0 18.5 4.8 4.9 4.8 5.0 5.0
M40 18.9 16.7 19.1 19.0 19.0 5.1 5.3 5.0 5.4 5.5
Mean 18.9 16.7 18.9 18.4 18.8 4.9 5.0 4.8 5.1 5.1
R15 3.2 2.5 3.2 2.9 3.2 2.7 2.9 2.9 3.3 3.0
R25 3.3 2.4 3.2 2.9 3.2 2.5 3.2 2.5 3.3 3.4
R40 3.3 1.9 3.3 3.2 3.3 2.2 3.4 1.7 3.7 4.1
Mean 3.3 2.2 3.3 3.0 3.2 2.5 3.2 2.4 3.5 3.5

Cars House Prices
M15 16.9 13.1 16.8 22.0 17.0 27.1 27.7 24.8 46.3 29.6
M25 20.3 14.5 19.4 24.6 20.9 28.4 29.7 25.9 49.1 31.9
M40 45.6 32.7 38.8 43.7 44.1 33.9 34.6 30.8 56.0 36.9
Mean 27.6 20.1 25.0 30.1 27.3 29.8 30.7 27.1 50.5 32.8
R15 3.0 1.7 2.9 4.3 3.0 2.5 2.7 1.6 5.0 3.3
R25 3.1 1.3 2.9 4.3 3.4 2.3 2.8 1.3 5.0 3.6
R40 3.7 1.7 2.5 3.5 3.5 2.4 2.7 1.1 5.0 3.7
Mean 3.3 1.5 2.8 4.0 3.3 2.4 2.7 1.3 5.0 3.6

NMES Cr.Approvals
M15 187.2 183.2 181.8 190.1 174.1 30.3 29.8 28.1 30.4 30.6
M25 212.2 201.6 201.8 212.2 216.3 31.0 30.9 28.4 31.0 31.1
M40 279.1 228.8 260.5 265.8 278.6 33.9 34.2 30.1 33.5 33.6
Mean 226.2 204.5 214.7 222.7 223.0 31.7 31.6 28.9 31.6 31.8
R15 3.0 2.9 2.8 3.5 2.8 3.2 3.0 2.0 3.4 3.5
R25 3.1 2.8 2.8 3.1 3.2 3.4 3.2 1.6 3.4 3.5
R40 3.6 1.8 2.9 3.1 3.6 3.5 3.6 1.3 3.2 3.3
Mean 3.2 2.5 2.8 3.2 3.2 3.4 3.3 1.6 3.3 3.4

GBSG F. Portfolios
M15 44.8 44.4 44.9 48.7 44.8 32.6 32.6 32.0 32.1 32.4
M25 45.4 44.5 45.3 50.8 45.9 34.4 34.4 34.3 33.7 34.0
M40 47.8 44.8 45.9 50.4 48.2 39.7 39.8 40.1 38.7 39.7
Mean 46.0 44.5 45.4 50.0 46.3 35.6 35.6 35.5 34.8 35.3
R15 3.0 2.8 2.9 3.3 2.9 3.1 3.1 2.8 2.9 3.0
R25 2.8 2.6 2.9 3.8 2.9 3.2 3.2 3.1 2.7 2.9
R40 3.1 2.1 2.5 4.0 3.3 3.1 3.2 3.4 2.3 3.1
Mean 3.0 2.5 2.8 3.7 3.0 3.1 3.2 3.1 2.6 3.0

5.4. Experiment 3: random percentage of missing val-
ues in all the variables

In a first phase, we have randomly omitted a percentage πxj
∈ {10, 20} , j =

1, 2, . . . ,m for all auxiliary variables ensuring that no vector x of values
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of the auxiliary variables contains more than (m− 2) fields not filled in.
The πxj

records in which remove the value of the auxiliary variable were
chosen by drawing a simple random sample without replacement for each
(X1, X2, · · · , Xm) from the first bn/2c rows, once the data set has been sorted
in ascending order of the target variable. In this way, a mild association is
observed between y and X because the largest half of the target variable can
rely on a more rich source of information in terms of auxiliary variables.

In the second phase, we perform a random deletion of prefixed percentages
πy ∈ {15, 25, 40} of the target variable. As a necessary premise, the auxiliary
variables are randomly permuted. The records of the data set are resorted
in ascending order of the first (permuted) auxiliary variable X1 allocating
the missing values of X1 always in the last positions. At this point, the
records with a missing value for y were chosen to be a random sample without
replacement of sample size

bnπy/mc+ bj  = 1, 2, . . . ,m. (35)

The sample is drawn with probability proportional to certain appropriately
given numerical quantities (Midzuno’s method). Regarding (35), we have
bj = 0, but if bnπyc is not an exact multiple of m, we set bj = 1 until the
total number of missing values is reached. The quantity which determines
the proportionality of the Midzuno’s method was i−1, i = 1, 2, . . . , n which
is inversely related to the order of appearance of the records in the current
arrangement of the data set. Consequently, the values of the target variable
were selectively missing for cases with small values of the auxiliary variable.
This process is repeated for a number of auxiliary variables sufficient to
complete the number of missing values to be injected in the target variable.
By operating in this manner, the missing values in y have a probabilistic link
with the maximum possible number of auxiliary variables; in addition, the
simultaneous presence of missing values in y and X is discouraged.

The double relationship between the target and the auxiliary variables
makes plausible the existence of a MAR mechanism in the simulated patterns
of missingness. Each combination of πy × πxi

has been replicated N = 100
times to reduce irregular variations. Note that the computation of the partial
distance matrices has to be executed for any choice in πx. The results are
reported in Tables 4.

29



Table 4: Missing values in all the variables. Mean relative error.

Uniform Propor. Eq.Mu Eq.sd Distatis Uniform Propor. Eq.Mu Eq.sd Distatis

Heart Fatalities
M15-10 17.6 20.0 18.6 17.7 19.0 219.3 211.4 218.1 205.8 217.2
M25-10 20.4 21.8 21.0 19.2 19.9 224.0 215.9 223.0 222.4 228.8
M40-10 17.3 19.3 19.2 18.1 18.4 208.4 196.9 206.5 218.8 210.2
M15-20 15.7 14.3 14.3 13.6 14.7 226.0 204.3 216.7 208.6 223.5
M25-20 16.8 17.5 16.6 16.8 16.8 224.9 209.5 221.9 222.7 230.5
M40-20 20.6 20.5 19.2 18.9 20.1 210.9 191.8 208.1 215.6 214.1
Mean 18.1 18.9 18.1 17.4 18.2 218.9 205.0 215.7 215.7 220.7

Diabetes Medi Care
M15-10 20.6 18.1 21.2 16.9 20.4 4.7 4.7 4.7 4.8 4.7
M25-10 22.2 19.9 21.9 20.0 22.3 4.7 5.0 4.8 4.8 4.8
M40-10 21.4 21.3 22.3 19.8 22.0 4.6 4.7 4.6 4.7 4.6
M15-20 19.2 21.2 19.2 19.4 20.9 3.9 3.8 3.8 3.9 4.0
M25-20 19.5 22.6 21.0 18.8 20.4 4.2 4.3 4.2 4.4 4.3
M40-20 19.6 20.2 19.8 18.9 21.1 4.3 4.3 4.3 4.4 4.4
Mean 20.4 20.5 20.9 19.0 21.2 4.4 4.5 4.4 4.5 4.5

Cars House Prices
M15-10 52.5 50.0 56.8 46.5 51.2 51.2 46.2 50.4 54.5 50.7
M25-10 54.4 49.9 54.2 45.8 50.5 49.2 46.7 48.7 53.0 49.1
M40-10 49.4 47.2 50.0 46.1 49.3 48.6 46.3 47.7 52.9 48.6
M15-20 53.3 51.9 54.9 47.9 54.3 41.2 38.5 41.5 44.6 41.0
M25-20 54.8 53.6 54.2 50.2 53.5 36.9 33.7 36.9 42.4 37.4
M40-20 54.8 54.6 56.4 50.7 55.0 39.7 36.2 39.5 45.1 40.1
Mean 53.2 51.2 54.4 47.9 52.3 44.5 41.3 44.1 48.7 44.5

NMES Cr. Approvals
M15-10 182.2 175.0 178.4 178.9 172.6 30.7 31.6 31.5 32.9 31.1
M25-10 156.4 159.7 158.2 150.1 156.1 30.8 31.2 31.0 32.3 31.5
M40-10 155.7 166.4 156.2 168.0 162.9 30.5 30.8 30.6 32.0 30.8
M15-20 135.5 133.3 142.2 129.3 136.1 29.8 30.2 29.5 30.6 29.8
M25-20 130.3 137.4 128.1 128.0 130.4 30.0 30.3 29.5 30.5 29.7
M40-20 120.0 127.1 120.1 125.1 122.1 32.2 32.4 32.2 32.7 32.2
Mean 146.7 149.8 147.2 146.6 146.7 30.7 31.1 30.7 31.8 30.8

GBSG F. Portfolios
M15-10 53.0 52.2 51.1 53.0 51.8 35.9 36.2 35.4 36.4 36.0
M25-10 52.3 54.0 53.0 53.3 54.0 37.4 37.4 37.4 36.8 37.7
M40-10 59.6 59.5 58.2 59.9 58.8 38.8 38.9 38.7 38.0 38.9
M15-20 53.0 54.2 52.5 52.7 53.3 32.0 32.2 32.7 31.8 32.0
M25-20 53.8 56.3 54.3 54.2 56.1 31.6 31.2 31.9 30.6 31.3
M40-20 51.3 53.8 52.1 53.8 54.3 33.3 33.4 33.5 32.2 33.1
Mean 53.8 55.0 53.5 54.5 54.7 34.8 34.9 34.9 34.3 34.8

No strong evidence has been found in our third experiment in favor of
or against one of the five weighting system of the partial matrices discussed
in section 4 when both the target and the auxiliary variables are affected
by missingness. This implies that practices of using aprioristic system of
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weights to combine the partial distance matrices, apparently, do not penal-
ize the accuracy of imputed values too greatly, especially for the larger data
sets. One potential reason for this finding is that the impact of each single
variable on the global distance is rather small compared with the effect of
the other variables in the same category or with the effect of a dominant
group. In these cases, the flexibility in the choice of the weights is not very
helpful in comparing two records and Monte Carlo experiments confirm that
no algorithm is significantly more efficient that others under these data con-
ditions. However, in measuring the overall quality of missing value estimates
produced by a given NNHDI variation, the weighting proportional to the
cardinality of the group of variables and the equalization of the mean partial
distance, performed slightly better than the other NNHDI algorithms.

In general, one would expect that, with the increase in proportion of in-
complete records, or of the number of missing values in a record, or both,
the quality of estimates would decrease due to the reduction of potentially
useful information. In effect, this seems to be confirmed by the values of E

(q)
2

which are generally higher that those obtained in the previous experiment.
Nonetheless, the values of the index (35) for experiments in which the per-
centage of missing in the auxiliary variables is at 20% are not much higher,
and in many cases are lower, than for experiments in which the percentage is
at 10%. This can be explained in a number of ways. It is plausible that the
impact of the missing values in the auxiliary variables is reduced because they
are present rarely in records having a missing value in the target variable.
It is also plausible that the y/x interactions have a solid MAR mechanism
so that the increase in the percentage of missing values in the auxiliary vari-
ables has moderate detrimental effects on the accuracy of the reconstruction
process; on the contrary, high percentages of missing values in y and x may
even strengthen the cohesion of the values in the records concerned.

6. Conclusions and suggestions for future research

Missing values often occur in real-world applications and represent a relevant
challenge in the field of data quality, particularly when the variables of the
data set have mixed types. In this paper, we have conducted an extensive
study of the nearest neighbor hot deck imputation (NNHDI) methodology
where, for each record with incomplete data for the target variables, a set
of donors is selected so that the donors are similar to their recipient with
respect to the auxiliary variable. The known values of the donors are then
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used to derive a value for the missing data computing the least power mean of
the target variable in the set of donors. The particular focus of this paper is
on “problematic” data sets containing missing values both in the target and
auxiliary variables and involving a mixture of numeric, ordinal, binary and
multistate variables. It has become increasingly apparent that efficacy and
effectiveness of NNHDI, crucially hinge on how the distance between records
is measured and different ways of measuring distance lead to different solu-
tions. We have devised a new global distance function based on the partial
distance matrices obtained from the various type of variables appearing (or
missing) in the records of the data set. The separate distance matrices are
added as a weighted average and the combined distance matrix is then used
for classification and ordination. The contribution of each group of variables
to the global distance is scaled with a weight which contracts/expands the
influence of variables of interest. In this study we have compared the per-
formance of five weighting schemes to define a combined distance matrix for
variables of mixed nature.

To judge the accuracy of the reconstruction process, we have considered
a performance indicator related to the size of the discrepancies between pre-
dicted and observed values. More specifically, the relative absolute mean
error was calculated for each method based on ten real data sets on three
different experiments: leaving-one-out, incompleteness in the target variables
and incompleteness in all variables. The missing values in the last two ex-
periments have been artificially inserted following a MAR mechanism.

The empirical findings suggest that data driven weights for the partial
distance matrices are preferable to aprioristic weights although the reasons
are more theoretical than objective, as the experiments presented in this
work give little evidence in support of specific weighting system. On the
other hand, the investigations carried out with the NNHDI demonstrate the
ability of this method to compensate for missing values when several type
of variables occur in the same data set, even if a part of the records have
lacunae in the auxiliary variables other that the target variable. The main
advantage of NNHDI combined with the new global distance and the least
power mean estimator is that the good results achievable in terms of low re-
construction error, should not be paid with strong distributional assumptions
or sophisticated modeling.

In this work we have compared NNHDI algorithms implementing five
different system of weights for the separate distance matrices. The results
show that the choice of weights did not significantly affect the estimates.
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This is due in most part to the strong relationships among the variables of
the tested data sets. Also, the scarce variability of the least power mean used
to estimate the missing values might have given a non marginal contribution
to the lower distinguishability of the various techniques. However, we have
to consider the possibility that alternative weights could achieve superior
performance. We plan to study weighting system based on the degree of
interdependency between the target and group of auxiliary variables so we
can understand better the implications of such differences for diverse NNHDI
algorithms.

The quality of the results of NNHDI is closely connected on the specific
observations to be classified. Therefore, instead of using a fixed value of k over
the entire data set, a locally adaptive choice of the cardinality of the reference
sets may be more useful in practice. The analysis of alternative strategies of
constructing the reference set of a receptor might offer a promising line for
further research

The imputation technique we have explored is based on the least power
mean estimator of the target variables based on the observed values in the
reference set of donors. This method does not fully exploit the information
generated by the donors. For instance, nearest neighbors may be more in-
formative than distant neighbors, so that a positive score should be assigned
to each of the nearest neighbors donors which decreases as the distance from
the receptor record increases. This is probably the most adaptive course of
action that balances the dual challenges given to NNHDI: to produce reli-
able replacements and speed of execution. As a point for further research,
we would like to test our algorithm for NNHDI in association with other
methods of imputation based on weighted mean of donors.

The partial distance between two records is computable if at least one of
the auxiliary variables in the group of interest has been validly observed for
both the records. If this condition is not met, we are lead to a distance matrix
completion problem. In our paper, we have set the missing distance to the its
maximum observable value. Although there is no reason to assume that the
divergence between two otherwise not comparable records is at the highest
level for the given type of variables, this choice has had the desirable effect of
restraining selection of donors that share too few features with the receptor.
Since distances are not independent from one another, unknown entries in a
distance matrix can be reconstructed from a subset of the known distances
that share part of the same information. It would be useful for other research
to develop solutions to handle missing entries in distance matrices.
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