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Abstract

In a number of applications of multivariate analysis, the data matrix is not fully

observed. Instead a set of distance matrices on the same entities is available. A

reasonable strategy to construct a global distance matrix is to compute a weighted

average of the partial distance matrices, provided that an appropriate system of

weights can be defined. The Distatis method developed by Abdi et al. (2005) is

a three-step procedure for computing the global distance matrix. An important

aspect of that procedure is the computation of the vector correlation coefficient

(RV ) to measure the similarity between partial distance matrices. The RV coef-

ficient is based on the Pearson product moment correlation coefficient, which is

highly prone to the effects of outliers. We are convinced that, in many measurable

phenomena, the relationships between distances are far more likely to be ordinal

than interval in nature, and it is therefore preferable to adopt an approach appro-

priate to ordinal data. The goal of our paper is to revise the system of weights

of the Distatis procedure substituting the conventional Pearson coefficient with

rank correlations that are less affected by errors of measurement, perturbation or

presence of outliers in the data. In the light of our findings on real and simulated

data sets, we recommend the use of a specific coefficient of rank correlation to

replace, where necessary, the conventional vector correlation.
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1. Introduction

This paper is concerned with the analysis of a fixed set of entities on the basis

of multiple distance matrices where each matrix expresses a particular notion of

dissimilarity of one entity to another. A few comments are in order. For one,

although many settings rely on feature-based descriptions of entities, there are

cases in which only the distances of the entities from each other are known. For

instance, Farris (1972) observes that some comparative biochemical methods pro-

duce tables whose elements assign a value only to a comparison between a pair of

entities. Legendre (2007) states that several forms of data analysis e.g., clustering

and ordination, are based upon distance matrices. In the same vein, Lapointe et

al. (1999) note that laboratory methods such as comparative serology and Dna

hybridization produce direct estimates of dissimilarities among entities. Ibba et

al. (2010) state that dissimilarities or distances may be chosen when feature repre-

sentations cannot be helpful in discriminating different classes of entities (e.g., for

binary variables), in case the experts are not able to define proper features, or if

the data lies in high-dimensional spaces. In a typical setting of multidimensional

scaling, we are usually only given matrices of distances instead of the original

matrices of observations. Tarsitano & Falcone (2010) used distances rather than

raw measurements to deal with the simultaneous presence of variables with differ-

ent measurement scales. The proximity between time series offers clear examples

of cases in which a dissimilarity representation might be more acceptable than a

feature representation.

Several methods have been introduced for investigating relations between mul-

tiple inter-entity proximity matrices. A key issue in this context is to decide how

the distance matrices should be combined to produce a global distance matrix syn-

thesizing the information from the various sources. See, among others, de Queiroz

et al. (1995), Lapointe & Cucumel (1997), Legendre & Anderson (1999), Schneider

& Borlund (2007). In the present paper we assume that this problem has been

solved in favor of an optimization-based method returning a global matrix that

is “closest” to the set of input distance matrices so that they have a balanced
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influence. In particular, the Distatis procedure (Abdi et al., 2005) combines clas-

sical multidimensional scaling and Statis. Abdi et al. (2012) describe Statis as

a generalization of principal component analysis whose goal is to analyze several

data sets of variables collected on the same set of observations or also, several sets

of observations measured on the same set of variables. In fact, the general idea

behind Distatis is to transform the distance matrices into cross product matrices

and then use the cross product approach, typical of Statis.

In some contexts such as multi-dimensional scaling, the links between distances

are more ordinal than interval in nature and it is, therefore, preferable to use

measure of association appropriate to ordinal data. This decision may be justified,

for example, on the grounds that the original data are outcomes of imprecise

measurement, so that only their rank order is reliable (see Podani, 2005). The

main motivation of our paper is that the Pearson coefficient, which is at the base

of the vector correlation RV proposed by Escoufier (1973), might be substituted,

at least in certain situations, by a rank correlation. Vector correlation based on

ranks has already been discussed by Cléroux et al. (1995) and El Maache & Lepage

(2003) in a context in which data are feature based and the original variable are

converted into ranks before starting the Distatis procedure. In our approach, we

introduce ranks at a later stage realizing a component wise ranking for each column

of the principal coordinates involved in the central step of the Distatis.

The remainder of the article is organized into the following sections. In the

next, we introduce a global distance matrix expressed as a linear combination of

component distance matrices. In the third section, the weights of the combination

are obtained so that the resulting matrix is the best representation, in a least

square sense, of the whole set of matrices. In the fourth section, we introduce

rank transformations of the cross product matrices and discuss arguments show-

ing why the ranks are conceptually and methodologically appealing. The fifth

section provides an evaluation of the proposed methodology using numerical ex-

ample and comparing the results with those obtained from the original Distatis

method. Finally, section 6 presents our conclusion and plans for future research.
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2. The Distatis method

Let us suppose that K different data sources regarding a set of p distinct entities

are condensed into p× p matrices ∆r, r = 1, 2, . . . ,K whose generic element δi,j,r

reflects the dissimilarity or distance of entity i and j with respect to the r-th source,

for r, s = 1, 2, . . . , p. Note that this happens no matter what, and how many,

attributes have been used in each source of data, or how the distance matrices have

been constructed. We make a fairly strong assumption that Dr, r = 1, 2, . . . ,K are

Euclidean to facilitate the principal coordinate analysis underlying Distatis (see

Gower & Legendre, 1986).

In case the scale of the distances is not uniform, it is a common practice

to normalize them so that their impact is not unduly influenced by numerical

resolution of the measurements. We use a specific scaling factor for each matrix,

which equalizes the distances up to the maximum observed range across all the

sources of data.

Dr =

[
max1≤r≤K {max1≤i,j≤p {δi,j,r}}

max1≤i,j≤p {δi,j,r}

]
∆r for r = 1, 2, · · · ,K. (1)

The new matrices are computed in such a way that the maximum distances are

equal over all the matrices, but the maximum depends on the largest distance

found in the data set. This type of invariance can be useful for discarding some

possible heterogeneity of measurement units and precluding the consequent im-

plicit weighting of the distances.

The global distance matrix is:

D =
K∑
r=1

wrDr with wr ≥ 0, and
K∑
r=1

wr = 1 (2)

We recall that if the component matrices are Euclidean, then D is also Euclidean

(see Pavoine et al., 2009). The cell entries of the global distance matrix are

weighted averages of the distances in the component matrices. The weight wr
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expresses the trade-off between a marginal shift in one non-diagonal elements of

the r-th distance matrix Dr and a marginal shift in one off-diagonal element of the

global distance matrix D, when all of the other distances are held constant. The

positive sign of the weights and the linearity of (2) ensure that every variation in di,j

corresponds to an increase or decrease in one of the distances di,j,r, r = 1, 2, . . . ,K.

Formula (2) leaves us with the question of choosing proper weights. A number

of different reasonable ways exists, e.g. the weights can be smaller when a matrix

is considered less important or it is considered more likely to be in error. Equal

weighting is evoked when the impact of the component distance matrices is un-

known or not unambiguously derived since, in this case, wr = 1/K, r = 1, 2, . . . ,K

is the least informative a priori choice for the weights. On the other hand, equal

weights are the real best choice in case the matrix of vector correlations between

component matrices is an equicorrelation matrix. It is worth noting that both the

identity matrix and the matrix of ones (all elements are equal to 1) are special cases

of equicorrelation matrices. Weights can also be computed in a way that equalizes

a common characteristic of the distance matrices, such as mean, standard devia-

tion or maximum. In absence of accepted information on what is important and

what should be prioritized with regard to the partial distance matrices, we might

apply a purely data-driven approach with all its inherent drawbacks.

To obtain an objective system of weights, we need a measure for how much

a component matrix affects the global distance matrix. This can be expressed in

terms of the amount of variation in Dr, r = 1, 2, . . . ,K by converting the original

space into a new space in which as much variation as possible is expressed along a

new axis. In the framework outlined by Abdi et al. (2005), we follow a three-step

procedure. The initial step is the transformation

Br = −0.5CD2
rC

t, r = 1, 2, . . . ,K; C = Ip − p−1uputp (3)

where D2
r is the matrix whose (i, j)-th element is the square of the (i, j)-th element

of Dr, up is a p×1 vector of 1s and Ip is the identity matrix of order p. Furthermore,
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C is a p× p symmetric and idempotent matrix that centers each column of Dr on

the origin, that is Brup = 0, r = 1, 2, · · · ,K. Expression (3) converts the matrix

of distances Dr into the matrix of cross products Br, which contains the same

information, in terms of total sums-of squares, as Dr but is more suitable to the

eigen-decomposition.

The central step of Distatis analyzes how the matrices Br, r = 1, 2, . . . ,K re-

semble each other. The method used is the vector correlation proposed by Escoufier

(1973),

RV (r, s) =

∑p
i=1

∑p
j=1 r

2 (bi,r,bj,s)√∑p
i=1

∑p
j=1 r

2 (bi,r,bj,r)
∑p

i=1

∑p
j=1 r

2 (bi,s,bj,s)
(4)

where bi,r,bj,s are, respectively, the r-th and the s-th row of Bs and Br respec-

tively and r2 (bi,r,bj,s) is the square of Pearson correlation coefficient. Expression

(4) implies that 0 ≤ RV (r, s) ≤ 1. The fact that the columns of the Br have zero

mean implies that

r2 (bi,r,bj,s) =



(
bti,rbj,s

)2(
bti,rbj,r

)(
bti,sbj,s

) if
(
bti,rbj,r

)(
bti,sbj,s

)
> 0

0 otherwise

(5)

The values of (4) are invariant with respect to the unit of measurement used in the

various component matrices, thus no normalization of the cross product matrices

Br is necessary.

Let Ψ be the K ×K matrix formed with the vector correlation between pairs

of cross products matrices: Ψr,s = RV (r, s) for r, s = 1, 2, · · · ,K. Since Ψ is

positive or, at least, non negative irreducible, the Perron-Frobenius theorem (e.g.

Lin, 1977) ensures that there is a single eigenvalue that is positive and greater than

or equal to all other eigenvalues; furthermore, the unique (up to multiplication

by a non-zero constant) associated eigenvector q may be chosen so that all its
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components are strictly positive. In the final step of the procedure we calculate

the normalized eigenvector w =
(
utKq

)−1
q whose elements wr, r = 1, 2, · · · ,K

represent a uniquely defined differential impact measure for each source of data.

The global distance matrix can now be found using

D =
√

butp + upbt − 2B, B =

K∑
r=1

wrBr (6)

where b is a vector of the diagonal elements of B.

3. The Rank Distatis method

Methods based on ranks are desirable if the relationships between original distances

do not follow a mathematically predictable pattern or are thought to be non-linear.

Ranks, in fact, do not change when distances are monotonically transformed. For

example, 1 + log (drs), d
α
rs, 0 < α ≤ 1 or drs/ (1 + drs) not only preserve the metric

properties of drs (see Batagelj & Bren, 1995), but also generate the same ranking

of distances. The invariance under monotone transformations is an attractive

property when comparing distances whose actual magnitudes may be arbitrary or

when there is evidence that the data set may be contaminated with outliers.

Vector correlation based on ranks are not new in the literature of Distatis. As

an example, Cléroux et al. (1995) converted into ranks the original variables before

starting the procedure. In the present investigation, we realize a component wise

ranking for the columns of the cross product matrices Br, r = 1, 2, · · · ,K

Gr =



g1,1,r g1,2,r · · · g1,p,r

g2,1,r g2,2,r · · · g2,p,r

· · · · · · · · · · · ·

gp,1,r gp,2,r · · · gp,p,r


, r = 1, 2, . . . ,K (7)

where the (p× 1) vectors bi,r are replaced by the (p× 1) vectors of ranks gi,r
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obtained transforming each value of the original column in the corresponding rank

ranging from 1 to p, in ascending sequence.

The similarity between matrices can be measured using a non-parametric

statistic of rank relation in place of the Pearson correlation

RVh(r, s)=

∑p
i=1

∑p
j=1 r

2
h (gi,r,gj,s)√∑p

i=1

∑p
j=1 r

2
h (gi,r,gj,r)

∑p
i=1

∑p
j=1 r

2
h (gi,s,gj,s)

. (8)

This definition is given by (Cléroux et al., 1995) and derive from the application

of the RV coefficient to the matrices formed with the rank correlations. By far,

the most frequent recommendation is to use Spearman rank-order correlation, the

argument being that this coefficient would be more valid than Pearson coefficient

when certain assumptions are violated. Cléroux et al. (1995) applied, in fact, the

Spearman coefficient to the association between feature-based matrices. However,

several other coefficients have been developed for more than a century. Our review

of literature has highlighted the four rank correlations reported in Table 1, which

have been studied extensively in Tarsitano & Lombardo (2011).

Table 1: A selection of rank correlations.

Name Formula

Spearman r1 =

(
3

p3 − p

)(∑p
i=1|η∗i − πi|2−

∑p
i=1|ηi − πi|2

)
Kendall r2 =

(
2

p2 − p

)∑
i<j sgn (ηj − ηi) (πj − πi)

Gini r3 =

(
2

n2 − kp

)
(
∑p

i=1|η∗i −πi|−
∑p

i=1|ηi−πi|), kp=p mod 2

r4 =

∑p
i=1

∑p
j=1 [gi (η, π∗) gj (η∗, π)− gi (η∗, π∗) gj (η, π)][

kp +2
∑bp/2c

i=1

p+ 1− i
i

]2
− p2

Here π and η are permutations of order p; π∗ = p+ 1− π and η∗ = p+ 1− η are

the reverse permutations formed by the anti-ranks of π and η, respectively; bxc
indicates the lowest integer greater than x. Finally
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gi(η,π) =

 πi/ηi if ηi < πi

ηi/πi if ηi ≥ πi
i = 1, 2, · · · , p (9)

The indices in Table 1 vary in the range: −1 ≤ ri (η, π) ≤ 1 with ri (η, η) = 1,

ri (π, π) = 1, ri (η, η∗) = −1 and ri (π, π∗) = −1. The larger ri (π, π), ignoring

sign, the stronger the association between the two rankings. At the other extreme,

an ri (π, π) of zero implies that the two rankings are not linearly related. Other

properties of ri (η, η) = 1 are the symmetry: ri (η, π) = ri (π, η) and the zero

expected value under independence.

Let Ψh, h = 1, 2, 3, 4 be the K ×K matrix formed with the rank vector corre-

lations in (8). These matrices have the same properties as the Ψ of the previous

section. The first principal component qh derived from Ψh is determined as a new

variable which orders the rows of the matrices Gr, r = 1, 2, · · · ,K in such a way

that the weighted sum of squares of rank-correlation coefficients between the orig-

inal variables and the new one is maximal. For h = 1, 2, 3, 4, corresponding to the

four rank correlations in Table 1, the normalized eigenvector wh =
(
utKqh

)−1
qh

belonging to the largest eigenvalue of Ψh can be used to assign weights as in

formula (6).

4. Experimental results

The experiments presented here look for evidence that incorporation of ranks into

the core of the Distatis procedure can lead to an effective mechanism of weighting

distance matrices.

4.1. Real data sets

Spielman (1973) gives K = 4 matrices about geographical, genetic, anthropometric

and SFA (Serological For Anthropometric) distances among p = 19 villages of the

Yanomami Indians (southern Native Americans). All the matrices were found not
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to be Euclidean. To overcome this problem Cailliez (1983) suggested transform-

ing the distance as follows [di,j,r − 2λp (Br)]
0.5 where λp (Br) < 0 is the smallest

eigenvalue of Br. Of course the results of the successive analyses are sensitive,

though perhaps not very sensitive, on this transformation.

Table 2 shows the weights of the four partial distance matrices obtained using

the measures of association presented in the previous sections (all the analyses

were done using the statistical software R, version 2.15.1).

Table 2: Weights for Yanomami villages distance matrices.

Coefficient Geographic Genetic Anthropometric SFA

RV 0.267 0.260 0.274 0.200
RV1 0.239 0.268 0.234 0.259
RV2 0.235 0.271 0.235 0.259
RV3 0.239 0.270 0.233 0.257
RV4 0.233 0.263 0.239 0.265

The usual RV coefficient yields a two-block configuration of the weights. On the

one hand there are tree larger weighs, almost equal among themselves. On the

other hand stands a weight, much smaller than the average of the other weights,

associate with the SFA distances. The weights generated by RV1, . . . , RV4 have a

configuration reflecting the equal influence of the various distances. There were no

appreciable differences among any of the weighting systems, thus making it appear

that outliers or other anomalies were not a major cause of errors. Spielman (1973)

excluded SFA from the successive analyses, but this exclusion can be considered

legitimate from the point of view of the association between matrices only if the

association is measured by RV .

The second example is in Abdi et al. (2005). This data set includes K = 4

matrices of order 6× 6 containing measures of proximity between four algorithms

compared using a distance matrix between six face. The data are available as

faces2005 data set in ExPosition package of R. The matrices are not Euclidean

and hence we have applied the transformation discussed in the previous example.

In Table 3 we report the weights obtained by Distatis and rank Distatis procedures.
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Table 3: Six faces analyzed by different “algorithms”.

Coefficient Pixels Measures Ratings Pairwise

RV 0.272 0.243 0.237 0.249
RV1 0.270 0.255 0.249 0.227
RV2 0.282 0.249 0.256 0.214
RV3 0.277 0.253 0.264 0.207
RV4 0.267 0.250 0.254 0.229

All the weighting systems show small divergences between the observed and the

expected weights under the hypothesis of equicorrelation: (1/4, . . . , 1/4), which

reveals that, even though the original distance matrices were proposed for entirely

different purposes, they share a common underlying structure.

4.2. Artificial data sets

In the first study on simulated distances, we use the data set mat5Mrand of

the package ape in R, which includes K = 5 genetic distance matrices of order

50 × 50 computed from simulated DNA (see Campbell et al., 2009 for details).

The matrices are not Euclidean, but become such when one applies the square

root transformation d0.5i,j,r.

In order to assess the potentiality of rank transformation to attenuate the

impact of outliers, we have perturbed one of the distance matrices (otherwise sup-

posed to be free of noisy data or idiosyncratic entities) by multiplying a randomly

chosen row (and the corresponding column) by a factor of 10 and keeping the rest

of the selected matrix unchanged. The matrix to be perturbed is also chosen at

random. In table 4 we present the weights given by the Distatis procedures and

their standard deviation, before and after the alteration. The figures are the av-

erage values over 10000 random selection of the pair (matrix, entity). The column

headed σ (w) refers to the standard deviation of the weights as a measure of their

uncertainties. The final column shows the percentage of variation in σ (w).
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Table 4: Genetic distance matrices.

D1 D2 D3 D4 D5 σ (w) PV σ

RV Original 0.1894 0.2121 0.2192 0.1844 0.1949 0.0134
Altered 0.1978 0.2096 0.2169 0.1873 0.1884 0.0325 143.0

RV1 Original 0.1669 0.2422 0.2181 0.1761 0.1968 0.0275
Altered 0.1771 0.2359 0.2091 0.1808 0.1971 0.0336 22.2

RV2 Original 0.1680 0.2430 0.2169 0.1769 0.1953 0.0273
Altered 0.1775 0.2365 0.2079 0.1819 0.1962 0.0369 35.2

RV3 Original 0.1720 0.2409 0.2219 0.1757 0.1895 0.0270
Altered 0.1805 0.2352 0.2120 0.1805 0.1918 0.0356 31.8

RV4 Original 0.1680 0.2416 0.2105 0.1778 0.2020 0.0259
Altered 0.1784 0.2341 0.2062 0.1822 0.1992 0.0257 -0.9

Apparently, RV sterilizes the effect of a single outlier, at least on the average,

but the standard deviations of the weights are trying to tell a different story. In

fact, the value of σ (w) for RV , after the perturbation, has increased indicating

that occasionally the importance of a data source might be seriously affected by

the presence of even a single outlying entity. In absence of perturbations, rank

correlations determine weights in which the importance of D1 and D4 is dimin-

ished, and meanwhile, the role of the other matrices has equally grown by the

consequent increase in their weights. This result is quite unexpected in the light

of the fact that the matrices of the data set mat5Mrand were built to be no more

similar to each other then randomly selected matrices would be (which would lead

to equal weighting). In all probability, ranks alter the interdependencies contained

within the different matrices. When RV incorporates ranks, the weights of D2,D3

and D5 are reduced and the charge is transferred mostly to D1. Nonetheless, the

overall structure of the weights replicated quite well before and after the pertur-

bation, which can be interpreted as a symptom of robustness against outliers. It

is perhaps useful to observe that weights determined by RV4 have the lowest de-

viations among rank correlations for the original distances and that they achieve

the minimum σ (w) among all coefficients for the altered distances.
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The second experiment on artificial data addresses the behavior of the vector

correlations in randomly created data sets, as the number of entities p increases.

To determine random distance matrices we first generate random correlation ma-

trices Hr, r = 1, 2, · · · ,K for K = 7. Then these are converted into distance

matrices using the transformation di,j,r = [0.5 (1− hi,j,r)]0.5. There are a number

of techniques used to produce a random correlation matrix (see Numpacharoen

& Atsawarungruangkit, 2012 for a recent review). The algorithm proposed by

Rousseeuw & Molenberghs (1993) in terms of goniometric functions of angles uni-

formly distributed in [0, π] has been particularly effective in our experiments. Due

to rounding errors, there are sometimes very small negative eigenvalues. In this

case the vector of random angles is rejected and a new one is tried. However, if the

number of consecutive rejections of the positive definiteness of Hr exceeded five,

all the negative eigenvalues are set to zero and the correlation matrix obtained

with the eigenvalue method (see Rousseeuw & Molenberghs, 1993). The distance

matrices so generated have low correlation and, as a consequence, the information

that they convey should compete for weight on a more-or-less equal basis.

Table 5: Vector correlation for random distance matrices.

p σ (w) Mean Min Max p σ (w) Mean Min Max

25 RV 0.0318 0.0803 0.0182 0.2276 50 RV 0.0326 0.0409 0.0101 0.1151
RV1 0.0301 0.0845 0.0214 0.2318 RV1 0.0316 0.0423 0.0114 0.1179
RV2 0.0304 0.0629 0.0162 0.1736 RV2 0.0317 0.0313 0.0085 0.0873
RV3 0.0316 0.0749 0.0183 0.2117 RV3 0.0326 0.0383 0.0103 0.1089
RV4 0.0216 0.1139 0.0454 0.2582 RV4 0.0190 0.0678 0.0326 0.1429

100 RV 0.0302 0.0207 0.0053 0.0582 200 RV 0.0313 0.0104 0.0026 0.0293
RV1 0.0297 0.0212 0.0056 0.0588 RV1 0.0305 0.0106 0.0028 0.0294
RV2 0.0297 0.0156 0.0042 0.0434 RV2 0.0306 0.0078 0.0021 0.0216
RV3 0.0304 0.0194 0.0052 0.0546 RV3 0.0315 0.0097 0.0026 0.0277
RV4 0.0147 0.0424 0.0239 0.0799 RV4 0.0114 0.0279 0.0183 0.0471
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The first column of each block in Table 5 shows the standard deviations of the

weights. The last three columns contain mean, minimum and maximum of the

off-diagonal entries in the matrix Ψ of correlations between component matrices.

To stabilize the results, each reported value is the average of the corresponding

observed values in 250 independent replications of the simulation process.

Two facts emerge clearly as the number of entities gets large: (1) The weights

become closer and closer to the expected weights w = (1/K, · · · , 1/K), as con-

firmed by the diminishing σ (w) for all the weighting systems. (2) The entries

concerning the effects of the number of entities do not confirm an RV increasing

with p in case of random matrices (Smilde et al., 2009, Mayer et al., 2011). On

the contrary, all the coefficients show a common trend towards zero. In passing,

we note that RV4 presents the smallest standard deviations of the weights and the

slowest decay of the correlations.

The objective of last simulations is to look at the recovery rates of clustering

algorithms based on the global distance matrix determined by the five variants of

Distatis considered in this paper. Here, we simulate K = 6 random correlation

matrices of order p × p. The first five matrices are generated according the same

scheme of the previous experiment. The sixth matrix is built in blocks by apply-

ing the algorithm described in Hardin et al. (2012). More specifically, a Toeplitz

scheme is used as a model for five correlation sub matrices of order p/5 × p/5

assuming that pairs of adjacent entities are correlated and that the correlation

between entity i-th and j-th decays exponentially with |i− j|. Correlation matri-

ces are converted into distance matrices using the transformation of the previous

experiment.

For the number of entities p ∈ (25, 50, 100), Table 6 reports in the first column

the adjusted Rand index (ARI) between two classifications. The former is the true

clustering of the entities, whereas the other one is computed using a hierarchical

aggregative algorithm after cutting the tree at five clusters. We apply the seven

links included in the command hclust of the package stats in R but used only the

best result for the given simulation. The second column shows the ARI obtained
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by the PAM algorithm of the package cluster in R for the five-cluster solution.

For this iterative scheme we have applied three different methods to establish the

starting medoids and retained only the best solution. Finally, note that each entry

in the table is an average across 250 experiments of the same type.

Table 6: Recovery rate of average link and PAM for Distatis procedures

p=25 p=50 p=100
Hier. PAM Hier. PAM Hier. PAM

RV 0.5662 0.5801 0.5011 0.5196 0.3881 0.3599
RV1 0.5405 0.5541 0.5700 0.5864 0.4978 0.4485
RV2 0.5256 0.5470 0.5781 0.5881 0.5129 0.4520
RV3 0.5680 0.5710 0.5962 0.6041 0.5151 0.4517
RV4 0.4784 0.5052 0.4665 0.4868 0.4078 0.3774

The recovery rate of the clustering algorithms decreases, as expected, with increas-

ing p because of the disturbances due to the growing randomness of the distance

matrices. According to the results reported in Table 6, the clusters of the well-

structured matrix D6 are obscured by the other five noisy matrices even when

p = 25. The performance of the PAM algorithm exceeded that of hierarchical

links, but the discrepancy becomes narrower as the number of entities increases,

independently of the weighting system. For p = 100 the results are reversed. The

precise reasons for this are not clear, but one conceivable explanation is that it is

due to a greater robustness of hierarchical methods against noisy distances. When

the weights are computed with RV the performance of the two clustering methods

are undoubtedly worse than using the rank correlations.

5. Conclusion and future research

We have explored the question of substituting a correlation for the conventional

Pearson correlation in the coefficient RV of the Distatis procedure (Abdi et al.,

2005). In particular, we have studied four different non-parametric statistics of

rank relation: RV1 (Spearman), RV2 (Kendall), RV3 (Gini cograduation index)

and RV4 (a measure based on ratios of ranks and anti-ranks) and determined
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which ordinal measure of association is the most plausible proxy for the Pearson

correlation and under what circumstances.

The essence of our findings is that, in the presence of contaminated data, rank

correlations attenuate adverse effects of anomalies and, in case of clean and faultless

data, yield weighting systems which generally conform to those obtained from RV .

Comparisons among the four rank-based variants of the Distatis method reveals

that the results produced by RV4 most closely resemble those obtained by RV and

for this reason it can be a valid substitute for it in cases where ordinal relationships

between distances appear more relevant for judging clustering effectiveness than

the numerical magnitude representation of the distances.

A limitation of the present study concern the derivation of the large samples

distribution of vector correlations under the null hypothesis of no association,

without being in possession of the original data matrices. The problem would be

at least partially solved if the distributional assumptions, usually imposed when

dealing with the variance/covariance matrices of the characters of the entities, were

met by the cross products matrices reconstructed from the inter-entity distances.

See Fraser (1956), Zegers & ten Berge (1985), Cléroux et al. (1995). However,

more research (for example, along the lines of Oliveira & Mexia, 2007 and Abdi

et al., 2009) is needed to determine the sampling and asymptotic behavior of the

vectorial statistics, which are discussed in the present paper.
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