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Abstract

Danish fire insurance data has been analyzed in several papers,
using different models. In this paper we investigate the improving of
the fitting for the Danish fire insurance data according to composite
models, including dependence structure by copula functions and Fast
Fourier Transform.
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1 Introduction

The evaluation of the distribution of aggregate loss plays a fundamental
role in the analysis of risk and solvency levels of an insurance company.
In literature many different studies are based on definition of composite
models which aim is to analyze this distribution and dependence between
the main factors that characterize the risk profile of insurance companies,
e.g. frequency-severity, attritional-large claims.

A composite model is a combination of two different models, one having
a light tail below a threshold (attritional claims) and another with a heavy



tail suitable to model value that exceed this threshold (large claims). Com-
posite distributions (also known as compound, spliced or piecewise distri-
butions) have been introduced in many applications. Klugman et al. (2010)
expressed the probability density function of a composite distributions as:

Tlfik(l’) ko << k?l
flx)=14": (1)
rofi(x) kno <x <k,

where [ is truncated probability density function of marginal distribution
fj» j=1,...,n; r; are mixing weights; k; define the range limit of the domain.

The Danish fire insurance data has been often analyzed according using
a parametric approach and composite models. Cooray and Ananda (2005)
and Scollnik (2007) show that the composite lognormal-Pareto model could
fits better than standard univariate models. Following the previous two
papers, Teodorescu and Vernic (2009 and 2013) fit the dataset firstly with
a composite Exponential and Pareto distribution and then with a more
general composite Pareto model, obtained by replacing the Lognormal dis-
tribution by an arbitrary continuous distribution, while Pigeon and Denuit
(2011) consider in the composite model the threshold value as the realization
of a positive random variable. There have been other several approaches
to model this dataset: Burr distribution for claim severity using XploRe
computing environment (Burnecki and Weron, 2004), Bayesian estimation
of finite time ruin probabilities (Ausin et al., 2009), hybrid Pareto models
(Carreau and Bengio, 2009), beta kernel quantile estimation (Charpentier
and Oulidi, 2010), bivariate compound Poisson process (Esmaeili and Klup-
pelberg, 2010). An example on non parametric modelling is shown in Guil-
lotte et al. (2011) with a Bayesian inference on bivariate extremes. Drees
and Muller (2008) show how to model dependence within joint tail regions.
Nadarajah and Bakar (2014) improve the fittings for the Danish fire in-
surance data using various new composite models, including the composite
Lognormal-Burr model.

Regarding the Danish fire insurance data in this paper we investigate
the use of different composite models and Extreme Value Theory (EVT, see
Embrechts et al., 1997 and McNeil et al., 2005), Copula function and Fast
Fourier Transform-FFT (Klugman et al, 2010) in order to analyze the effect
of the dependence between attritional and large claims as well.

The paper is organized as follows. In Sections 2 and 3 we suppose there
isn’t any dependence between attritional and large claims and we investigate
the use of composite models and a compound model with random threshold
in order to fit the Danish fire insurance data, comparing our numerical
results with the fitting of Nadarajah and Bakar (2014) based on composite
Lognormal-Burr model. In Sections 4 we try to appraise risk dependence
through the concept of copula function and FFT. Section 5 concludes the
work, where we present the estimation of VaR of aggregate loss distribution,
comparing results under independence or dependence conditions.



2 Composite models

In the Danish fire insurance data we can find both frequent claims with
low-medium severity and sporadic claims with high severity. If we want to
define a joint distribution for these two types of claims we have to build a
composite model.

Formally, the density distribution of a composite model can be written as
a special case of (1):

f(g:):{rfl*@) —o<z<u @)

(1-r)fi(x) u<z<oo

where r € [0,1], fi and f; are cut off density distributions of marginals
f1 and f5 respectively. In details, if F; is distribution function of f;, i=1,2,
then we have

fi(z) = ]{:11((2)) —o<z<u 3)
fg‘(:v):% u<x <00

It’s simple note that (2) is a convex combination of f; and f; with weights
r and 1-r. In addition, we want that (2) is a continuous, derivable and with
continuous derivative density function and for this scope we fix the following
limitation:

lim f(@) = f(u)
lim f'(z) = lim, f(x)

U T—Uu

(4)

From the first we obtain

r— fQ(U)Fl(U) (5)
fo(w)Fi(uw) + fi(u)(1 = Fz(u))

while from the second

fo(w) P (u)
F(u)Fi(u) + fi(u)(1 = Fy(u))
We can define distribution function F of (2)
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Suppose F; and F5 admit inverse function; we can define quantile func-
tion via inversion method: let be p a random number from a standard
Uniform distribution, the quantile function results

F (2Rw), p<r
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To estimate the parameters of (7) we can proceed as follows: first of all
we estimate marginal density function parameters separately (the underly-
ing hypothesis is that there isn’t any relation between attritional and large
claims); then these estimates will be the start values of density function in
order to maximize the following likelihood:

m n
L(xy,... o 0) = (=) " [ i) [ ) (9)
i=1 j=m+1
where n is sample dimension, @ is a vector including compound model pa-
rameters, while m is such that X, < v < X1, otherwise it’s the level of
order statistics immediately previous (or coincident) to v.
The methodology described in Teodorescu & Vernic (2009 and 2013)
has been used in order to estimate the threshold w which permit us to
discriminate between attritional and large claims.

2.1 Compound model with random threshold

We can define a compound model using also a random threshold (see Pi-

geon and Denuit, 2011). In particular, given random sample X = (X3,..., X,,),
we can assume that every single component X; provides a own threshold.
So, for the generic observation x; we’ll have the threshold u;, i = 1,... n.
For this reason, uq,...,u, are realizations of a random variable U with a
distribution function G. The random variable U is necessarily non-negative
and with a heavy tailed distribution.
A compound model with random threshold shows a completly new and
original aspect: we cannot be able to choose only a value for u but its whole
distribution and the parameters of the latter are implicit in the definition
of the compound model. In particular, we define the density function of
Lognormal-Generalized Pareto Distribution model (GPD, see Embrechts et
al, 1997) with random threshold in the following way:

f(@) = (1) / " fo@)g(u)du + v / N @ﬁ(fﬂ)g(wdu (10)

where r € [0, 1], u is the random threshold whit density function g, f; and f;
are Lognormal and GPD density functions, respectively, ¥ is the Standard
Normal distribution function, ¢ is the shape parameter of GPD and o is
Lognormal scale parameter.

2.2 Kumaraswamy Distribution and some generaliza-
tion
In this section we describe the Kumaraswamy Distribution (see Ku-
maraswamy, 1980) and a generalization of Gumbel distribution (see Cordeiro
et al., 2012). In particular, let
K(zia, ) =1—(1-2%)%z € (0,1) (11)
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the distribution proposed in Kumaraswamy (1980), where parameter o and
B establish it’s trend. If G is the distribution function of a random variable,
then we can define a new distribution by

F(z;a,b) =1 — (1 —G(z)*)" (12)

where a > 0 and b > 0 are shape parameters that influence kurtosis and
skewness. The Kumaraswamy-Gumbel (KumGum) distribution is defined
throughout (12) with the following distribution function (see Cordeiro et
al., 2012):

Fra(zia,b) =1 — (1 — A(x)*)° (13)

where A(z) is Gumbel distribution function. The quantile function of
KumGum is obtained by inverting (13) and expliciting Gumbel parame-
ters (u and ¢):

T, = F(p) =u—plog [— log (1 —(1- p)l/b)l/a} (14)

with p € (0,1).
The following table and Figure 1 show Kurtosis and Skewness of KumGum
density function by varying the four parameters:

u ¢ a b Kurtosis Skewness
0 5 1 1 5.4 1.1
0 1 05 05 7.1 1.6
S5 3 2 3 3.6 0.5
1 10 5 0.7 6.4 1.4
0 15 1 04 7.6 1.7

Table 1: Kurthosis and Skewness of Kum-Gum distribution



KumGum

n
(\! -
o _ a=1, b=1, p=0, ¢=5
a=1/2, b=1/2, p=0, =1
o
S a=2, b=3, p=5, ¢=3
a=5, b=2/3, u=1, ¢=10
3 ——  a=1,b=2/5, =0, ¢=15
o
P
‘0
c
)
fa}
o
—
o
/\\
n
o
\
o
o
o

-20 0 20 40 60 80

Figure 1: KumGum density functions.

Another generalization of Kum distribution is the Kumaraswamy-Pareto
distribution (Kum-Pareto); in particular, we can evaluate equation (12) in
the Pareto distribution function P which is

Pa:gm) =1-(2) > (15)

where 5 > 0 is a scale parameter and £ > 0 is a shape one. So from (11),
(12) and (15) we obtain the Kum-Pareto distribution function:

Fip(w; 8,k,a,0) = 1 — {1 _ [1 _ (é)nr}b (16)

x
The corrisponding quantile function is

Po=af(i-fi- (-9 Y

where p € (0,1). In the following figure we report Kum-Pareto density
function varying the parameters:
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Figure 2: Kum-Pareto density functions.

3 Numerical example considering composite mod-
els

In this section we present some numerical results on the fitting of the
Danish fire insurance data by composite models with a constant and with
random threshold between attritional and large claims. As already men-
tioned, for the composite models with a constant threshold, we used the
methodology described in Teodorescu & Vernic (2009 and 2013), obtnaing
u = 1,022, 125€. Regarding the main statistics of Danish fire insurance data
see Embrechts et al. (1997). We start with a compound model Lognormal-
KumPareto, choosing f; ~ Lognormal and fs ~ Kum — Pareto. From the
following table we can compare some theoretical and empirical quantiles:

Level 50% 75% 90% 95% 99% 99.5%
Empirical quantile 327,016 532,757 1,022,213 1,675,219 5,484,150 8,216,877
Theoretical quantile 333,477 462,852 642,196 840,161 2,616,338 4,453,476

Table 2: Comparison between empirical and Lognormal-KumPareto quan-
tiles



Only the fiftieth percentile of theoretical distribution function is very close
to the same empirical quantile: from this percentile onwards the differences
increase. In the following figure we show only rigth tails of the distribution
functions (empirical and theoretical):

Right tail of distributions
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Figure 3: Rigth tails of Lognormal-KumPareto (red line) and empirical
distribution (dark line) functions.

The red line stands ever over dark line. Kumaraswamy generalized families
of distributions are very versatile to analyze different types of data this
means, but in this case the Lognormal-KumPareto model underestimates
the right tail.

So we consider the compound model f; ~ Lognormal and fo ~ Burr as
suggested in Nadarajah and Bakar (2014). The parameters are estimated
using the CompLognonormal R package as shown in Nadarajah and Bakar
(2014). From the following table we can compare some theoretical quantiles
with empirical ones:

Level 50% 75% 90% 95% 99% 99.5%
Empirical quantile 327,016 532,757 1,022,213 1,675,219 5,484,150 8,216,877
Theoretical quantile 199,681 332,341 634,531 1,029,262 3,189,937 5,181,894

Table 3: Comparison between empirical quantiles and Lognormal-Burr ones

The model seems to be more feasible to catch the rigth tail of emprical
distribution respect to the previous Lognormal-KumPareto, as we can see
from the figure below:
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10

06

Fnix)

04

0.z
|

n.o

T T T T
0.0e+00 5.0e+06 1.0e+07 1.5e+07

X

Figure 4: Lognormal-Burr and empirical distribution functions (red and
dark lines).

As Lognormal-KumPareto model, the Lognormal-Burr distribution stands
ever over the empirical distribution but not always at the same distances.

We go forward modelling a Lognormal-Generalized Pareto Distribution
(GPD), that is we choose f; ~ Lognormal and f, ~ GPD and then we gen-
erate pseudo-random numbers from quantile function (8). In the following
we report the estimates of parameters and the QQ-plot:

low extreme best estimate high extreme

1 12.82 12.84 12.86
o 0.59 0.61 0.62
o, 1,113,916 1,115,267 1,116,617
¢ 0.33 0.45 0.56

Table 4: Estimated parameters of Lognormal-GPD

(1 and o are the Lognormal parameters, while o, and § are GPD pa-
rameters.
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Figure 5: Observed-theoretical quantile plot for the Lognormal-GPD model.

We observe that this compound model has a good adaptation to empirical
distribution; in fact, except many, theoretical quantiles are close to corre-
sponding empirical quantiles. In the following figure we compare theoretical
cut-off density function with corresponding empirical one and theoretical
right tail with empirical one:

Cut-off density Right tail
«©
7
(]
w
o
g
3 3
32} I,
[}
A
7 2
z S > 3
g 8 =
[ <3
o 0 ‘
T ol
[
© N {
(=}
&
- 8
T
o
g 8
3 X
(=] jo
s T T T T \ e [
0 500000 1500000 0e+00 2e+07 4e+07 6e+07

Figure 6: Left, comparison between cut-off density functions. Right, em-
pirical and theoretical (red) right tail.
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The model exhibits a non-negligible right tail (kurtosis index is 115,656.2)
which can be evaluated comparing observed distribution function with the
theoretical one:

Empirical vs theoretical distributions
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Figure 7: Lognormal-GPD (red) and empirical (dark) distribution function.

The corresponding Kolmogorov-Smirnov test has return a p-value equal to
0.8590423, using 50,000 bootstrap samples.

Finally, we report the best estimate and 99% confidence intervals of the
compound model Lognormal-GPD with a Gamma random threshold (see
Pingeon and Denuit, 2011) :

low extreme best estimate high extreme

[0 12.78 12.79 12.81
o 0.52 0.54 0.55
u (threshold) 629,416 630,768 632,121
o, 1,113,915 1,115,266 1,116,616
¢ 0.22 0.29 0.37

Table 5: Estimated parameters and 99% confidence intervals of Lognormal-
GPD-Gamma distribution

The threshold u is a parameter which value depends on Gamma parameters.
In the following we report the theoretical and empirical quantiles:
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Levels 50% 75% 90% 95% 99% 99.5%
Empirical percentile 327,016 532,757 1,022,213 1,675,219 5,484,150 8,216,877
Theoretical percentile 360,574 517,996 1,103,309 2,077,792 5,266,116 7,149,253

Table 6: Comparison between empirical and Lognormal-GPD-Gamma
quantiles

We can see from the following figure that Lognormal-GPD-Gamma model
can be considerered a good fitting model:

Empirical vs theoretical distributions
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Figure 8: Lognormal-GPD-Gamma (red) versus empirical (dark) distribu-
tion functions.

The Kolmogorov-Smirnov adaptive test returns a p-value equal to 0.1971361.
So we cannot reject the null hypothesis under which the investigate model
is a feasible model for our data.

Finally Lognormal-KumPareto, Lognormal-Burr, Lognormal-GPD with
fixed threshold and Lognormal-GPD with a Gamma random threshold, can
be compared using the AIC and BIC values:

Index KumPareto Burr GPD GPD-Gamma
AIC 193,374 191,459 191,172 190,834
BIC 193,409 191,494 191,207 190,882

Table 7: AIC and BIC indices for a comparison between different models

The previous analysis suggests that the Lognormal-GPD-Gamma gives the
better fit.
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4 Introducing dependence structure: Copula
Functions and Fast Fourier Transform

In the last section we restricted our analysis to the case of independence
between attritional and large claims. We now try to extend this paper to a
dependence structure. Firstly we’ll define a compound model using a copula
function to evaluate the possible dependence. As marginal distributions
we’ll make reference to a Lognormal distribution for attritional claims and
a GPD for large ones. The empirical correlation matrix R:

R — 1 0.01259155
—\ 0.01259155 1

and Kendall’s Tau and Spearman’s Rho measures of association:

1 0.002526672
0.002526672 1

0.003730766 1

suggest a weak but positive correlation between normal and large claims.
For this reason, the individuation of an appropriate copula function will
not be easy, but we present an illustrative example based on a Gumbel
Copula.
The parameters of the Gumbel Copula can be estimated through differ-
ent methods:

( 1 0.003730766 )

Method 0  Standard error
Maximum pseudo-likelihood 1.11 0.008
Canonical maximum pseudo-likelihood 1.11 0.008
Simulated maximum likelihood 1.11 -
Minimum distance 1.09 -
Moments based on Kendall’s tau 1.13 -

Table 8: Different methods for estimating the dependence parameter of a
Gumbel Copula

We remind that Gumbel’s parameter 6 assumes values in [1,inf) and for
0 — 1 we have independence between marginal distributions. We observe
that estimates are significantly different from 1 and so our Gumbel Copula
doesn’t correspond to Indipendent Copula. We can say that because we
have verified, using bootstrap procedures, 6 parameter has a Normal distri-
bution. In fact, Shapiro-Wilk test has given a p-value equals to 0.08551 and
so, fixed a significance level of 5%, it’s not possible reject null hypothesis.
In addition, the 99% confidence interval obtained with Maximum pseudo-
likelihood method results (1.090662; 1.131003) which doesn’t include the
value 1. We report two useful graphics, obtained by simulation of estimated
Gumbel:
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Figure 9: Lognormal (top) and GPD (right) marginal histograms and Gum-
bel Copula simulated values plot.

Figure 10: Density function of estimated Gumbel Copula. Attritional claims
losses on X-axis, large claims losses on Y-axis.

The density function assumes greater values in correspondence of great val-
ues both for Lognormal and GPD marginal; in other words, using that
Gumbel Copula, the probability that attritional claims produce losses near
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to the threshold u and that large claims produce extreme losses is greater
than probability of any other joined event.

In our numerical examples, we’ll refer to Gumbel Copula function despite
having estimated and analyzed other copulas for which no significant dif-
ference for the aims of this paper.

4.1 An alternative to Copula Function: the Fast Fourier
Transform

Considering the fact that it is not easy to define an appropriate copula for

this dataset, now we’ll try to model the aggregate loss distribution directly
with the Fast Fourier Transform (FFT) using empirical data. That approach
allows us to avoid the dependence assumption between attritional and large
claims (necessary instead with the copula approach).
To build aggregate loss distribution by FFT it’s necessary, first of all, make
the severity distribution Z discrete (see Klugman et al., 2010) and obtain
the vector z = (2o, ..., 2,_1) which element z; is the probability that single
claim produce a loss equals to ic, where c is a fixed constant such that, given
n the length of the vector z, the loss cn has a negligible probability. We
consider also frequency claim distribution k through Probability-Generating
function (PGF) defined as

PGFE(t) = itipr(é = j) = E[t"] (18)

In particular, let FFT(z) and IFFT(z) be the FFT and its inverse respec-
tively, we obtain the discretized probability distribution for the aggregate
loss X as

(xo,21,...,2,1) = [FFT(PGF(FFT(z))) (19)

Both FFT(z) and IFFT(z) are n-dimensional vectors which generic ele-
ments are, respectively, 2, = Z?;é 2; exp(% jk) and
2 = %Z;Zol zjexp(—2jk), i = /1.

From a theoretical point of view, this is a discretized version of Fourier
Transform (DFT):

“+oo

o) = [ fla)expliza)da (20)

The characteristic function creates an association between a probability den-
sity function and continue complex one, while the DF'T makes an association
between an n-dimensional vector and an n-dimensional complex vector. The
former one-to-one association can be done through the algorithm FEFT.
For two-dimensional case its necessary a matrix Mz as input; that matrix
contains joined probabilities of attritional and large claims and is such that

15



its possible obtain corresponding marginal distributions adding long rows
and columns respectively. For example, let

05 0 0
M,=|( 02 025 0
0 005 0

be that matrix. The vector (0.5,0.45,0.05), obtained adding long three
rows, contains attritional claims marginal distribution, while the vector
(0.7,0.3,0), obtained adding long three columns, contains large claims marginal
distribution. The single element of the matrix, instead, is the joined prob-
ability. The aggregate loss distribution will be a matrix My given by

M, = IFFT(PGF(FFT(M,))) (21)

We decided to discretize observed distribution function without a refer-
ence to a specific theoretical distribution, using the discretize R function
available in the actuar package (see Klugman et al., 2010). This discretiza-
tion allows us to build the matrix M to which apply the two-dimensional
FFT version. In this way, we have a new matrix FFF'T (M) that acts as
input of the random & probability generating function.

We need to define the distribution function of k. The losses have been
split by year, so we can report some descriptive statistics for frequency
claims:

Min Max Q1 Mean
154 447 238 299
Median Q3 Variance Skewness
310 381 8,482 -0.12

Table 9: Statistics of frequency claims empirical distribution

We note 50% of frequencies are included between 237 and 380 claims and
there is a light negative asymmetry. In addition, the variance is greater
than mean value, so its possible suppose a Negative Binomial distribution

for frequency claims; the corresponding probability generating function is
defined by

Por() = (L) (22)
1—pt

We have estimated its parameters (m = 5 and p = 0.82) and obtained
the matrix PGF,(FFT(M,)). As last stage we have applied the IFFT
whose output is the matrix Mx. Adding long counter-diagonals of My we
can individuate discretized probability distribution of aggregate loss claims,
having maintained the distinction between normal and large claims and,
above all, preserving the dependence structure.

16
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Figure 11: Aggregate loss density function obtained by FF'T procedure.

5 Final Results and Discussion

Now we are interested to estimate the Val?, using the previous models.
According to the collective approach of risk theory, aggregate loss is the
sum of a random number of random variables and so it requests convolution
or simulative methods.We remember that among considered methodologies
only FFT returns directly aggregate loss.

For illustrative purposes, considering the statistics of frequency in the
Danish fire insurance data, we can assume the claim frequency constant and
equals to k£ = 300.

A single simulation of aggregate loss can be achieved adding the losses
of k single claims and repeating the procedure 1,000,000 times, we obtain
the aggregate loss distribution.

In the following table, we report the VaRs obtained using compound
models Lognormal-Burr, Lognormal-GPD-Gamma, Gumbel Copula and FFT:

Model Claim frequency VaR

Lognormal-Burr 300 € 205,727,356
Lognormal-GPD-Gamma ? € 209,057,172
Gumbel Copula 7 € 649,006,035
FFT Negative Binomial € 703,601,564

Table 10: Estimate of VaR at %99 level with different models

17



If we consider the independence assumption, aggregate loss distribution
will return a VaR significantly smaller than those calculated relating depen-
dence hypothesis.

All the previous approaches has advantages and disadvantages. With the
first two composite models we can fit robustly each of the two underlying
distribution of attritional and large claims, without a clear identification
of the dependency structure. With the copula we can model dependency,
but it is not easy to determine what is the right copula to use and that is
the typical issue that the companies have under capital modelling purposes
using copula approach. FFT allows to not simulate claim process and to not
estimate a threshold, working directly on empirical data, but includes some
implicit bias due to the discretization methods. Anyway, we realize that
is fundamental take into account dependence between claims, regarding
its shape and intensity, because VaR increase drastically respect to the
independence case.
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