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Abstract: In this article we are concerned with a collection of multiple lin-
ear regressions that enable the researcher to gain an impression of the entire
conditional distribution of a response variable given the specifications for the
explanatory variables. In particular, we investigate the advantage of using a
new method of parametric estimation for non-crossing quantile regressions. The
main tool is a weighting system of the observations that aims to reduce the
effect of contamination of the sampled population on the estimated parameters
by diminishing the effect of outliers.

The performance of the new estimators has been evaluated on a number
of data sets. We had considerable success with avoiding intersections and in
the same time improving the global fitting of conditional quantile regressions.
We conjecture that in other situations (e.g. data with high level of skewness,
non-constant variances, unusual and uncertain data) the method of weighted
non-crossing quantiles will lead to estimators with good robustness properties.

Keywords and phrases: conditional quantiles, monotonicity problem, esti-
mation under constraints
,JEL Classification: C21, C31, C6.

1. Methodology and estimation

A typical investigation in statistical analysis consists of the linear regression of one
response variable onto one or more predictor or explanatory variables, where the
data are observed on a sample of entities. The rationale is that by establishing a
relationship between them, knowledge of the value of predictor variables enables an
approximate value to be predicted for the response variable. However, a richer and
more precise understanding can be achieved through quantile regression analysis,
which allows the researcher to examine and compare different levels of response, given
the variation in the explanatory variables, for a properly chosen set of quantiles.

Let Qp (Y |x) = inf{Pr (Y ≤ y|x) ≥ p} indicate the p-th conditional quantile (0 <
p < 1) of a real valued random variable Y given a vector of m explanatory variables
x. In short, Qp (Y |x) is the smallest real value such that the probability of obtaining
smaller values of Y is at least p. In general, the quantiles are group of values that
∗La presente pubblicazione è cofinanziata con il sostegno della Commissione Europea, Fondo
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divide the total probability into parts. Group of interest are obtained by using the
median which divides the distribution of Y |x into halves (p = 0.5), the three quartiles
which divide the distribution into four equal parts (p = 0.25h, h = 1, 2, 3), deciles
(p = 0.1h, h = 1, · · · , 9), and so on. Quantiles could be considered also at irregularly
spaced over the (0, 1) interval of probabilities.

For a random sample of observations y=(y1, y2, · · · , yn) of Y , a linear regression
model may be specified as

yi = xtiβ (p) + ei,p for i = 1, 2, · · · , n; p ∈ (0, 1) (1.1)

with xi = (xi,1, xi,2, · · · , xi,m) , i = 1, 2, · · · , n being a sequence of m × 1 vectors of
known values and n > m. For each p, the magnitude and the direction of the effect of
a given predictor can be compared non only with the effect of the other predictors in
the same equation, but also with the effect of the same predictor for other quantile
equations. The vector β(p) ∈ Rm contains m coefficients whose estimate should
be obtained from sample data. The individual coefficient β̂j(p) , j = 1, 2, · · · ,m
can be interpreted as the trade-off ∂Qp(y|x)

∂xj
between a marginal change in the p-th

conditional quantile of the response variable and a marginal change in the value of
the j-th predictor, when all of the other variables are held constant. If β(p) is fixed
at β for each p, model (1.1) reduces to the standard conditional expectation model
with heteroscedastic disturbances yi = xtiβ + ei,p.

Let X = (x1,x2, · · · ,xn) denote the n×mmatrix with columns xi, i = 1, 2, · · · ,m.
We assume that the explanatory variables include an intercept term and, therefore,
the first column of X consists entirely of ones. We assume further that X has rank m
and that e1, e2, · · · , en are independent random disturbances with quantile function
Qp(e). The quantile function is left unspecified; we only require Qp (ei,p|xi) = 0,
which implies that the conditional p-th quantile of ei,p is null for each i. It follows
that the p-th conditional quantile of y|xi is given by

Qp (yi|xi) = Qp
[
xtiβ(p) + ep,i|xi

]
=

Qp
[
xtiβ(p) |xi

]
+Qp [ep,i|xi] = xtiβ(p) . (1.2)

Note that Qp
[
xtiβ(p) |xi

]
= xtiQp [β(p) |xi] = xtiβ(p) by the definition of the con-

ditional expectation. It is worth noting that there is no assumption on identical
distributions and that model (1.1) allows the disturbances to change as a function
of X and, thus, various form of heteroscedasticity and local noise rates can be ac-
commodated.

A quantile regression estimate β̂(p) of the unknown parameters is defined as that
values of β that minimize the asymmetrical loss function

Q (β,y,x) = min
β∈Rm

p ∑
i|yi≥xt

iβ

(
yi − xtiβ

)
+ (1− p)

∑
i|yi<xt

iβ

(
xtiβ − yi

) . (1.3)
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The minimizing β̂(p) determine a m-dimensional hyperplane defined as xtiβ̂(p) that
best fits the n observations. All observations above the best interpolating hyperplane
contribute with weight p to the estimates of the parameters; all observations below
the hyperplane contribute with weigh (1−p).

The intuition behind the seminal article of Koenker & Bassett [1978] is quite sim-
ple. There is a complete equivalence between the computation of a quantile in terms
of the order statistics y(i), i = 1, · · · , n and the minimization of an asymmetrical loss
function such as (1.3) which, in turn, can be reformulated as the minimization of a
linear function subject to linear constraints.

min
β(p)∈Rm;r,s∈Rn

[
prtun (1− p) stun 0tn

] 
r
s

β(p)

 (1.4)

subject to 
−In,n In,n −X
In,n −In,n X
In,n 0n,n 0n,n
0n,n In 0n,n




r
s

β(p)

 ≥


y
y
0n
0n

 (1.5)

where un is the (n× 1) vector of ones, In,n is the identity matrix of order n, 0n,n is
the (n× n) matrix of zeros and 0n is the (n× 1) vector of zeros.

The linearity of the objective function and the linear constraints imply that a
solution of (1.3) has to lie in one of the vertices of the polyhedron defined in (1.4). The
advent of modern linear programming techniques in the later 1940s lead to fast and
efficient algorithm to solve this type of problems. In fact, it may be the computational
complexity of least absolute regression, as well as the analytical intractability in a
statistical setting that forced the least absolutes approach to take the back seat to
least squares in multiple linear regression. See Seneta & Steiger [1984]. Here we will
not go deep into the computational aspects of quantile regression, but just recall
the availability of efficient algorithms (Koenker & D’Orey, 1987, 1994) and Portnoy
[1991].

Buchinsky [1998] notes that the m× 1 vector of first-order conditions for solving
the problem in (1.3) is given by

n−1
n∑
i=1

[
p− 1

2
+

1
2
sgn

(
yi − xtiβ

)]
xi ≈ 0 (1.6)

where the sgn (.) (signum) function takes the values −1, 0,+1 according to whether
its argument is negative, zero or positive. The approximation symbol emphasizes
the fact that since (1.6) is a discontinuous function of β, it may not have an exact
solution. However, if n→∞ then (1.6) converges to zero.
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Let M =(r1, · · · , rm) be a subset of m distinct integers from {1, · · · , n} defining
a combination of rows such that X(M) has full rank m. According to Koenker &
Bassett [1978] (Theorem 3.1) the solutions to (1.3) have the form

[X (M)]−1 y (M)

r = max {y −Xβ(p) ,0n} , rM = 0M

s = −min {y −Xβ(p) ,0n} , sM = 0M

(1.7)

where 0n and 0M are vectors of n and M zeros, respectively. Moreover, if the quantile
function of the disturbances is continuous, then problem (1.3) has a unique solution
β̂(p) provided that

(p− 1) utk <
∑
i/∈r

{
0.5
[
1−sgn

(
yi−xtiβ̂ (p)

)]
−p
}

xiX (M)−1 < putk. (1.8)

The residuals of the estimated quantile regression have an interesting structure.
Koenker & Bassett [1978] (Theorem 3.4) show that

n−

n
≤ p ≤ 1− n+

n
(1.9)

where n− and n+ indicate, respectively, the number of negative and positive residu-
als. In the case the solution of (1.3) is unique, all inequalities are strict. Furthermore,
when the quantile function of the disturbances is continuous then there are exactly
m residuals with value zero. By definition, a percentage p of observed values is less
than the fitted values and a percentage (1−p) of the observed values greater than
that of the fitted values.

For n → ∞, we could estimate an increasing number of quantile regressions; in
practice, there may be at most 3n distinct regression solutions for p ∈ [0, 1] (see
Koenker & D’Orey, 1987). In finite samples, Portnoy [1991] shows that the number
of distinct quantile regressions is O(nlogn). The common practice is that quantile
regression is designed to be used in groups rather than singly where the number of
elements in a group may increase as the sample size n increases. This opportunity is
particularly useful when the predictors have a different impact on different regions
of the design space. For example, pairs of extreme conditional quantiles map out
a conditional prediction interval within which one expects a specified fraction of
individual points to lie. Also, for unimodal distributions, the analysis of kurtosis
can focus on how the covariates affect both the tails and the central parts of the
conditional distribution.

Finite sample and asymptotic theory of quantile regression is not discussed in
this paper because of the vast literature accumulated on the subject. The survey in
Koenker [2005][Ch.3 and Ch. 4] is particularly effective in this sense.
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2. Crossing quantile regressions

Quantile regression estimates are robust in presence of observations that are far in
the direction of the response variable. This is an attractive property, at least in part
derived from ordinal nature of the quantiles, which slows down the leverage from
outlying observations. At the other side of the coin, there is the potential drawback
that quantile regression estimates are not guaranteed to be unique for the given
percentage p.

When a regression model is assessed, the two main characteristics that need to
be considered are robustness and sensitivity. Robustness is a valuable characteristic
because quantile regression does not change greatly when data are changed slightly.
However, since robustness is achieved at the cost of a loss in precision, it can be-
come a problem if the gaps between the percentages are too narrow. Sensitivity is
important, but it probably reduces the reliability of estimation when substantially
similar observations are mapped onto very distant conditional values of the response.
Robustness and sensitivity are antithetical requirements because robust procedures
give greater stability against random changes in data, whereas more sensitive pro-
cedures offer a richer source of information regarding the dependence structure. A
balanced solution may be the analysis of the conditional quantile function for an
appropriate set of percentages p ∈ P (0 < p1 < · · · < pk < 1) and the estimation
of the parameters separately for each quantile regression. It should nonetheless be
kept in mind that, when several conditional quantiles are treated, it is not unusual
that the estimated parameters generate non-parallel hyperplanes. When k increases
and a limited amount of data is available, the phenomenon of crossing hyperplanes
becomes much more likely.

Quantile regression hyperplanes in Rm are defined byx ∈ Rm
∣∣∣∣∣
m∑
j=1

βj(p)xj − y = 0

 with β(p) 6= 0m. (2.1)

where 0m is a (m× 1) vector of zeros. Note that two equations form the same
hyperplane if and only if they differ by a multiplicative factor not equal to zero. A
violation of the monotonicity condition occurs when for two quantiles p1, p2 and a
(m× 1) vector of explanatory variables values x we have

xtβ(p1) = xtβ(p2) for p1 6= p2, x ∈ Rm. (2.2)

If the vectors β(p1) and β(p2) are linearly independent, then there are two indepen-
dent linear equations in m unknowns. After solving the first equation for xr, this
value can be substituted into the second equation, which can be solved for xs, s 6= r.
At this point there are (m− 2) free unknowns. Any two non-parallel hyperplanes
intersect in one hyperplane of dimension (n−2).



I. L. Amerise/ Weighted NC quantile regressions 6

To illustrate, consider the quantile regression model (1.1) with m = 2. In this case
we have xi = (1, xi) and

Qp(yi|xi) = β0(p) + β1(p)xi for i = 1, 2, · · · , n. (2.3)

If the support of xi is the entire real line, then either β1(p) is a constant independent
of p or two or more conditional quantile regressions overlap for some value of xi,
not necessarily in the range of the observed values. This simply implies that y|xi is
higher at a lower quantile and vice versa. For example, a given point (y, x) might
result simultaneously below p1 = 0.20, but above p2 = 0.25 leading to an invalid y|x
distribution. He [1997] observes that crossing quantiles hyperplanes reflects a paucity
of data in the region concerned (a sort of misspecification of the predictor effects).
In this sense, Koenker & Geling [2001] suggest introducing additional predictors to
avoid crossing. For example, we can vary the specification of the model for each
quantile by adding and subtracting a positive variable

Qp (yi|xi) = β0(p) + β1(p)xi ± exp [β2 (p)xi] for i = 1, 2, · · · , n. (2.4)

This expression incorporates two quantile regressions that never cross one another
and do not cross the line (2.3). In the multivariate case, crossing could be avoided
if all quantile hyperplanes are parallel. For instance, Zhao [2000] first estimates
the slope parameters by the least absolute deviation (p = 0.5). Common slopes
guarantees that all the quantile hyperplanes will be parallel with no intersection.
Second, the estimates of the intercepts are obtained at different quantiles of the
residuals determined in the first step. The combined estimates produce a consistent
estimator of the theoretical regression quantile. Note that this is the only possible
solution when the support of the explanatory variables is the entire Rm. In the same
spirit, Todkar & Kadane [2012 ] build a model of quantile regression monotonically
increasing in p ∈ [0, 1] obtained by reparametrizing the elements of β(p) as linear
combinations of two monotonically increasing curves.

Bassett & Koenker [1982] (Theorem 2.1) show that the estimated conditional
quantile function at the centroid x = x̄ (the vector whose the i-th element x̄i is the
average of xi) we have Qp (yi|x̄) = x̄tβ(p), which is a monotone jump function of p
on the interval [0, 1]. Moreover, Qp (yi|x) must be monotonic in p in a neighborhood
of x = x̄. Thus, incidence of crossing generally occur only in the extreme regions of
the domain Sm, that is the convex hull of the n data x ∈ Rm. More specifically, Sm

is the intersection of all convex sets containing the observations in X.

Sm ≡
{

m∑
i=1

λixi|λi ≥ 0 ∀ i,
m∑
i=1

λi = 1

}
. (2.5)

On the other hand, we should ignore points close to the boundary or lying outside
Sm unless the data set include sufficient observation in the extreme regions to allow a
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reliable computation of quantiles. Schnabel & Eilers [2013] point out that, although
in many cases crossing is only a visual annoyance, it may jeopardize further analysis,
e.g. when studying conditional distributions at specific values of the independent
variable.

Convergence to the true conditional quantile functions renders legitimate the ex-
pectation that the crossing phenomenon will eventually disappear as the sample
size n increases. Machado & Mata [2005] recall the theoretical results of Bassett &
Koenker [1982] (Theorem 3.2) and Bassett & Koenker [1986] (Theorem 3.1), which
show that the estimated parameters of the quantile regression are consistent for their
population counterpart. The theory, therefore, predicts that the potential violations
of monotonicity will be smaller the larger the sample size and (the sparser the set
of p ∈ [0, 1]). This is not necessarily true for a general matrix X and the estimated
hyperplanes for the actual data set may overlap. On the other hand, because of
the phenomenon known as the “course of dimensionality” (which is virtually om-
nipresent when analyzing data in high-dimensional spaces) even large datasets may
become rarefied in certain regions to a degree which favors quantile crossings.

2.1. Literature review and research directions

Bondell et al. [2010] observe that quantile crossing is a well-known problem, but
no simple and general solution currently exists. In order to circumvent this diffi-
culty, many authors have looked for techniques that are capable of fitting the data
appropriately and several attempts at this have been made since the late 1990s.
Literatures on avoid crossings can generally be divided into two major approaches:
semi-parametric techniques, where the underlying error quantile function does not
assume any specific form and non-parametric methods where various smoothing
techniques (e.g. kernel fitting or polynomial spline fitting) are adapted to the error
distribution.

Two methods to prevent quantile inversions, one for each approach, were pro-
posed by He [1997]: the first, applied the Box-Cox transformation to restrict re-
gression quantiles (on this see also Heagerty & Pepe, 1999). The second imposes
certain restrictions on the space of possible solutions to conditional quantiles. The
restricted regression quantile curves are not easy to compute, but do not suffer from
the problem of quantile reversal in certain areas of the space of the explanatory
variables.

Yu & Jones [1998] study nonparametric regression quantile estimation by kernel
weighted local linear fitting. Specifically, given the current quantile function, the
next quantile function is estimated so that it does not cross with the existing quan-
tiles. The authors show that local linear conditional quantile estimation is feasible



I. L. Amerise/ Weighted NC quantile regressions 8

and practical. Results are at the least comparable with those produced by other
approaches.

Takeuchi & Furuhashi [2004] addressed the problem following a support vector
machine approach. With the use of kernel-based estimator, a non-crossing condi-
tional quantile estimator is derived in the form of a constrained maximization of a
piecewise quadratic function. See also Takeuchi et al. [2006].

To deal with the potential lack of monotonicity in multiple quantile regressions,
Melly [2005] developed a two-step procedure. In the first stage, the model yi = xtiβ(p)
is estimated along a grid of k different p-values whose mesh is sufficiently dense (a
mesh size of order O

(
n−(0.5+ε)

)
will work). In the second stage, quantiles of the

k ∗ n estimates xtiβ̂(ph) , h = 1, · · · , k; i = 1, · · · , n are computed by weighting each
element by (ph − ph−1). The result is the estimation of the unconditional quantiles
of y

Neocleous & Portnoy [2007] show that by choosing an appropriate grid of p-
values and defining the quantile functions by linear interpolation between grid values,
the resulting conditional quantile estimator is strictly monotonic with probability
tending to one, and it is asymptotically equivalent to the usual regression quantile
estimator.

Dette & Volgushev [2008 ] proposed non-crossing estimates of quantile curves
using a simultaneous inversion and isotonization of an estimate of the conditional
distribution function. They also demonstrated that the new estimates are asymp-
totically normal distributed and asymptotically first order equivalent to quantile
estimates obtained by local constant or local linear smoothing of the conditional
distribution function.

Shim et al. [2009] propose a new non-crossing quantile regression method using
doubly penalized kernel machine that uses heteroscedastic location-scale as basic
model and estimates both location and scale simultaneously by kernel functions.

Wu & Liu [2009] introduce a stepwise estimation scheme. With the current quan-
tile regression function at a particular given level, constraints are added in the es-
timation procedure to ensure the next quantile regression function does not cross
the current one. The procedure continues until quantile regression functions at all
desired levels are obtained. One drawback of this algorithm is its dependence on the
order that the quantiles are fitted.

The point of departure of Chernozhukov et al. [2009, 2010] is that if an original,
potentially non-monotonic, estimate is available, then the rearrangement operation
from variational analysis can be used to monotonize the estimate of the quantile
regression curves. To this end, the authors propose monotone rearranging the original
estimated curves, which are closer to the true quantile curves than the original curves
in finite samples. However, the estimate of the conditional distribution function y|x
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is modified in a way which makes problematic to quantify effects of the explanatory
variables.

Liu & Wu [2011] employ simple constraints on the kernel coefficients which can
guarantee that the estimated conditional quantile functions never cross each other.
This kernel formulation covers both linear and nonlinear models. Furthermore, the
authors demonstrate that through sharing strength among different quantiles, si-
multaneous non-crossing quantile regressions can produce better estimation than
individually estimated quantile functions.

The basic idea of Schnabel & Eilers [2013,b] is to introduce a surface on a two-
dimensional domain. One axis is for the predictors, the other is for the probability p.
The quantile curve for any probability is found by cutting the surface at that prob-
ability. Effectively, all possible quantile curves are estimated at the same time and
the crossing problem disappears completely if the sheet is monotonically increasing
with p for every variable.

Rather than directly modeling the level of each individual quantile, Schmidt [2013]
begins with a single quantile (e.g. the median), and then add or subtract nonnegative
functions (called quantile spacings) to it in order to find the other quantiles. This
approach is analogous to methods for approximating intervals, where one models
the midpoint and the range of the interval, rather than try to model the upper and
lower bounds directly.

3. Non crossing regression quantiles

Crossings of quantile regression hyperplanes are an undesirable inconsistency that
undermines the theoretical integrity of the quantile regression method and limits
its usefulness in applications where monotonicity is a critical issue. We therefore
attempt to force proper ordering of the quantile curves to ensure that there are no
crossings over some relevant region of covariate space.

3.1. Unweighted non-crossing quantile regressions

If we apply the quantile function model (1.1) for the set of fixed k percentages p ∈ P ,
then we need to estimate k blocks of coefficients B = [β(p1) ,β(p2) , · · · ,β(pk)].
The corresponding k conditional quantile functions should verify the monotonicity
requirements with respect to p.

sgn(ph−ph−1) sgn
[
xtβ̂(ph)− xtβ̂(ph−1)

]
≥ 0; h = 2, · · · , k ∀ x ∈ Sm (3.1)

In the absence of further restrictions, the estimators in B would be obtained by
solving the minimization problem (1.3) for each p ∈ P . As we have said in the
previous section, crossings should never happen in theory because of the properties
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of the quantile regression estimators. The question remains however how to deal
with overlapping hyperplanes when such cases do occur.

Bondell et al. [2010] study a simple constrained version of quantile regression in
which, to alleviate the crossing issue. Let L =(L1, L2, · · · , Lm) and U =(U1, U2, · · · , Um)
be, respectively, the vector of minimum and the vector of maximum elements ob-
served for each explanatory variables (with the exclusion of the first columns consist-
ing entirely of ones). To simplify the evaluation of constraints (3.1), we can transform
the variables so that they range into the interval [0, 1]

vi,j =


xi,j − Lj
Uj − Lj

for j = 2, · · · ,m

1 for j = 1
; i = 1, 2, · · · , n. (3.2)

The domain of interest is now reduced from Sm to Dm = {v|v ∈ [0, 1]m}. Hence a
quantile regression estimate of the unknown parameters can be given by

Q
(
β̃,y,v

)
= min

β̃∈Dm

p
∑

i|yi≥vt
iβ̃

(
yi−vtiβ̃

)
+(1−p)

∑
i|yi<vt

iβ̃

(
vtiβ̃−yi

) (3.3)

where vi = (vi,1, · · · , vi,m). The linear programming theory assures that feasible
solutions to (3.3) occur at the vertices of Dm, i.e. set of integers M ⊂ (1, · · · , n)
corresponding to observations for which: β̃(p) = [V(M)]−1 y(M), where V is the
matrix whose rows are v1, · · · ,vn. For simplicity of manipulation, it is convenient
to redefine the k solution vectors of (3.3) for p ∈ P as follows

γ(p1) = β̃(p1) ; γ(pj) = β̃(pj)− β̃(pj−1) j = 2, · · · , k. (3.4)

The restrictions described in (3.1) are now equivalent to

vtiγ(ph) ≥ 0 ∀v ∈ D h = 2, · · · , k. (3.5)

This condition, according to Bondell et al. [2010], is both necessary and sufficient
to prevent overlapping hyperplanes. The linear transformation (3.2) can easily be
inverted after the estimation, while retaining the properties of the quantile regression
estimators. In fact, if β̃(p) is the vector of estimated parameters associated with
p ∈ P under (3.2), then

β̂j(p) =


β̃j(p)j
Uj − Lj

for j = 2, · · · ,m;

β̃1(p)−
∑m
j=2

[
β̃j(p) ∗ Lj
Uj − Lj

]
otherwise

. (3.6)

The merit of the approach outlined by Bondell et al. [2010] is that the question of
quantile crossings is now reduced to a linear programming problem, which can be
solved via standard software.
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3.2. Weighted non-crossing quantile regressions

One unrealistic assumption underlying the quantile regression model is that each
point of the p-th regression quantile hyperplane provides equally reliable and valid
information about the deterministic part of the response variable. We argue that
quantile regression crossings are due, at least in part, to the fact that all observa-
tions are considered on the same footing although the data might not justify this.
Furthermore, we claim that the use of residuals from quantile regression can be of
help to avoid such shortcomings.

Consistent with this premise, we believe that a way to avoid intersections between
estimated hyperplanes (over the domain of interest) is to put more emphasis on
observations which are more coherent with the model (1.1) and give less importance
to observations thought to be cause of irregularities. Therefore, to deal with the
crossing issue, we propose to estimate the quantile regressions under the non-crossing
restrictions (3.1) by adjusting fit to the following objective function

Q(β∗,y,v)= min
β∗∈Dm

ph ∑
i|yi≥vt

iβ
∗

wi,n
(
yi−vtiβ

∗
)

+(1−ph)
∑

i|yi<vt
iβ
∗

wi,n
(
vtiβ

∗−yi
)
(3.7)

where the weighs verifies the conditions.

wi,n > 0, lim
Q(β̃,y,v)→0

wi,n = ω > 0 for i = 1, · · · , n. (3.8)

The magnitude of wi,n quantifies the suitability of the information contained in the
i-th observation relatively to the k regression hyperplanes fitting the n data points.
Strictly positive weights are strongly recommended by Koenker [2013][p. 17] since a
null weight is ambiguous. Moreover, the weights should tend to be equal when the fit
tend to be ideal. Note that the weighted version of the objective function (3.7) can
be solved by applying the unweighted algorithm to the responses and explanatory
variables defined by ri,h = wi,n and yi, zi = wi,nvi for i = 1, · · · , n. Therefore,
problem (3.7) can be reformulated as follows

Q
(
β̃, r, z

)
= min

β̃∈Rm

ph
∑

i|ri≥zt
iβ̃

(
ri−ztiβ̃

)
+(1−ph)

∑
i|ri<zt

iβ̃

(
ztiβ̃−ri

) . (3.9)

This method is particularly convenient because it involves adding only the estimated
weights to a computer program with a weighting option. In practice, the computa-
tion of non-crossing weighted quantile regression can be efficiently accomplished by
exploiting the same software developed for Bondell et al. [2010]. Our approach pre-
supposes that the weights are fixed and known in advance. For example, they can
hold information about the reliability of imputed values or values derived from pre-
vious experience or from source known to be polluted by errors of measurement.



I. L. Amerise/ Weighted NC quantile regressions 12

Also, weights can be used to take into account of cases with the same values on
all variables. In practice, however, the assumption of known weights rarely holds
so estimated weights must be used instead. There are many ways to estimate w.
We base our choice on the idea that the weight for each observation should be in-
versely related to the size of the corresponding disturbance êi,h = yi − ŷi,h where
yi, h = 1, · · · , k is the i-th value of the response in a sample of n points and ŷi,h is
some estimate of yi|xi for the h-th quantile.

Let Ê = (ê1, · · · , êk) the (n× k) matrix with columns given by the n esti-
mated residuals êi,h, i = 1, · · · , n;h = 1, · · · , k of the non-crossing quantile re-
gression associated with the k estimated hyperplanes. This implies that the un-
weighted non-crossing estimators of Bondell et al. [2010] are taken as a benchmark
against which to compare weighted non-crossing quantile regressions. Furthermore,
let ē = (ē1, · · · , ēk) represent the (k × 1) vector of averages and Σ̂e the (k × k)
matrix of variance-covariances of the k columns of Ê. It must be observed that
ēh = n−1∑n

i=1 êi,h, h = 1, · · · , k is, in general, different from zero, unless the distri-
bution of conditional residuals is symmetrical.

In order to quantify the potential impact on parameter estimation of the i-th
observation (y,xi) we use the Mahalanobis distance

di =
√

(ėi − ē)t Σ̂
−1
e (ėi − ē) i = 1, · · · , n (3.10)

where ėi is the i-th row of Ê and σ̂h,h′ = (n− 1)−1∑n
i=1 (ėi,h − ēh)

(
ėi,h′ − ēh′

)
for

h, h′ = 1, · · · , k. We note that if a singular Σ̂e is encountered, (3.10) can be modified
by using a generalized inverse to obtain the weights (see Ben-Israel & Greville [2003]).

There is a range of possibilities for converting distances into weights. An expo-
nential transformation is especially appealing to us because of its simplicity.

wi = exp {−τdi} i = 1, · · · , n (3.11)

where τ ≥ 0 is a tuning parameter that may be varied to modify the influence
of the distances. Increasing values of τ make observations which are at distance
one from the vector of averages ē progressively less relevant. For a given τ > 0,
weights decrease as distances from ē increase. From another point of view, noting
the resemblance between (3.11) and the density function of an exponential random
variables, τ can be thought to be similar to the inverse of the expected uncertainty
contained in a sample of random distances. Constant τ can be chosen arbitrarily
in principle. Based on empirical experience with real as well as simulated data we
suggest applying the optimize function offered in Base-R (see R Core Team, 2013).
The method used is a combination of golden section search and successive parabolic
interpolation that searches a specified interval from lower to upper for a minimum.
A solution to (3.9) will be considered feasible if and only if Q(β∗, r, z)≤ Q

(
β̃, r, z

)
.
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For what concerns large sample properties of weighted non-crossing quantile re-
gressions, consider a set of percentages p1 < p2 < · · · , < pk such that ph ∈ [ε, 1− ε]
for h = 1, · · · , k and 0 < ε < 0.5 and assume:

1. The matrix n−1XtX is positive definite.
2. The conditional densities fyi|x are differentiable with respect to yi for every x

and each i = 1, · · · , n.
3. For 0 < ε < 1, there exist constants a > 0; b, c <∞ such that

a ≤ fyi|x
[
Qyi|x (p)

]
≤ b;

∣∣∣f ′yi|x

[
Qyi|x (p)

]∣∣∣ ≤ c
uniformly for x ∈ Dm, ε ≤ p ≤ (1− ε) and uniformly in i = 1, · · · , n.

Under the above conditions, Bondell et al. [2010] prove that the estimator obtained
via (3.7) is asymptotically equivalent to the unconstrained quantile regression es-
timator, regardless of the choice of a weighting systems wi,h, i = 1, · · · , n; h =
1, · · · , k. Furthermore, in another theorem, the authors show that inference for the
√
n-consistent constrained quantile regression can be achieved by using the known

asymptotic results for classical quantile regression.

4. Experimental results

The experiments presented here look for evidence that incorporation of a weighting
systems into the core of the non-crossing quantile regression procedure can lead
to an alternative and (at least on specific occasions) better mechanism for fitting
multivariate data. In this section, we use three examples to compare three different
algorithms: unconstrained, unweighted non-crossing (UNC), weighted non-crossing
(WNC) for the quantile regression, and thereby show the advantage of our new
method of quantile regression.

Our first example is based on data from Iriarte-Dı́az [2002]. The author discusses
the relationship between maximum relative running speed (body length/second)
and body mass (kg) concerning n = 142 species of terrestrial mammals, in or-
der to evaluate whether the relative locomotor performance shows a differential
scaling depending on the range of mass analyzed. Overall, maximum relative run-
ning speed decreases with increasing body mass. Figure 1 illustrates the results
of application of the three different techniques considered in the present paper for
p ∈ P (0.50 : 0.95, by0.05).

From graph B, it is apparent that the computation method proposed by Bondell
et al. [2010] avoids the intersections which are present in graph A, at least within
the domain delimited by the vertical dotted lines traced at minx and maxx. Our
method (graph C) generates regression lines that not only bypass crossings, but also
gather near the center of the observed data points. It must be noted, in fact, that
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Fig 1. Relationship between body mass and maximal relative running speed.

there is an entity which does not match the general impression: 100 corresponding to
heteromyid rodent (Dipodomys merriami). The bias attributable to this outlier can
be noticed looking at the highest two lines in graph A and B. In the former, there
is an intersection clearly due to the carry-over effect from the isolated point. In the
latter, the problem of crossing is solved, but some of the lines remain close to the
outlier. In graph C the influence of the outlier has been removed. The accumulation
of lines around the center is presumably due the fact that the relationship between
maximum running speed and body mass is curvilinear rather than linear.

To assess the difference in efficacy between different methods of estimation, we
evaluate the behavior of the global absolute errors affecting the various regression
methods. In particular, Table 1 compares the mean, the maximum and the minimum
sum of absolute errors associated with the k = 10 quantile regression hyperplanes.
The findings in Table 1 reveal that weighted non-crossing quantile regressions at-
tains a better performance than the standard procedure with respect the absolute
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Table 1

Fitting results of various estimation methods

Unconstrained QRs Non-crossing QRs Weighted Nc QRs

Mean absolute error 0.5055 0.5076 0.3961
Max absolute error 0.8103 0.8219 0.5479
Min absolute error 0.3417 0.3417 0.3547

residuals. The unweighted non-crossing technique does not improve, from a fitting
point of view, upon unconstrained quantile regressions.

As the second example, we analyze the data set sbp included in the package
multcomp of R for the percentages (0.10, 0.25, 0.50, 0.75, 0.90). The data set refers to
systolic blood pressure (in mmHg), age (in years) and gender of n = 69 people. In
Figure 2 it is shown that, in absence of outliers in the data and non-crossing lines,
the three estimation methods behave similarly.

Fig 2. Relationship between age and systolic blood pressure.
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The well-known Housing Data Set which is available online at http://lib.stat.
cmu.edu/datasets/boston_corrected.txt is considered for the third example.
The data comprises n = 506 observations for 13 predictor variables, and one response
variable, corrected median value of owner-occupied homes (CMEDV). The data set
was analyzed by Harrison & Rubinfeld [1978] who wanted to find out whether “clean
air” had an influence on house prices. For simplicity, we excluded the categorical vari-
able RAD and the Charles River dummy variable (because there are too few on one
status) and considered m = 11 predictor variables.

We select virtual random samples without repetition of n ∈ (120, 240, 360, 480)
observations from the total data set. The results are reported in Table 2 where each
entry is an average across L = 100 experiments of the same type.

Table 2
Fitting results of various estimation methods.

Unconstrained QRs Non-crossing QRs Weighted Nc QRs
n mean max min mean max min mean max min

120 4.7013 8.5361 2.9504 4.7150 8.4104 3.0048 3.6294 4.1298 3.2905
240 4.8995 9.0573 3.0772 4.9320 9.1909 3.1003 3.7013 4.2762 3.3648
360 4.9112 9.2036 3.0871 4.9100 9.2307 3.0989 3.7188 4.2760 3.3603
480 4.9537 9.3647 3.1062 4.9786 9.5880 3.1138 3.7984 4.5642 3.3409

The weighted non-crossing quantile regressions yield average absolute errors systemi-
cally better than those of the other methods. It appears that, the adjustments caused
by the unweighted restrictions on the intersection of hyperplanes of the ordinary es-
timates have resulted in relatively minor modifications to the extremes quantile
regressions. The adjustments are more substantial for weighted non-crossing regres-
sions, and these seem to be concentrated in the central and higher percentages where
the most pronounced reduction of residual reductions is observed.

The quality of the fitting expressed by the columns of Table 2 does not improve
with increased sample size. Rather it seems getting worse although at no time is it
sharp. This could be explained by the clear clustered structure of the observations.

5. Discussion and Conclusions

Conditional quantile functions offer simple and flexible models for the stochastic
component of a regression and enable us to obtain reasonable estimates in the pres-
ence of a broad range of departures from Gaussianity. (See in particular Parzen, 1979
and Gilchrist, 2006). However, the interpretability of QR estimates deteriorates when
conditional quantile functions cross or overlap.

Our aim in this paper is to introduce a new methods of estimation for the pa-
rameters of quantile regressions that avoids the problem of crossing quantile curves.

http://lib.stat.cmu.edu/datasets/boston_corrected.txt
http://lib.stat.cmu.edu/datasets/boston_corrected.txt
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Based upon the work Bondell et al. [2010], a weight is attached to each observation
inversely related to the estimated disturbances associated with the unweighted quan-
tile regressions. We are convinced that the influence of disturbances corresponding
to a given observation decreases exponentially with the Mahalanobis distance from
their centroid. This scheme can be particularly effective when the intersection of
hyperplanes is most probably due to the presence of outlying entities.

The estimation of multiple non-crossing quantile regressions is enforced by re-
quiring nothing more than lower quantile levels do not cross higher quantile levels.
This gives rise to a set of inequalities that should be all satisfied. Inequalities can be
considered a priori pieces of information about the true parameters that restrict the
original parameter space. It is known that, under general conditions, the estimate
β̂(ph) has optimal properties for the h-th conditional distribution and this is also
true for any h = 1, · · · , k. Since the unconstrained estimation procedure does not use
the fact that β(ph) , h = 1, · · · , k lie in the reduced space, one might wonder if using
such conditions gives a gain in efficiency. This is not necessarily so (see Rothenberg
[1973][p. 55-57] for the case of the linear least squares estimators). In this respect,
Takeuchi et al. [2006] note that, after enforcing the constraints, the quantile prop-
erty may not be guaranteed. This is because we try to optimize both for the quantile
property and the non-crossing property (in relation to other quantiles). Hence, the
final outcome may not empirically satisfy the quantile property. The question then
is to find the best way of satisfying the constraints without worsening the property
of the regression quantile estimators.

We have shown that our method, because of the introduction of an efficient system
of weights, is successful at determining quantile regression hyperplanes that do not
cross in the convex hull of the explanatory variables. The results presented in this
paper support this view. There are still many unknown aspects of our methodology;
for example, what is the efficiency of parameter estimates for clean data (absence of
outliers or Gaussian disturbances), what is the power function of the test statistics,
and what is the bias in parameter estimates when data are affected by specific forms
of heteroscedastic errors. These problems can be addressed through asymptotics for
large samples and via a diffuse Monte Carlo simulation plan evaluation for finite
samples. These will be topics for further study. Two other potential directions for
future research should be considered: to devise a multistep mechanism for building
more effective weights and to establish test statistics which help which help to decide
on goodness of fit for systems of quantile regressions on the same data set.
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