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New developments on the use of bivariate Rodriguez-Burr III
distribution in reliability studies

Abstract

In this paper we study the bivariate Rodriguez-Burr III distribution from a reliability point
of view. In particular, we derive various functions used in reliability theory of conditional dis-
tributions, viz hazard rate, reversed hazard rate, mean residual life and mean reversed residual
life and, using some notions of dependence, their monotonicity is discussed. Finally, some mea-
sures of dependence based on the distribution function and on the mean reversed residual life are
investigated.

Key words: Conditional Distribution, Reveserd Hazard Rate, TP2, Dependence Measures.

1 Introduction

It is well-known in the literature that the Burr III distribution is the third example of solutions of the

differential equation defining the Burr system of distribution (Burr, 1942). This distribution has been

widely used in various fields of sciences, in some cases with different parameterizations and under

other names. For example, it is called inverse Burr distribution in the actuarial literature (see, e.g.,

Klugman et al., 1998) and kappa distribution in the metereological literature (Mielke, 1973; Mielke

and Johnson, 1973). A generalization of Burr III model, called Dagum distribution, has been suc-

cessfully used in studies on income and wage distribution as well as in those on wealth distribution

(see Dagum, 1977, 1980; Kleiber and Kotz, 2003; Quintano and D’Agostino, 2006; Kleiber, 2007;

Domma, 2007). The Burr III distribution has been employed in financial literature, environmental

studies, in survival and reliability theory (see, i.e., Sherrick et al. (1996); Lindsay et al. (1996); Gove

et al. (2008); Shao (2000); Hose (2005); Al-Dayian (1999); Mokhlis (2005)). Recently, Shao et al.

(2008) proposed the use of the so-called extended Burr III distribution in low-flow frequency analysis

where the lower tail of a distribution is of interest.

Rodriguez (1980) proposed the extension to the bivariate case of univariate Burrr III distribution

and derived the conditional density, conditional moments and correlation index. Since then, papers

on the bivariate Rodriguez-Burr III distribution has been rather skimpy comparated with the work
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that has been carried out, for example, on bivariate Burr XII. Recently, some authors studied various

reparameterization and/or special cases of the model proposed by Rodriguez. For example, study-

ing the relation between the functional and personal distribution of income, Dagum (1999) obtained

a reparameterization of bivariate Rodriguez-Burr III for modelling the distribution between human

capital and wealth. Bismi G. Nadh et al. (2005) provided a general method of generating multivariate

Burr distribution extending the differential equation proposed by Burr (1942) to higher dimensions.

Solving the corresponding set of partial differential equations, they obtained the bivariate Burr system

of distributions of which the type III is a member; moreover, they calculated some functions (such

as, for example, survival function and reversed hazard rate) useful in the reliability theory. Yari and

Mohammad-Djafari (2008) determined the exact form of the Fisher information matrix of a special

case of the Rodriguez-Burr III distribution. Studying some properties and indices of dependence of

the bivariate Rodriguez-Burr III distribution, Domma (2009 a) proved that the model can describe

also situations of negative dependence. Evidently, this results permits to extend the range of potential

application of the bivariate Rodriguez-Burr III distribution in various fields of sciences.

In this paper, we study the bivariate Rodriguez-Burr III distribution of reliability point of view. In

particular, using some notions of dependence, we analyse the behaviour of various functions, used in

reliability theory, of distributions of a random variableX givenY = y, of X givenY < y and of

X givenY > y. Moveover, we calculate several dependence measures used in reliability theory and

survival analysis.

The paper is organized as follows. InSection 2, we introduce the model and we describe its main

features. Moreover, we prove that the bivariate Rodriguez-Burr III density function isTP2 (totally

positive of order 2).Section 3contains some definitions and background of reliability functions and

some notions of dependence. The hazard rate, the reversed hazard rate and other functions of the

conditional distributions used in reliability theory and their monotonicity are discussed inSection 4.

Properties of some measures of dependence are investigated inSection 5.

2 The Model

In this section, we briefly introduce the bivariate and the conditional Rodriguez-Burr III distributions

and we prove that the bivariate density function isTP2.

A random vector(X, Y ), with X andY continuous and non-negative random variables, is Ro-

driguez - Burr III distributed if its joint distribution function is

FXY (x, y; ξ) =
(
1 + αλγx−θy−δ + λx−θ + γy−δ

)−β
, (1)

2



whereξ = (β, λ, γ, δ, θ, α) with λ > 0, γ > 0, δ > 0, θ > 0, β > 0 and0 ≤ α ≤ (β + 1), with

bivariate density function

fXY (x, y; ξ) = βλγδθx−θ−1y−δ−1
(
1 + αλγx−θy−δ + λx−θ + γy−δ

)−β−2 ×{
(β + 1)(1 + αλx−θ)(1 + αγy−δ)− α

(
1 + αλγx−θy−δ + λx−θ + γy−δ

)}
(see Rodriguez, 1980 and 1983). It is simple to verify that the marginal distributions ofX andY are

Burr III (Burr 1942, Dagum 1977) with distribution function given byFX(x; β, λ, θ) =
(
1 + λx−θ

)−β

andFY (y; β, γ, δ) =
(
1 + γy−δ

)−β
, respectively. Furthermore, the conditional density function and

conditional distribution function ofX givenY = y, respectively, are

fY =y(x|y; ξ) = λθx−θ−1(1 + kyλx−θ)−β−2
[
ky(β + 1)(1 + αλx−θ)− α(1 + kyλx−θ)

]
(2)

FY =y(x|y; ξ) = (1 + kyλx−θ)−β−1(1 + αλx−θ), (3)

whereky = (1+αγy−δ)
(1+γy−δ)

. We notice thatX andY are independent ifα = 1. Indeed, from (2) ifα = 1

thenfY =y(x|y; ξ) = fX(x; ξ1), sinceky = 1, whereξ1 = (β, λ, θ) .

It is easy to verify that a random variableX givenY ≤ y is Burr III distributed, with conditional

density function and conditional distribution function, respectively, given by

fY≤y(x|y; ξ) = βkyλθx−θ−1(1 + kyλx−θ)−β−1 (4)

FY≤y(x|y; ξ) = (1 + kyλx−θ)−β. (5)

In oder to study the dependence betweenX andY , we use the following definition.

Definition 1 A non-negative functiong defined onR2 is totally positive of order 2, if for allx1 < x2,

y1 < y2, with xi, yj ∈ R, it holds that g(x1, y1)g(x2, y2) ≥ g(x2, y1)g(x1, y2) (see Joe, 1997). If the

inequality is reversed theng is reverse rule of order 2 (RR2).

We highlight that ifg is the joint density function of random vector(X, Y ) then TP2 coincides

with the positively likelihood ratio property of Lehmann (1966). TheTP2 is a notion of positive

dependence and is the strongest of all dependence notions in the literature; for a deep discussion on

dependence see, for example, Joe (1997). Holland and Wang (1987) proved the following theorem

useful for verify whether a bivariate density function isTP2

Theorem 2 The density of a random vector(X, Y ) is TP2 if γf (x, y) > 0, whereγf (x, y) =
∂2 ln f(x,y)

∂x∂y
is called local dependence function.
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For the bivariate Rodriguez-Burr III density, it can be verified that

γf (x, y) = (1− α)θγδx−θ−1y−δ−1

{
β + 2

A2
+

α2β

B2

}
(6)

whereA =
(
1 + αλγx−θy−δ + λx−θ + γy−δ

)
andB =

{
(β + 1)(1 + αλx−θ)(1 + αγy−δ)− αA

}
.

Thus,fXY (x, y) is TP2 if α < 1. This property will be used in studying the monotonicity of certain

failure rates.

3 Some definition and background

In this section, we report the definitions of hazard rate and reversed hazard rate in the bivariate set-

ting and some notions of dependence that we will use throughout the paper. Let(X, Y ) be a two

dimensional random variable with probability density functionf(x, y), distribution functionF (x, y)

and survival functionS(x, y). It is well-known that the hazard gradient (Johnson and Kotz, 1975) is:

h1,2(x, y) = (h1(x, y), h2(x, y)) where

h1(x, y) = hY >y(x|y) = −∂ ln S(x, y)

∂x
and h2(x, y) = hX>x(y|x) = −∂ ln S(x, y)

∂y
.

Moreover, the bivariate reversed hazard rate as a vector (Roy, 2002) is:rh1,2(x, y) = (rh1(x, y), rh2(x, y)),

where

rh1(x, y) = rhY <y(x|y) =
∂ ln F (x, y)

∂x
and rh2(x, y) = rhX<x(y|x) =

∂ ln F (x, y)

∂y
.

rh1(x, y)∆x is the probability of failure of the first component in the interval(x − ∆x, x) given

that it has failed beforex and the second component has failed beforey. The intepretation ofrh2(x, y)

is similar.

In the final part of this section, in order to study the dependence betweenX andY , we recall some

notions of dependence. The random vector(X,Y ) is said to be left corner set decreasing (LCSD) if

P
(
X < x, Y < y|X < x

′
, Y < y

′)
is decreasing inx

′
andy

′
for all x, y. Analogous to the Shaked

(1977) forRCSI (right corner set increasing), Domma (2009 b) proved that the random vector(X, Y )

is LCSD if and only if rh1(x, y) is increasing iny for all x andrh2(x, y) is increasing inx, for all

y. Moreover,X andY are said to be positively (negatively) quadrant dependent (PQD (NQD)) if

P (X < x, Y < y) > (<)P (X < x)P (Y < y); see Lehaman (1966) and Joe (1997). Finally,Y is

said to be left tail decreasing inX, LTD(Y |X), if P (Y < y|X < x) is decreasing inx for all y.

For the aims of this work, it is worthwhile pointing out the following relationships among dependence

properties. If the joint density function,fXY (x, y) is TP2 then (X, Y ) is LCSD andRCSI; the
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bivariate distribution functionFXY (x, y) is TP2 if and only if (X, Y ) is LCSD, the bivariate survival

functionSXY (x, y) is TP2 if and only if (X,Y ) is RCSI. Moreover, it is well known thatLCSD

implies bothLTD(Y |X) andLTD(X|Y ), but LTD(Y |X) andLTD(X|Y ) taken together do not

imply LCSD; likewise,RCSI implies bothRTI(Y |X) andRTI(X|Y ). Finally, it can be easily

seen that bothLTD(Y |X) andRTI(Y |X) imply PQD; for more details see Joe (1997) and Nelsen

(1999).

4 Reliability functions of conditional distributions

In this section, we study some functions used in reliability theory based on the conditional distribu-

tions of a random variableX givenY = y, of X givenY < y andX givenY > y. In particular,

using some notions of dependence, we analyse the behaviour of the reversed hazard rate, hazard rate,

reversed mean residual lifeme and mean residual life for bivariate Rodriguez-Burr III distribution.

From (2) and (3), the reversed hazard function ofX givenY = y is given by

rhY =y(x|y; ξ) =
λθx−θ−1

[
ky(β + 1)(1 + αλx−θ)− α(1 + kyλx−θ)

]
(1 + kyλx−θ)(1 + αλx−θ)

.

In order to study the monotonicity ofrhY =y(x|y; ξ) as function ofy, it is easy to verify that

∂rhY =y(x|y; ξ)

∂y
=

(1− α)(β + 1)λθγδx−θ−1y−δ−1

(1 + kyλx−θ)2(1 + γy−δ)2

is greater than zero if and only ifα < 1. Similarly, the reversed hazard rate of the conditional distri-

bution ofY givenX = x is increasing if and only ifα < 1.

To calculate the mean reversed residual life ofX given Y = y, defined as:µrY =y(x|y; ξ) =∫ x
0 F (u/y;ξ)du

F (x/y;ξ)
, we consider the following

I =

∫ x

0

FY =y(u|y; ξ)du =

∫ x

0

(
1 + kyλu−θ

)−(β+1)
du + αλ

∫ x

0

u−θ
(
1 + kyλu−θ

)−(β+1)
du.

By simple manipulation, we obtain∫ x

0

u−θ
(
1 + kyλu−θ

)−(β+1)
du =

(kyλ)
1
θ
−1

θ
B

(
w∗; β +

1

θ
, 1− 1

θ

)
whereB (w∗; p, q) =

∫ w∗

0
yp−1(1− y)q−1dy, with w∗ =

(
1 + kyλx−θ

)−1
< 1.

In order to calculate
∫ x

0

(
1 + kyλu−θ

)−(β+1)
du, we observe that Domma et al. (2009) proved

that if the random variableW is Burr III distributed with distribution functionFW (w; ε1, ε2, ε3) =
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(1 + ε2w
−ε3)

−ε1 then the mean reversed residual life is:

µr (w; ε1, ε2, ε3) =

∫ w

0
FW (u; ε1, ε2, ε2)du

FW (u; ε1, ε2, ε2)
= w −

ε1ε
1
ε3
2 B

(
z∗; ε1 + 1

ε3
, 1− 1

ε3

)
FW (w; ε1, ε2, ε3)

with z∗ = (1 + ε2w
−ε3)

−1
< 1. Now, the function

(
1 + kyλu−θ

)−(β+1)
can be seen as the distribution

function of a Burr III random variable withε1 = β + 1, ε2 = kyλ andε3 = θ. Therefore, we can write∫ x

0

(
1 + kyλu−θ

)−(β+1)
du = µr (x; β + 1, kyλ, θ)× F (x; β + 1, kyλ, θ) .

Finally, the mean reversed residual life ofX givenY = y is given by:

µrY =y(x|y; ξ) =
µr (x; β + 1, kyλ, θ) F (x; β + 1, kyλ, θ)

FY =y(x|y; ξ)
+

αλ
1
θ k

1
θ
−1

y B
(
w∗; β + 1

θ
, 1− 1

θ

)
θFY =y(x|y; ξ)

.

The hazard rate and the mean residual life of the random variableX givenY = y, denoted with

hY =y(x|y; ξ) andµY =y(x|y; ξ) respectively, are a complicated function ofx. However, their mono-

tonicity as function ofy can be determined by employing the following result due to Shaked (1977).

Lemma 3 If fXY (x, y) is TP2 then the hazard rate ofX givenY = y is decreasing iny for all x

and the mean residual life ofX givenY = y is increasing iny for all x.

Using the above result, we can say that ifα < 1 thenhY =y(x|y; ξ) is decreasing iny for all x and

µY =y(x|y; ξ) is increasing iny for all x.

From (4) and (5), the reversed hazard function ofX givenY < y is given by

rhY <y(x|y; ξ) =
∂ ln F (x, y)

∂x
=

βkyλθx−θ−1

(1 + kyλx−θ)
.

Using the fact that the random variableX|Y < y is Burr III distributed with parametersβ, kyλ

andθ, we can say that the mean reversed residual life ofX givenY < y is

µrY <y (x; β, kyλ, θ) = x−
β(kyλ)

1
θ B

(
z∗; β + 1

θ
, 1− 1

θ

)
FY <y(x; β, kyλ, θ)

.

Now, provided that the random variableX|Y < y is Burr III distributed, then the reversed hazard

function and the mean reversed residual life as function ofx is described in Domma et al. (2009).
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In order to study the monotonicity ofrhY <y(x|y; ξ) as function ofy, we recall that iffXY (x, y) is

TP2 then(X,Y ) is LCSD. Using the result by Domma (2009 b), we can conclude that ifα < 1

thenrhY <y(x|y; ξ) is increasing iny for all x.

The hazard rate and the mean residual life of the conditional distribution ofX given Y > y,

denoted byhY >y(x|y) andµY >y(x|y) respectively, as function ofx show a complicate form. However,

their monotonicity as a function ofy can be determined by employing the following result due to

Shaked (1977).

Lemma 4 If fXY (x, y) is TP2 then the hazard rate ofX givenY > y is decreasing iny for all x

and the mean residual life ofX givenY > y is increasing iny for all x.

Using this result, we can conclude that ifα < 1 thenhY >y(x|y; ξ) is decreasing iny for all x and

µY >y(x|y; ξ) is increasing iny for all x.

The distribution of maximum of two random variablesX andY play an important role in various

statistical applications. For example, in reliability studies,T = max(X, Y ) is observed if the com-

ponents are arranged in a parallel system. In the final part of this section, using the copula approach,

we study the effect of the dependence parameter on the reversed hazard rate of the random variable

T . By Sklar’s theorem (Sklar, 1959), the Rodriguez-Burr III copula function is:

CXY (u, v) =
{

1 + α
(
u−

1
β − 1

) (
v−

1
β − 1

)
+

(
u−

1
β − 1

)
+

(
v−

1
β − 1

)}−β

(7)

whereu, v ∈ [0, 1]× [0, 1], see Domma (2009 a). LetT = max(X, Y ) be the maximum in a random

sample of size two from (1). Then, the distribution function ofT is

FT (t, ξ) = Pr {max (X, Y ) ≤ t} = CXY (FX(t, ξ1), FY (t, ξ2); α) .

Moreover, ifFX(x; ξ1) andFY (y; ξ2) are identical then

FT (t, ξ1; α) = δC (FX(t; ξ1); α) (8)

whereδC (FX(t; ξ1; α)) = C (FX(t; ξ1), FX(t; ξ1); α) is the diagonal section of copulaC(.; .), see

Nelsen (1999). Therefore, it is simple to verify that the diagonal section of copula function (7) is

CXY (FX(t; ξ1), FX(t; ξ1); α) =

{
1 + α

(
[FX(t; ξ1)]

− 1
β − 1

)2

+ 2
(
[FX(t; ξ1)]

− 1
β − 1

)}−β

=
{
1 + αλ2t−2θ + 2λt−θ

}−β
.

Therefore, the distribution function and density function ofT , respectively, are

FT (t; ξ1; α) =
{
1 + αλ2t−2θ + 2λt−θ

}−β
(9)
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and

fT (t; ξ1; α) = 2βλθt−θ−1
(
1 + αλt−θ

) {
1 + αλ2t−2θ + 2λt−θ

}−β−1
(10)

Moreover, the reversed hazard rate ofT is

rhT (t; ξ1; α) =
fT (t; ξ1; α)

FT (t; ξ1; α)
= rh⊥T (t; ξ1)×

[
1 + (1 + α)λt−θ + αλ2t−2θ

]
[1 + 2λt−θ + αλ2t−2θ]

(11)

whererh⊥T (t; ξ1) = 2βλθt−θ−1

(1+λt−θ)
is the reversed hazard rate ofT whenX andY are independent. By (11)

it is simple to verify that ifα ≤ 1 thenrhT (t; ξ1; α) ≤ rh⊥T (t; ξ1) and if α > 1 thenrhT (t; ξ1; α) >

rh⊥T (t; ξ1).

5 Dependence measures

Analogous to the Clayton (1978) and Oakes (1989) association measures based on cross ratios of

bivariate survival functions, Sankaran and Gleeja (2006) defined a local dependence measure in terms

of a bivariate distribution function, given by

λ (x, y) =
F12F

F1F2

whereF = F (x, y), F12 = ∂2F (x,y)
∂x∂y

, F1 = ∂F (x,y)
∂x

andF2 = ∂F (x,y)
∂y

. The symbolλ (x, y) can be

interpreted as the ratio of the reversed hazard ratio of the conditional distribution ofX givenY = y

to that ofX givenY < y, i.e. λ (x, y) =
rhY =y(x|y)

rhY <y(x|y)
; by simmetry a similar interpretation holds with

(X, Y ) interchanged. Sankaran and Gleeja (2006) proved thatλ (x, y) = 1 if and only if X andY

are independent. Moreover, Sankaran and Gleeja (2008) declare that(X,Y ) is LCSD if λ(x, y) > 1.

Domma (2009 b) provided a stronger result about this measure having proved thatλ(x, y) > 1 if and

only if (X, Y ) is LCSD. In particular, he proved the following

Proposition 5 The following statments are equivalent:

i) λ (x, y) > 1

ii ) ∂2 ln F (x,y)
∂x∂y

> 0

iii ) (X, Y ) is LCSD.

Recalling that the bivariate Rodriguez-Burr III density isTP2 if α < 1 and thatTP2 implies

LCSD then we can conclude that for this modelλ (x, y) > 1 if and only if α < 1. On the other hand,

it is easy to verify that ifα > 1 thenλ (x, y) < 1. In fact, we have

λ (x, y) =
1

β
{(β + 1)−B}
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whereB =
α(1+αλγx−θy−δ+λx−θ+γy−δ)

(1+αλx−θ)(1+αγy−δ)
.

Thus,λ (x, y) > (<)1 if and only if (1−B) > (<)0 and this holds if and only ifα < 1(> 1). �

Analogous to theφ1(x, y) andΨ(x, y) measures proposed by Anderson et al. (1992), Sankaran

and Gleeja (2008) defined two dependence measures based on the mean reversed residual life and

bivariate distribution function, respectively, given by

φ̄1(x, y) =
E (x−X|X < x, Y < y)

E (x−X|X < x)
=

µrY <y(x, y)

µr(x)

and

Ψ̄(x, y) =
P (X < x|Y < y)

P (X < x)
=

F (x, y)

F (x, +∞)F (+∞, y)
.

Moreover, they proved that̄φ1(x, y) = Ψ̄(x, y) = 1 if and only if X andY are independent and if

λ(x, y) > 1 thenφ̄1(x, y) > 1.

In order to compute the dependence measureφ̄1(x, y) for the bivariate Rodriguez-Burr III distri-

bution, we preliminarily calculate the following expression:∫ x

0

F (u, y)du =
(
1 + γy−δ

)−β
∫ x

0

(
1 + kyλu−θ

)−β
du =

= FY (y; β, γ, δ)

∫ x

0

FX(u; β, kyλ, θ)du =

= FY (y; β, γ, δ)FX(u; β, kyλ, θ)µr(x; β, kyλ, θ).

Using this result, we obtain

µr1(x, y) =

∫ x

0
F (u, y)du

F (x, y)
=

FY (y; β, γ, δ)FX(u; β, kyλ, θ)

F (x, y)
µr(x; β, kyλ, θ) = µr(x; β, kyλ, θ)

because it is simple to prove thatFY (y; β, γ, δ)FX(u; β, kyλ, θ) = F (x, y). After all, the measure

φ̄1(x, y) for the bivariate Rodriguez-Burr III distribution is given by

φ̄1(x, y) =
µr(x; β, kyλ, θ)

µr(x; β, λ, θ)
.

Finally, we point out that ifα = 1, φ̄1(x, y) = 1 becauseky = 1.

For the bivariate Rodriguez-Burr III distribution, Domma (2009 a) proved that(X, Y ) is PQD

(NQD) if and only if α < (>)1, henceΨ̄(x, y) > (<)1 if and only if α < (>)1; In fact, since the

marginal distribution of this model are Burr III, i.e.F (x, +∞) =
(
1 + λx−θ

)−β
andF (+∞, y) =(

1 + γy−δ
)−β

, the dependence measuresΨ̄(x, y) is given by

Ψ̄(x, y) =

{ (
1 + λx−θ

) (
1 + γy−δ

)
(1 + αλγx−θy−δ + λx−θ + γy−δ)

}β

,

for which it is immediate to deduce thatΨ̄(x, y) > 1 if and only if α < 1.
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ratio.Economie Appliqúee, XXXIII, pp. 327-367.

[8] Dagum C. (1999). Linking the functional and personal distributions of income. In: J. Silber
(ed.): Handbook on Income Inequality Measurement, Boston, Dordrecht, and London: Kluwer,
pp. 101-128.

[9] Domma F. (2007). Asymptotic Distribution of the Maximum Likelihood Estimators of the Pa-
rameters of the Right-Truncated Dagum Ditribution.Communication in Statistics - Simulation
and Computation, 36:6, pp. 1187-1199.

[10] Domma F. (2009 a). Some Properties of the Bivariate Burr Type III Distribution.Statistics:
Journal of Theoretical and Applied Statistics, forthcoming.

[11] Domma F. (2009 b). Bivariate Reversed Hazard Rate, Notions and Measures of Dependence and
their Relationships.Submitted.

[12] Domma F., Latorre G. and Zenga M. (2009). Reliability studies of Dagum distribution.Submit-
ted

[13] Gove J.H., Ducey M.J., Leak W.B. and Zhang L. (2008). Rotated sigmoid structures in managed
uneven-aged northern hardwood stands: a look at the Burr type III distribution.Forestry , 5
February 2008. DOI:10.1093/forestry/cpm025.

[14] Holland P. W. and Wang Y. J. (1987). Dependence function for continuous bivariate densities.
Communication in Statistics - Theory and Methods, 16, pp. 863-876.

10



[15] Hose G.C. (2005). Assessing the Need for Groundwater Quality Guidlines for Pesticides Using
the Species Sensitivity Distribution Approach.Human and Ecological Risk Assessment, 11, pp.
951-966.

[16] Joe H. (1997).Multivariate Models and Dependence Concepts, Chapman and Hall, London.

[17] Johnson N.L. and Kotz S. (1975). A vector valued multivariate hazard rate.Journal of Multi-
variate Analysis, 5, pp. 53-66.

[18] Kleiber C. (2007). A Guide to the Dagum Distribution.WWWZ Working Paper 23/07,
www.wwz.unibas.ch.

[19] Kleiber, C., Kotz, S. (2003).Statistical Size Distribution in Economics and Actuarial Sciences.
John Wiley & Sons, Inc., New York.

[20] Klugman S.A., Panjer H.H. and Willmot G.E. (1998).Loss Models. John Wiley, New York.

[21] Lehmann E. L. (1966). Some concepts of dependence.The Annals of Mathematical Statistics,
37, pp. 1137-1157.

[22] Lindsay S.R., Wood G.R. and Woollons R.C. (1996). Modelling the diameter distribution of
forest stands using the Burr distribution.Journal of Applied Statistics, 23, 6, pp. 609-619.

[23] Mielke P.W. (1973). Another family of distributions for describing and analyzing precipitation
data.Journal of Applied Meterology, 12, pp. 275-280.

[24] Mielke P.W. and Johnson E.S. (1973). Three-parameter kappa distribution maximum likelihood
estimates and likelihood ratio test.Monthly Weather Review, 101, pp. 701-707.

[25] Mokhlis N.A. (2005). Reliability of a Stress-Strength Model with Burr type III Distributions.
Communication in Statistics - Theory and Methods, 34, pp. 1643-1657.

[26] Nelsen R.B. (1997). Dependence and Order in Families of Archimedean Copulas.Journal of
Multivariate Analysis, 60, pp. 111-122.

[27] Oakes D. (1989). Bivariate survival models by frailties.Journal of the American Statistical As-
sociation, 84, pp. 487-493.

[28] Quintano C. and D’Agostino A. (2006). Studying inequality in income distribution of single-
person households in four developed countries.Review of Income and Wealth, 52, 4, pp. 525-
546.

[29] Rodriguez R. N. (1980), Multivariate Burr III distributions, Part I. Theoretical Properties. Re-
search Publication GMR-3232, General Motors Research Laboratories, Warren, Michigan.

[30] Rodriguez R. N. (1983). Frequency surfaces, system of. In: Encyclopedia of Statistical Sciences,
Vol. 3, pp. 232-247. Wiley, New York.

[31] Roy D. (2002). A characterization of model approach for generating bivariate life distributions
using reversed hazard rates.J. Japan Statist. Soc., 32, 2, pp. 239-245.

[32] Sankaran P. G. and Gleeja V. L.(2006). On bivariate reversed hazard rates.J. Japan Statist. Soc.
, 36, 2, pp. 213-224.

11



[33] Sankaran P.G. and Gleeja V.L. (2008). Association measures for bivariate lifetime data.Com-
munication in Statistics-Theory and Methods, 37, pp. 3228-3249.

[34] Shaked M. (1977). A family of concepts of dependence for bivariate distributions.Journal of
the American Statistical Association, 72, 359, pp. 642-650.

[35] Shao Q. (2000). Estimation for hazardous concrentations based on NOEC toxicity data: an
alternative approach.Environmetrics, 11, pp. 583-595.

[36] Shao Q., Chen Y. D. and Zhang L. (2008). An extension of three-parameter Burr III distribution
for low-flow frequency analysis.Computational Statistics & Data Analysis, 52, pp. 1304-1314.

[37] Sherrick B. J., Garcia P. and Tirupattur V. (1996). Recovering probabilistic information from
option markets: test of distributional assumptions.The Journal of Future Markets, 16, 5, pp.
545-560.

[38] Sklar A. (1959). Fonctions de repartition an dimensions et leurs marges.Publ. Inst. Statist.
Univ. Paris, 8, pp. 229-231.

[39] Yari Gholamhossein and Mohammad-Djafari Ali (2008), Information and covariance matrices
for multivariate Burr III and Logistic distributions.Applied Probability Trust, 2 February, 2008
( http : //arxiv.org/PS cache/physics/pdf/0404/0404063v1.pdf ).

12


