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New developments on the use of bivariate Rodriguez-Burr Il
distribution in reliability studies

Abstract

In this paper we study the bivariate Rodriguez-Burr 1l distribution from a reliability point
of view. In particular, we derive various functions used in reliability theory of conditional dis-
tributions, viz hazard rate, reversed hazard rate, mean residual life and mean reversed residual
life and, using some notions of dependence, their monotonicity is discussed. Finally, some mea-
sures of dependence based on the distribution function and on the mean reversed residual life are
investigated.
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1 Introduction

It is well-known in the literature that the Burr Ill distribution is the third example of solutions of the
differential equation defining the Burr system of distribution (Burr, 1942). This distribution has been
widely used in various fields of sciences, in some cases with different parameterizations and under
other names. For example, it is called inverse Burr distribution in the actuarial literature (see, e.g.,
Klugman et al., 1998) and kappa distribution in the metereological literature (Mielke, 1973; Mielke
and Johnson, 1973). A generalization of Burr Il model, called Dagum distribution, has been suc-
cessfully used in studies on income and wage distribution as well as in those on wealth distribution
(see Dagum, 1977, 1980; Kleiber and Kotz, 2003; Quintano and D’Agostino, 2006; Kleiber, 2007,
Domma, 2007). The Burr Il distribution has been employed in financial literature, environmental
studies, in survival and reliability theory (see, i.e., Sherrick et al. (1996); Lindsay et al. (1996); Gove
et al. (2008); Shao (2000); Hose (2005); Al-Dayian (1999); Mokhlis (2005)). Recently, Shao et al.
(2008) proposed the use of the so-called extended Burr Il distribution in low-flow frequency analysis

where the lower tail of a distribution is of interest.

Rodriguez (1980) proposed the extension to the bivariate case of univariate Burrr 111 distribution
and derived the conditional density, conditional moments and correlation index. Since then, papers
on the bivariate Rodriguez-Burr Il distribution has been rather skimpy comparated with the work



that has been carried out, for example, on bivariate Burr Xll. Recently, some authors studied various
reparameterization and/or special cases of the model proposed by Rodriguez. For example, study-
ing the relation between the functional and personal distribution of income, Dagum (1999) obtained
a reparameterization of bivariate Rodriguez-Burr 11l for modelling the distribution between human
capital and wealth. Bismi G. Nadh et al. (2005) provided a general method of generating multivariate
Burr distribution extending the differential equation proposed by Burr (1942) to higher dimensions.
Solving the corresponding set of partial differential equations, they obtained the bivariate Burr system
of distributions of which the type Ill is a member; moreover, they calculated some functions (such
as, for example, survival function and reversed hazard rate) useful in the reliability theory. Yari and
Mohammad-Djafari (2008) determined the exact form of the Fisher information matrix of a special
case of the Rodriguez-Burr Il distribution. Studying some properties and indices of dependence of
the bivariate Rodriguez-Burr Il distribution, Domma (2009 a) proved that the model can describe
also situations of negative dependence. Evidently, this results permits to extend the range of potential
application of the bivariate Rodriguez-Burr Il distribution in various fields of sciences.

In this paper, we study the bivariate Rodriguez-Burr 1l distribution of reliability point of view. In
particular, using some notions of dependence, we analyse the behaviour of various functions, used in
reliability theory, of distributions of a random variahlé givenY = y, of X givenY < y and of
X givenY > y. Moveover, we calculate several dependence measures used in reliability theory and
survival analysis.

The paper is organized as follows. $ection 2we introduce the model and we describe its main
features. Moreover, we prove that the bivariate Rodriguez-Burr Il density functido®is(totally
positive of order 2).Section 3ontains some definitions and background of reliability functions and
some notions of dependence. The hazard rate, the reversed hazard rate and other functions of the
conditional distributions used in reliability theory and their monotonicity are discussgeation 4
Properties of some measures of dependence are investig&edtion 5

2 The Model

In this section, we briefly introduce the bivariate and the conditional Rodriguez-Burr 11l distributions
and we prove that the bivariate density functioff'i82.

A random vector( X, Y'), with X andY continuous and non-negative random variables, is Ro-
driguez - Burr Il distributed if its joint distribution function is

Fxy(#,;8) = (1+ ada %y + Ae? +4y7°) ", (1)



where¢ = (6,\,7,6,0,a) with A > 0,7 > 0,6 > 0,60 > 0,6 > 0and0 < a < (6 + 1), with
bivariate density function

Frv(@,yi€) = B0z~ (14 adya ™y 4+ da ™ 4y ) T x

{B+1)(1+ adr (1 +ayy™®) —a (1+ adyrly0 4+ X f + Vyfé)}

(see Rodriguez, 1980 and 1983). It is simple to verify that the marginal distributiokisaodY” are
Burr I1l (Burr 1942, Dagum 1977) with distribution function given by (z; 5, A, 6) = (1 + )\x—g)_ﬁ
and By (y: 5,7,8) = (1 +7y~°) "
conditional distribution function ok givenY = y, respectively, are

, respectively. Furthermore, the conditional density function and

fy=y(z|y; &) = Mz~ (1 + k:y/\x_e)_ﬁ_2 [k:y(ﬁ +1)(1+axz™) — a1+ ky)\x_e)] (2)

Fy—y(zly; &) = 1 + kA z™%) 7711+ adz™), 3)

wherek, = (”“W_;&). We notice thatX andY are independent ik = 1. Indeed, from (2) ifv = 1
Y (I+vy~°)

then fy—y(zly; §) = fx(x;&,), sincek, = 1, whereg, = (5, A,0) .

It is easy to verify that a random variahlé givenY < y is Burr Ill distributed, with conditional
density function and conditional distribution function, respectively, given by

fr<y(zly; §) = ﬂk‘y)\@x_e_l(l + ky)\x—9>—,8—1 @

Fy<y(zly; €) = (1+ kyAz™) 7. (5)

In oder to study the dependence betwéeandY’, we use the following definition.

Definition 1 A non-negative function defined orR? is totally positive of order 2, if for alk; < x5,
y1 < y2, With z;, y; € R, it holds that g(x1, y1)g(z2, y2) > g(z2,11)9(z1,92) (See Joe, 1997). If the
inequality is reversed thepis reverse rule of order 2R R2).

We highlight that ifg is the joint density function of random vectoX,Y') then T'P2 coincides

with the positively likelihood ratio property of Lehmann (1966). TH&2 is a notion of positive
dependence and is the strongest of all dependence notions in the literature; for a deep discussion on
dependence see, for example, Joe (1997). Holland and Wang (1987) proved the following theorem
useful for verify whether a bivariate density functiori/i$2

Theorem 2 The density of a random vectdX,Y) is TP2 if vy¢(z,y) > 0, wherevs(z,y) =

021n f(z,y)

5.0~ Is called local dependence function.
oY



For the bivariate Rodriguez-Burr 11l density, it can be verified that

0+2 onﬂ}

e ©)

Yi(z,y) = (1 — a)fydz 0ty 0! {

whereA = (1+aMz %y + Xz7? +yy~?) andB = {(B+ 1)(1 + aXz™?) (1 + ayy ™) — aA}.
Thus, fxy (z,y) iIsTP2if o < 1. This property will be used in studying the monotonicity of certain
failure rates.

3 Some definition and background

In this section, we report the definitions of hazard rate and reversed hazard rate in the bivariate set-
ting and some notions of dependence that we will use throughout the papefX ¥} be a two
dimensional random variable with probability density functiti:, v), distribution functionF'(z, y)

and survival functior(z, y). It is well-known that the hazard gradient (Johnson and Kotz, 1975) is:
hy5(z,y) = (h(z,y), he(z,y)) where

~ O0InS(z,y)

0ln S(x,
hi(z,y) = hysy(aly) = ———F5 == and  ha(2,y) = hxsalylz) = 9 S(@,y)

oy

Moreover, the bivariate reversed hazard rate as a vector (Roy, 200R) igz, y) = (rhi(z, y), rha(x, y)),

where

Oln F(z,y)
Ox

Oln F(z,y)
dy

rhy(z,y)Az is the probability of failure of the first component in the inter¢al— Az, x) given

rhi(z,y) = rhy<,(zly) = and rho(z,y) = rhx<.(ylx) = )

that it has failed before and the second component has failed beforEhe intepretation ofhs(x, y)

is similar.

In the final part of this section, in order to study the dependence betWesmdY’, we recall some
notions of dependence. The random ve¢torY') is said to be left corner set decreasiig (S D) if
P(X <z,Y <y|X <2,Y <y') is decreasing i andy’ for all z,y. Analogous to the Shaked
(1977) forRC' ST (right corner setincreasing), Domma (2009 b) proved that the random Véttdr)
is LOCSD if and only if rhy(x, y) is increasing iny for all z andrhy(z,y) is increasing ine, for all
y. Moreover, X andY are said to be positively (negatively) quadrant dependett9 (NQ D)) if
P(X <Y <y) > (<)P(X < 2)P(Y < y); see Lehaman (1966) and Joe (1997). Finallys
said to be left tail decreasing if, LT D(Y'|X), if P(Y < y|X < x) is decreasing in: for all y.
For the aims of this work, it is worthwhile pointing out the following relationships among dependence
properties. If the joint density functiorfxy (x,y) is TP2 then(X,Y) is LCSD and RCSI; the



bivariate distribution functiot’xy (x, y) is T P2 if and only if (X, Y") is LC'S D, the bivariate survival
function Sxy (z,y) is TP2 if and only if (X,Y") is RCSI. Moreover, it is well known thaL.C'SD
implies bothLTD(Y'|X) and LT D(X|Y), but LT D(Y|X) and LT D(X|Y') taken together do not
imply LCSD; likewise, RC'ST implies bothRTI(Y|X) and RTI(X|Y). Finally, it can be easily
seen that bot 7D (Y| X) and RT'1(Y| X)) imply PQD; for more details see Joe (1997) and Nelsen
(1999).

4 Reliability functions of conditional distributions

In this section, we study some functions used in reliability theory based on the conditional distribu-
tions of a random variabl& givenY = y, of X givenY < y and X givenY > y. In particular,
using some notions of dependence, we analyse the behaviour of the reversed hazard rate, hazard rate,
reversed mean residual lifeme and mean residual life for bivariate Rodriguez-Burr 11l distribution.

From (2) and (3), the reversed hazard functioXofivenY = y is given by

M= [k (B + 1) (1 +ada™) — a1 + k,Aa™?)]

rhy—y(z|y; €) = (1+ kA z0)(1 + arz—0)

In order to study the monotonicity ofy—, (x|y; £) as function ofy, it is easy to verify that

Orhy—y(z|y;€) (1 —a)(8 + 1)Aydz 01y =01

dy (T4 kA 0)2(1 4+ yy~0)?

is greater than zero if and onlydf < 1. Similarly, the reversed hazard rate of the conditional distri-

bution of Y given X = z is increasing if and only ifv < 1.

To calculate the mean reversed residual lifeXofgivenY = y, defined as:ury—,(z|y; §) =

foz F(u/y;€)du
F(z/y;€)

= / Fy—y(uly; £)du = / (L+ k™)™ du+ ax / w0 (14 ke ?) " g,
0 0 B

, we consider the following

By simple manipulation, we obtain

1q
v - 0 1 1
/ uf (1 + k’y)\u_e) B+ g, = MB (w*; B+ o 1— 5)
0

whereB (fw*;p, q) = fow* yp_l(l — y)q_ldy, with w* = (1 + ky)\l'_e)_l < 1.

In order to calculatefox (1 + kyAu*G)_(ﬁ+l) du, we observe that Domma et al. (2009) proved

that if the random variabl&l is Burr Il distributed with distribution functionfyy, (w; €y, €2, €3) =



(1+ e;w—*s)~" then the mean reversed residual life is:

1
w s 111
fo FW(uv €1, €2, EQ)du €163 B (Z 1 €1 + €3’ 1 €3>

r(w; €, €2, €3) = —w=
% ( y €1, €2, 3) FW(U;€17€2762) FW(w;€17627€3)

(B+1

with 2* = (1 + e;w™) "' < 1. Now, the function(1 + &k, u~)" ) can be seen as the distribution

function of a Burr Ill random variable with, = 5+ 1, e, = k, A andesz = 6. Therefore, we can write
! -+ , , ,
/ (1 + kyAu ) du = pr(z; 8+ 1,k \,0) x F(x;8+1,k,\,0) .
0
Finally, the mean reversed residual life ¥fgivenY = y is given by:

1
wr (a:\y-g)—W(x?ﬂJF1aky)\,9)F(x;5+1,k:y/\,9) ariki 'B (w' B+ 11— 1)
Y=y ) FY:y(fL"y;g) QFY:y(xly;f) .

The hazard rate and the mean residual life of the random varilgeenY = y, denoted with
hy —,(x|y; &) andpuy -, (z|y; &) respectively, are a complicated functionzof However, their mono-
tonicity as function ofy can be determined by employing the following result due to Shaked (1977).

Lemma 3 If fxy(z,y) is T P2 then the hazard rate ok givenY = y is decreasing iny for all

and the mean residual life of givenY = y is increasing iny for all x.

Using the above result, we can say that ik 1 thenhy_,(x|y; §) is decreasing iry for all = and
py—y(x|y; &) is increasing iry for all .
From (4) and (5), the reversed hazard functioXofjivenY < y is given by

Ol F(x,y) Bk Nz 07t
rhy<y(vly:€) = Ox B (1 i k,Ax=?0)
Y

Using the fact that the random variab¥gY” < y is Burr Il distributed with parameters, &, \
andd, we can say that the mean reversed residual lif& @gfivenY < y is

Bk,N)0B (278 + 5,1~ )
FY<y<x;ﬁ7 kyAvg) ‘
Now, provided that the random variablgY" < y is Burr 1l distributed, then the reversed hazard

function and the mean reversed residual life as functionisfdescribed in Domma et al. (2009).

HTy <y (l’, ﬁa ky)\a 0) =T —



In order to study the monotonicity ey -, (z|y; £) as function ofy, we recall that iffxy (z, y) is
TP2then(X,Y)is LCSD. Using the result by Domma (2009 b), we can conclude that ¢ 1
thenrhy -, (z]y; €) is increasing iny for all .

The hazard rate and the mean residual life of the conditional distributio¥ givenY > v,
denoted byyy -, (z|y) anduy -, (x|y) respectively, as function afshow a complicate form. However,
their monotonicity as a function af can be determined by employing the following result due to
Shaked (1977).

Lemma 4 If fxy(x,y) is T P2 then the hazard rate ok givenY > y is decreasing iny for all
and the mean residual life of givenY > y is increasing iny for all .

Using this result, we can conclude thatif< 1 thenhy,(z|y; ) is decreasing iy for all = and
Ly sy (x|y; &) is increasing iny for all x.

The distribution of maximum of two random variabl&sandY play an important role in various
statistical applications. For example, in reliability studi€s= maz(X,Y) is observed if the com-
ponents are arranged in a parallel system. In the final part of this section, using the copula approach,
we study the effect of the dependence parameter on the reversed hazard rate of the random variable
T'. By Sklar’s theorem (Sklar, 1959), the Rodriguez-Burr Il copula function is:

Cxy (u,v) = {1 + o <u*% - 1) <v*% — 1) + (uf% — 1> + <7f% - 1>}ﬁ (7)

whereu, v € [0,1] x [0, 1], see Domma (2009 a). L&t = max(X,Y") be the maximum in a random
sample of size two from (1). Then, the distribution functiorf o

Fr(t,€) = Pr{maz (X,Y) <t} = Cxy (Fx(t,&1), Fy(t,€2); ).
Moreover, if F'x (z; &€1) and Fy (y; €2) are identical then
Fr(t,€;a) = dc (Fx(t;€,); @) (8)

wherede (Fx(t;€1;a)) = C(Fx(t; &), Fx(t;€,); «) is the diagonal section of copuld(.;.), see
Nelsen (1999). Therefore, it is simple to verify that the diagonal section of copula function (7) is

Cr (x(t8) Frttgra) = {1 (IBen —1) 2 (e -1) )
— {1+aXt ¥ yon) "
Therefore, the distribution function and density functiorfofespectively, are
Fr(t;&;0) = {1+ a2 42207 (9)



and
frt; €5a) = 2800677 (1 4+ axt™) {1+ aX?t7% + 2)\t*9}7671 (10)

Moreover, the reversed hazard ratelois
_ fr(t:€50)

Fr(t; &; )
whererh(t; £,) = 229" is the reversed hazard rate®fvhenX andY are independent. By (11)

(1+>\t*9)
it is simple to verify that ifc < 1 thenrhp(t;€,;a) < rhz(t;€,) and ifa > 1 thenrhp(t;€,;a) >

Tthl“_(t;€1>'

L+ (1+ o)At + aX?t=2]
(14 2Xt79 4+ aA2t=2]

rhr(t; &y; ) = rhy(t;€,) % [ (11)

5 Dependence measures

Analogous to the Clayton (1978) and Oakes (1989) association measures based on cross ratios of
bivariate survival functions, Sankaran and Gleeja (2006) defined a local dependence measure in terms
of a bivariate distribution function, given by

Fo F
A -
(=.v)= 55
whereF = F(z,y), Fia = 2520 = 2500 and p, = 2540 The symbol) (z,1) can be

interpreted as the ratio of the reversed hazard ratio of the conditional distributiSrgafenY” = y
to that of X givenY < y, i.e. A (x,y) = :’;sz—m by simmetry a similar interpretation holds with
(X,Y) interchanged. Sankaran and Gleeja (2006) provediiaty) = 1 if and only if X andY
are independent. Moreover, Sankaran and Gleeja (2008) declat&thaj is LCSD if A(z,y) > 1.
Domma (2009 b) provided a stronger result about this measure having provedithat > 1 if and

only if (X,Y")is LC'SD. In particular, he proved the following
Proposition 5 The following statments are equivalent:
i) A(z,y) >1

") 9% In F(z,y)

oxdy >0

i) (X,Y)isLCSD.

Recalling that the bivariate Rodriguez-Burr Il densityli$’2 if a < 1 and that7 P2 implies
LCS D then we can conclude that for this modelr, y) > 1 ifand only if « < 1. On the other hand,
it is easy to verify that itv > 1 then\ (x,y) < 1. In fact, we have

A(x,y)=%{(ﬁ+1)—3}



a(1+a)\'ym_9y_5+>\x_9+'yy_5)
(1+a/\x—9) (1+a'yy—5)

Thus,\ (z,y) > (<)l ifand only if (1 — B) > (<)0 and this holds if and only ifc < 1(> 1). O

whereB =

Analogous to they (z,y) and ¥(z,y) measures proposed by Anderson et al. (1992), Sankaran
and Gleeja (2008) defined two dependence measures based on the mean reversed residual life and

bivariate distribution function, respectively, given by
- Er—-X|X <2,Y <y) prye,(z,y)

P1(x,y) = E(x—X[X<z) ()
d
an .  P(X<alY <y) F(z,y)
(z,y) = P(X<z)  Flz,+00)F(+00,y)

Moreover, they proved that, (z,y) = ¥(x,y) = 1 if and only if X andY are independent and if
AMz,y) > 1theng,(z,y) > 1.

In order to compute the dependence measute, y) for the bivariate Rodriguez-Burr 11l distri-
bution, we preliminarily calculate the following expression:

/ Flu,y)du = (1 +7y_6)_ﬁ/ (1+ k:y)\u_e)_ﬁ du =
0 0

= Fy(y,ﬁ,"y,é)/ FX(uaﬁaky)\,6>du:
0

= FY(yJ ﬁ7 e 6)FX<U7 57 ky)\a H)MT(ZC, 67 ky)\u 6)
Using this result, we obtain

xF ’ d F 3 12 76F ; ,k'y)\,e
Jo F((;L yy)) u _ Fy(y; 8.7 F)(xXgE;L s ) (B kA 0) = pur(a: B KA 0)

because it is simple to prove thay (y; 5,7v,0)Fx(u; 3, k,\,0) = F(x,y). After all, the measure

/4”"1(% y) -

¢1(z,y) for the bivariate Rodriguez-Burr Il distribution is given by

, _ (@ 8, kA 0)
A(2,y) = ur(x;ﬁ,iwe) '

Finally, we point out that ify = 1, ¢, (z,y) = 1 becausé:, = 1.
For the bivariate Rodriguez-Burr Il distribution, Domma (2009 a) proved thaty") is PQD
(NQD) if and only if « < (>)1, hence¥(z,y) > (<)1if and only if « < (>)1; In fact, since the

marginal distribution of this model are Burr Il i.e7(z, +o0) = (1 + Aa:‘e)fﬁ and F'(+o0,y) =
(1+ vy*‘s)_ﬁ, the dependence measuregr, y) is given by

—0 -5 A
\P(%y):{( (1+ Xz (1+7y79) )} |

1+ adyz=fy=9 + X\x=0 + ~yy—9

for which it is immediate to deduce thét(z, y) > 1ifand only if o < 1.
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