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Comparing the effectiveness of rank correlation
statistics

Abstract: Rank correlation is a fundamental tool to express dependence in cases in
which the data are arranged in order. There are, by contrast, circumstances where
the ordinal association is of a nonlinear type. In this paper we investigate the effec-
tiveness of several measures of rank correlation. These measures have been divided
into three classes: conventional rank correlations, weighted rank correlations, cor-
relations of scores. Our findings suggest that none is systematically better than the
other in all circumstances. However, a simply weighted version of the Kendall rank
correlation coefficient provides plausible answers to many special situations where
intercategory distances could not be considered on the same basis.

Keywords: ordinal data, nonlinear association, weighted rank correlation.

1 Introduction

Measuring agreement between two sets of rankings is an issue frequently en-
countered in research studies. Classic fields where rank data occur are market seg-
mentation, information retrieval, biosignal analysis, priority ranking and consensus
formation, sorting algorithms, scales of symptoms and feelings, risk and credit scor-
ing.

Throughout this paper we will examine situations of the following type. Con-
sider a fixed set of n distinct items ordered according to the different degree in
which they possess two common attributes represented by X and Y . Let us sup-
pose that each attribute consist of a host of intangibles that can be ranked but not
measured and that the evaluations are expressed in terms of an ordinal scale of n
ranks: q = q1, q2, · · · , qn for X and s = s1, s2, · · · , sn for Y . Here we consider
only a complete linear ordering case so that si and qi take on value in the set of
integers {1, 2, · · · , n}; moreover, evaluators are asked to decide on a definite rank
order for each attribute so that no two items are given the same rank. In practice,
the vectors s and q are elements of nPn, the set of all n! permutations. With no
essential loss of generality we may assume that si is the rank of yi after q has been



arranged in its natural order (qi = i, i = 1, 2, · · · , n) with the corresponding ranks
si aligned beneath them.

1 2 · · · i · · · n− 1 n q

s1 s2 · · · si · · · sn−1 sn s
(1)

This scenario can be also invoked when one considers ranks as manifestations
of an underlying absolutely continuous random variable whose observed values are
transformed into a ranking. Ranking methods, in fact, are often recommended when
the variables are scaled over a different range or the absolute distance among their
values is unknown or cannot be measured for practical or theoretical reasons. Also,
a rank transformation may be employed in order to avoid distortion because of the
actual data are contaminated with error or include outliers.

A rank correlation r (q, s) is a statistic summarizing the degree of association
between two arrangements q and s where q acts as a reference to the other. For
comparability, the coefficients are usually constructed to vary between −1 and 1.
Their magnitude increases as the association increases with a +1 (−1) value when
there is perfect positive (negative) association from concordance (discordance) of
all pairs. For a different choice see [11] or [37]. The value of zero is indicative of
no association, but does not necessarily imply independence.

Rankings in (1) are referred to a classification of n items with 1 assigned to the
most preferred item, 2 to the next-to-most preferred and so forth. If an opposite ori-
entation of the arrangement is applied, then a rank correlation statistic that changes
its sign, but not its absolute value is said to be antisymmetric under reversal

r (q, s) = −r (q, s∗) (2)

where s∗i is the antithetic ranking of si, that is, s∗i = n − si + 1, i = 1, · · · , n. The
usefulness of this principle is that a classification of n items can be organized ac-
cording to the types of problems that occur and thereby providing more meaningful
measurement.
The inverse permutation s′ of s is the ranking of q with respect to that of s, that
is, s′si

= i, i = 1, · · · , n. A rank correlation statistic is said to be symmetric under
inversion if

r (q, s) = r (q, s′) (3)

Conditions (2) and (3) can easily be obtained by averaging the statistic computed



on the ordinary ranks with the same statistic computed on the antithetic and inverse
permutation, respectively (e.g. [5], [13],[31]).

The main objective of this paper is to examine a selection of rank correlations and
identify limitations and merits of each relatively to various situations of nonlinear
type. The contents of the various sections are as follows. Section 2 presents several
cases of nonlinear association between rankings. In section 3 we will concentrate
mainly on analyzing the fundamental factors that affect the behavior of some con-
ventional rank correlation statistics under a nonlinear interaction. In particular, we
will show the inadequacy of standard coefficients to deal with such situations. Sec-
tion 4 reviews the general formulation of weighted rank correlations in which the
incorporation of a weight function allows more flexibility in the measure of agree-
ment for permutations. The function is to be chosen so as to weigh the comparisons
according to the importance attached to various subsets of ranks. In this sense, sec-
tion 4 highlights the more salient features and the performance of several choices
of the weight function. Section 5 reports on a class of correlation statistics obtained
by computing the Pearson product-moment correlation coefficient on suitably cho-
sen scores that replace ordinary ranks. In section 6 we obtain the critical values of
the most promising coefficients to enable such statistics to be applied to real data.
Finally, we conclude and point out future research direction in section 7.



2 Nonlinear association

Situations in which a coefficient of agreement/disagreement should take into
account the contextual factors that affect judgment are common in real world. In
this section we describe a number of tight but nonlinear relationships between two
rankings.

Ceiling or floor effects. These represent cases of limited resource allocation be-
cause ascribing higher importance to one item reduces the importance of another.
For example, it is more satisfactory to place the winner in a race in the first posi-
tion than to place the worst contestant last. In other cases differences in low ranks
would seem more critical. For example, when an admission office expunges the less
qualified candidates.

Bipolarity conditions. The top-down and the bottom-up process may simultane-
ously affect the same attribute giving rise to a bi-directional effect. Let us consider,
for example, the comparison of the final league tables with expert forecasts made
before the start of the season. In league football, both the teams placed near the top
(which gain promotion) and those placed near the bottom (which risk relegation) are
relevant to evaluate the accuracy of the prediction. The teams placed in the middle
part of the rankings have negligible influence.

Quadratic trends. Two of the most common nonlinear patterns are a U -shaped
and an inverted U -shaped relationship in which the values in the ranking show an
increase followed by a decrease or vice versa. An example of the former is the
environmental Kuznets curve predicting that the environmental quality appears to
deteriorate with countries’ economic growth at low levels of income, and then to
improve with economic growth at higher levels of income. An example of an in-
verted U-shaped pattern is the Yerkes-Dodson law relating the level of arousal and
the expected quality of performance.

Bilinear association. Increasing degree of attribute Y are combined with in-
creasing degree of attribute X , but in a bilinear ascending (descending) pattern the
mean of the ranks to the left of the central rank of Y is significantly higher (lower)
than the mean of the ranks on opposite side. These situations may occur, for in-
stance, when the evaluators tend to separate the items under consideration into two
distinct groups, but all the items in a group are considered superior, in some sense,
to all the items in the other group.



In order to get a feeling as to the nature of nonlinear association, the relationships
discussed above are illustrated in Table (1) with n = 15 fictitious rankings. The
abbreviation LH (HL) indicates that the lowest (highest) points of the scale come
first. The suffix A and D stand for ascending and descending respectively.

Table 1: examples of nonlinear rankings

A Natural ordering 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B Inverse ordering 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
C Floor effect 1 2 3 4 15 14 13 12 11 10 9 8 7 6 5
D Ceiling effect 11 10 9 8 7 6 5 4 3 2 1 12 13 14 15
E Bipolarity/A 1 2 3 4 11 10 9 8 7 6 5 12 13 14 15
F Bipolarity/D 15 14 13 12 11 6 7 8 9 10 5 4 3 2 1
G U-shaped/LH 8 7 6 5 4 3 2 1 9 10 11 12 13 14 15
H U-Shaped/HL 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8
I Inverted U/LH 1 2 3 4 5 6 7 8 15 14 13 12 11 10 9
J Inverted U/HL 9 10 11 12 13 14 15 8 7 6 5 4 3 2 1
K Bilinear/A 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
L Bilinear/D 8 7 6 5 4 3 2 1 15 14 13 12 11 10 9

Naturally, such nonlinearities are not exhaustive. For instance, we have ne-
glected orderings affected by a critical region phenomenon, that is, a relationship
exists within the central part of the scale of measurement, but at the extremes no
relationship is observed, either by virtue of insensitivity of the measures, or through
some more intrinsic characteristic of the causal relationship, or because the errors
of observations are greatest at the extremes. However, we believe that the rankings
in Table (1) cover some of the most interesting cases or, at least, those more often
mentioned in the applied statistics literature.



3 Conventional rank correlations

In [26] a simple technique is suggested for devising a nonlinear rank correlation
that does not take explicitly into account a weighting scheme for ranking compar-
isons. First we define a ranking q which shows such behavior perfectly. Given some
other ranking s we measure its departure from such an ideal behavior by quantifying
the nonlinear deficit by a distance δ (.) suitable for rankings

r (q, s) = 1− 2
δ (q, s)

max
q,s∈nPn

δ (q, s)
(4)

where nPn is the set of all n! permutations. The smaller δ (.), the more similar are
the two rankings. The famous rank correlation coefficients proposed by Kendall’s
[21] and Spearman [35], can be expressed using (4). Another example is the ratio
between distance of s from a reference permutation q and distance of s from the
antithetic reference permutation q∗

r (q, s) =
δ (q∗, s)− δ (q, s)

δ (q∗,q)
(5)

The Gini cograduation coefficient, [17], and the Gideon-Hollister maximal devia-
tion, [16], belong to this class (see [5]). Table (2) reports several examples of rank
correlations based either on (4) or on (5).

The indices r1 and r4 are well-known, but continue to be rediscovered. For ex-
ample, the order statistics correlation coefficient proposed in [39] coincides with the
Spearman’s r1 if the order statistics are those of samples drawn from a [0, 1]uniform
distribution. The cograduation coefficient r2 was proposed as an improvement over
the Spearman’s footrule r14 ([36]) and it has been recently rediscovered by [32]
(see also [27]). Index r3 is linked to the Hamming distance between two permuta-
tions, that is, the number of their unmatched ranks. Here h (x) denotes the indicator
function that equals 1 if x is true and 0 otherwise. The statistic r5, given by [16],
originates from the principle of greatest deviation. The coefficient r6 is based on
the squared index of a permutation discussed by MacMahon [22, p 16]. Salvemini
[33] described the Fechner’s coefficient r7 and introduced the rank correlation r8.
The Fechner index r7 can also be determined by the number of “runs up” in the
permutation s; in fact, r7 coincides with the test of randomness devised by [25] and
with the rank correlation statistics based on rises discussed by [31].

Let the (q, s) plane be divided into four regions by the lines q = (n+ 1) /2

and s = (n+ 1) /2. The statistics r9, developed by [4], is based on concor-



Table 2: unweighted rank correlations

Name Formula

Spearman r1 = 1−
6
∑n

i=1 (i− si)
2

n3 − n
Gini r2 = 2

∑n
i=1|i− s∗i |−

∑n
i=1|i− si|

n2 − kn
; kn = n mod 2

Hamming distance r3 =
∑n

i=1 h (si = i)−
∑n

i=1 h (s∗i = i)
n− kn

Kendall r4 =
2
∑

i<j sgn (sj − si)
n (n− 1)

Gideon-Hollister r5 = 2

max
1≤i≤n

i∑
j=1

h
(
s∗j > i

)
− max

1≤i≤n

i∑
j=1

h (sj > i)

n− kn

MacMahon r6 = 1−
12
∑n−1

i=1 i
2h (si > si+1)

2 (n− 1)3 3 (n− 1)2 + n− 1

Fechner r7 =
∑n

i=2 sgn (si − si−1)
n− 1

Salvemini r8 =
∑n

i=2 (si − si−1)∑n
i=2|si − si−1|

Quadrant association r9 =
n1 − n2

n1 + n2

Dallal-Hartigan r10 =
λn − γn

n− 1

Average slope r11 = 2

∑
i<j

(
sj − si

j − i

)
n (n− 1)

Median slope r12 = median

{
bij |bij =

sj − si

j − i
, 1 ≤ i < j ≤ n

}
Knuth r13 = 1− 2

√
6
∑n

i=1 b
2
i

2 (n− 1)3 + 3 (n− 1)2 + (n− 1)

Spearman footrule r14 = 1−
4
∑n

i=1|i− si|
(n2 − kn)

Gordon r15 = 2
(
λn − 1
n− 1

)
− 1

Bhat-Nayar r16 = 1−
2 max1≤i≤n

∑i
j=1 h

(
s′j > i

)
bn
2
c

Linear trend r17 = 1− 1.5

∑n
j=2 [(si−1 + si)− (2i− 1)]2

n3 − 3n2 + 2n

Average determinant r18 =
∏

i<j

(
i− sj

i+ sj

)
The symbols kn, n1, n2, λn, γn are explained in the text.

dance/discordance in the number of pairs n1 belonging to the first and third quad-
rants compared with the number n2 belonging to the second and fourth quadrants.



The coefficient r10 has been suggested by [10] as a measure of monotone cover
that is nearly unaffected by outliers. The symbols λn and γn indicate the maximum
length of a subsequence

(
qij , sij

)
, j = 1, · · · , λn such that both qij and sij are in-

creasing or decreasing respectively (λn is also known as Ulam distance). The slopes
statistic r11 is the average pairwise slope between observation (i, si) and (j, sj). An
analogous concept to r11 is the median r12 of the slopes between all combinations of
two points in the data (see [38]). Coefficient r13 derives from formula (4) applied to
the Euclidean distance between the inversion table of the current ranking (see [22,
p. 12]) and the inversion table of the sorted permutation si = i for i = 1, 2, · · · , n.

A similar coefficient based on the city-block distance gives the same values as
the median slope statistic. The coefficient r15, developed by [18], is a linear trans-
formation of the Gower measure [19] of similarity for variables measured on an
ordinal scale. Coefficient r16, [2], is based on the distance between the identity per-
mutation q and the inverse permutation s′ of s. The values of r17 can be used to
quantify the degree of linear order because it compares the average rank between
two successive terms of s with the average of the corresponding terms in q. Co-
efficient r18, recommended in [24], is the average determinant of the second order
minors with constant sum of elements of each columns from a data matrix of two
ordinal variables. See [1] for an alternative interpretation of r18.

Coefficients in Table (2) have been computed for the rankings in Table 1 and the
results are reported in Table (3).

The findings reveal that unweighted rank correlation coefficients are not well
suited to measure the association in nonlinear cases. The most classical indices
r1 and r4 obtain a high value for the bipolarities E, F and for the inverted U rela-
tionship, but the other nonlinearities turn out not to have a large impact on them.
The values of the Gini’s r2 are very similar to those produced by r1. The Ham-
ming distance r3, the Gideon-Hollister coefficient r5, the Salvemini index r8 and
the Dallal-Hartigan r10 have low values for nearly all rankings. Coefficient r6 de-
scribes properly the bilinear relationships K, L and the floor effect C.

The Fechner index r7 focuses its attention on the bilinear configurations M and
N. The quadrant association r9 illuminates quadratic and bilinear relationships but
the other patterns go undetected; in fact, r9 has a large negative value for too many
patterns which can be misleading. The average slope r11 draws attention to the
dual character in E and F and to the quadratic relationships G, H, I, J. Satisfactory
results have been obtained by the median slope r12 and by r17 which allow a correct



Table 3: values of unweighted correlation coefficients

C D E F G H I J K L
r1 0.21 0.21 0.80 -0.93 0.70 -0.70 0.80 -0.80 -0.50 0.50
r2 0.25 0.25 0.57 -0.79 0.71 -0.71 0.79 -0.79 -0.50 0.50
r3 0.36 0.36 0.14 -0.43 0.50 -0.50 0.57 -0.57 -0.07 0.07
r4 -0.05 -0.05 0.60 -0.81 0.47 -0.47 0.60 -0.60 -0.07 0.07
r5 -0.14 -0.14 0.14 -0.43 0.43 -0.43 0.57 -0.57 -0.43 0.43
r6 -0.94 0.24 0.30 -0.55 0.72 0.72 -0.60 -0.82 0.90 -0.87
r7 -0.43 -0.43 0.14 -0.43 0.00 0.00 0.14 -0.14 0.86 -0.86
r8 0.17 0.17 0.54 -0.64 0.33 -0.33 0.40 -0.40 -0.04 0.04
r9 0.00 0.00 0.14 -0.43 0.86 -0.86 1.00 -1.00 -0.86 0.86
r10 -0.43 -0.43 0.14 -0.43 0.00 0.00 0.14 -0.14 0.43 -0.43
r11 0.24 0.24 0.85 -0.95 0.66 -0.66 0.75 -0.75 -0.41 0.41
r12 -1.00 -1.00 1.00 -1.00 0.88 -0.88 1.00 -1.00 -0.25 0.25
r13 -0.23 -0.23 0.40 -0.87 0.26 -0.38 0.40 -0.91 -0.24 0.05
r14 -0.07 -0.07 0.57 -0.79 0.43 -1.00 0.57 -1.00 -1.00 0.00
r15 -0.43 -0.43 0.14 -0.43 0.00 0.00 0.14 -0.14 0.00 -0.86
r16 -0.43 -0.43 0.14 -0.43 -0.14 -1.00 0.14 -1.00 -1.00 -0.14
r17 0.22 0.22 0.81 -0.89 0.73 -0.77 0.83 -0.88 -0.60 0.60
r18 0.53 0.12 1.00 -1.00 0.25 -0.25 0.78 -0.78 -0.05 0.05

evaluation of most of the effects (the first, however, fails to characterize the bilinear
condition in K and L and the last misses ceiling and floor effects); more importantly,
both the indices have the same magnitude, but opposite sign for the patterns (G,
H) and (I, J). The Spearman’s footrule r14 understates ceiling, floor, and bilinear
descending effects. Moreover, it is not very sensitive to change in ranks since it
assigns the minimum value −1 not only to the association of q with the inverse of
the natural order q∗, but also to other very different arrangements: H, J, K. The
Bhat-Nayar coefficient r16 has a similar behavior. The Gordon index r15 detects the
sign and the magnitude of the bilinear descending pattern L, but it also indicates
a false absence of association in G, H, K. The average determinant achieves its
extreme values for the bipolarity schemes (other than for q and q∗). Moreover, r17

assumes opposite values for complementary configurations: (G,H), (I,J), (K,L) .
The main drawback of the rank correlations included in Table (2) is that most of

them implicitly assume that the level of any one of the items is of equal importance
with the level of any other item and hence we are crediting rankings with possessing
more information than is intended.



4 Weighted rank correlation

The decision to weight or not to weight rank comparisons is a controversial issue.
Those in favor of using “neutral” methods prefer not to weight comparisons; those
opposed argue that giving more weight to agreement on certain comparisons and
less weight to others increases flexibility. The use of the weights, as a matter of
fact, avoids a direct assumption that there is a linear relation between two rankings
and thus uncovers a potential nonlinear association, should it exist. In fact, any
measure of rank correlation has an implicit weighting scheme. For instance, the
Salvemini r8 attributes zero weight to intermediate ranks. Also, the Spearman’s r1
gives greater weight to differences between items separated by more members of
the ranking.

At least part of the problem is how to decide on a plausible set of weights.
[29] showed that the numerous statistical methods for measuring association when
the magnitude of intercategory distances cannot be ignored, group naturally in two
classes: weighted rank correlation and correlation of scores. This section is devoted
to the first type, whereas the second one will be treated in the next section.

The following formula is a weighted version of the Spearman coefficient r1 that
includes several special cases.

r1,w = 1− 2
∑n

i=1wi (i− si)
2

max
nPn

{
n∑

i=1

wi (i− si)
2

} (6)

An alternative generalization can be stated in the following terms

r′1,w =

∑n
i=1 (wi − w̄) si∑n
i=1 (wi − w̄) i

with w̄ = n−1

n∑
i=1

wi (7)

The Spearman coefficient r1 is obtained for wi = i in (6) and in (7).
In[29] two weighted versions of the Kendall coefficient have been developed

additive r4,w,a =

∑n
i<j (wi + wj)h (si < sj)∑n

i=1 (n− i)wi

− 1 (8)

multiplicative r4,w,m =
2
∑n

i<j wiwjh (si < sj)∑n
i<j wiwj

− 1 (9)

The usual Kendall coefficient r4 is obtained from (9) for wi = 0.5, i = 1, 2, · · · , n.



Table 4: weighted rank correlations

Name Formula

Weighted Spearman

Mean rate r19 = 1−
2
∑n

i=1

(i− si)
si

(n+ 1)L1 − 2n
; L1 =

∑n
i=1 i

−1

Salama-Quade 82a r20 = 1−
2
∑n

i=1 (i− si)
2 (
i−1 + s−1

i

)
(n+ 1)

∑n
i=1

[2i− (n+ 1)]2

isi

Salama-Quade 82b r21 = 1−

∑n
i=1

(i− si)
2

isi

(n+ 1)L1 − 2n

Salama-Quade 92 r22 = 1− 6
n (n− 1)

∑n
i=1

(i− si)
2

i+ si

Mango r23 = 1−
3
[
n2 (n+ 1)2 − 4

∑n
i=1 i

2si

]
n (n− 1) (n+ 1)2

Blest r24 = 1−

[
12
∑n

i=1 (n+ 1− i)2 si − n (n+ 2) (n+ 1)2
]

n (n− 1) (n+ 1)2

Symmetrized Blest r25 = 1−
6
∑n

i=1 (i− si)
2 [2 (n+ 1)− (i+ si)]

n4 + n3 − n2 − n
Weighted Kendall

Quade-Salama r26 =
2
∑n

i<j

(
i−1 + s−1

j

)
h (si < sj)∑

i<j

(
i−1 + s−1

j

) − 1

Shieh/a r27 =
2
∑n

i<j (i ∗ j)2 sgn (sj − si)
n (n5/9 + 2n4/15− 5n3/36− n2/6 + n/36 + 1/30)

Shieh/b r28 =
2
∑n

i<j [(n+ 1− i) (n+ 1− j)]2 sgn (sj − si)
n (n5/9 + 2n4/15− 5n3/36− n2/6 + n/36 + 1/30)

Table (4) shows some special cases of formulae (6)-(9) that have already been
considered in the literature.

Coefficient r19 has its premise in the mean rate of change between the identity
permutation q and the actual permutation s. Index r20, suggested by [30], gives
special attention to high-ranked items (1, 2, · · · , ). Coefficients r21 and r22 were
proposed by [29] as variants of the standard Spearman’s r1 The values of r19 · · · r23,
however, are not antisymmetric under reversal.

The index r23, Mango (1997), is a special case of (7) with wi = i2 and thus
places emphasis on the relative importance of low ranks (, · · · , n− 2, n− 1, n).
From another point of view, r23, can be interpreted in terms of the sum of the nC2



second order minors extracted from the (n× 2) matrix having the actual ranking s

as first column and q as second column. The index r24 proposed by [3] derives from
(7) with wi = (n+ 1− i)2 and it can be interpreted as the differences between the
accumulated ranks of the two orderings q and s. The weighting scheme of r24 favors
high ranks (1, 2, · · · , ). Furthermore, (r23 + r24) = 2r1. In [6, 7] is advocated the
use of r25 which is based on the weights wi = [2 (n+ 1)− (i+ si)]; such a scheme
represents not only the importance of the sorted values but also the importance of
the current ranking. [15] observe that r25 is a version of the Blest index constrained
to be symmetric under inversion (see also, [8]).

In their important survey, [29] formulated the new version r26 of Kendall’s r4
which involves the additive weights (8). On the other hand, [34] analyzed (9) with
wi = h (i ≤ b(n+ 1) pc) where p = m/n and m = b(n+ 1) pc. The value of
m must be determined on a case-by-case basis. For this reason, it appears to be
unsuitable for a general use and we preferred using the weighting schemes applied
to the Blest and Mango indices. The weighted rank correlation coefficients included
in Table (4) have been computed for the rankings of Table (1).

Table 5: values of weighted rank correlations

C D E F G H I J K L
r19 0.77 -0.23 0.91 -0.97 0.27 -0.27 0.96 -0.96 -0.23 0.23
r20 0.95 -0.09 0.98 -0.97 0.62 -1.23 0.99 -0.25 -0.13 0.57
r21 0.77 -0.23 0.91 -0.97 0.27 -0.60 0.96 -0.69 -0.29 0.23
r22 0.37 -0.05 0.80 -0.93 0.47 -0.77 0.87 -0.86 -0.62 0.33
r23 0.02 0.41 0.80 -0.93 0.83 -0.57 0.70 -0.90 -0.47 0.53
r24 0.41 0.02 0.80 -0.93 0.57 -0.70 0.90 -0.80 -0.50 0.47
r25 0.41 0.02 0.80 -0.93 0.57 -0.83 0.90 -0.70 -0.53 0.47
r26 0.39 -0.46 0.72 -0.93 0.00 -0.73 0.83 -0.63 -0.31 -0.14
r27 0.68 -0.89 0.72 -0.88 -0.52 -0.95 0.98 0.33 0.38 -0.55
r28 -0.89 0.68 0.72 -0.88 0.95 0.52 -0.33 -0.98 0.55 -0.38

Even in this case, the results leave something to be desired. The mean rate r19

depicts well the bipolarity conditions, the U-shaped/HL and the inverted U/LH pat-
tern, but it fails to identify all the other structures. The index r20 is relatively large
for C, E, and I where the high-ranked items are in the first positions. A moderate
degree of anticorrelation is attributed to F but for the other permutations there is
no tendency for the ranks to run with or against each other. Coefficients r21 and
r22 are in line with r20, but tend to assume a wider variety of values. In addition,



they assign a large negative value to G and H characterized by high-ranked items in
the last positions. From another standpoint, r20, r21, r22 do not stress the inherent
concordance for several nonlinearities or have the wrong sign or are confused (e.g.

for the ceiling effect). The symmetrized Blest index r25 yields values of the same
type as the Blest index r24 but provides a better description of the H pattern, that is,
the U-shaped/HL configuration.

Since r24 (q, s) = −r23 (q, s∗), the index of Mango and the index of Blest act
as complementary statistics. In fact, the quadratic and the bilinear patterns are con-
sistently reflected by the two coefficients. The signs of r23 and r24 are concordant;
nevertheless, these two indices misstate the actual amount of agreement due to a
ceiling or to a floor effect. On the other hand, a high value in both r23 and r24 con-
stitutes a clear symptom that the configuration is ruled by antagonistic forces (e.g.
the patterns E or F).

The weighted Kendall index r26 takes into account the bipolarities E, F and, at
least partially, the quadratic interactions H and I, but the relationship contained in
other arrangements is almost completely ignored (e.g. G, K, L). The coefficient r27

omits the strength of the linkage in J and K, but all the other values are well above
0.5. The coefficient r28 captures almost all the patterns with the exception of I and
L. In addition, r27 and r28 give the same sign (but a different magnitude) to the pairs
(C,D), (G, H), (I, J) and (K, L).



5 Correlation of scores

Scoring methods have been developed specifically for the analysis of ordered
categorical data. A common procedure to measure agreement between two ob-
servers consists of first assigning arbitrary equal-interval scores to the ordinal levels,
unless the particular case requires otherwise, and then applying classical statistical
methods based on these scores (see, among the others, [28]).

For fixed n, consider the set of sample pairs {(xi, yi) , i = 1, 2, · · · , n} from an
absolutely continuous bivariate distribution function H (X, Y ), F (X) and G (Y ).
Many measures of dependence for the pair (X, Y ) are of the form

Tn =
n∑

i=1

aqi:nbsi:n (10)

where (qi, si) is the pair of ranks associated with the i-th observation (xi, yi) from
bivariate distribution H . Constants {ai:n}, {bi:n} , i = 1, 2, · · · , n are two sets of
real numbers depending on the ranks and satisfying the constraints

n∑
i=1

aqi:n =
n∑

i=1

bsi:n (11)

ai ≤ ai+1, bi ≤ bi+1 i = 1, 2, · · · , n (12)

In this section we are interested in exploring (10) when {ai:n} and {bi:n} are the
expected value of order statistics E (xi:n) =F mi:n and E (yi:n) =Gmi:n.

In particular, we consider constants in the form

aqi:n =
Fmi:n − µF√∑n

i=1 (Fmi:n − µF )2
; bsi:n =

Gmi:n − µG√∑n
i=1 (Gmi:n − µG)2

(13)

with µF = E (X) , µG = E (Y ). The degree of concordance/discordance between
two rankings is determined by calculating Pearson’s product moment coefficient of
correlation with {Fmi:n} and the {Gmi:n} in place of the ranks

rn (F,G) =

∑n
i=1 (Fmi:n − µF ) (Gmi:n − µG)√∑n

i=1 (Fmi:n − µF )2∑n
i=1 (Gmi:n − µG)2

(14)

The statistic rn (F,G), often attributed to Savage and van der Waerden, has a max-
imum value of 1 achieved when the model F and G are a linear transform of each



other. The minimum possible value is attained if the rankings are exactly inverted,
but it is not necessarily −1 because it depends on F and G. For intermediate val-
ues, rn (F,G) provides a measures of the dependence between the two rankings.
In general, in carrying out the test, we reject the hypothesis of independence if the
absolute value of (14) appears to be too large.

The models F and G generate the scores and may be chosen to conform to one’s
judgment about the general characteristics of the measurement. [20] proposed a
rank correlation coefficient which emphasizes the concordance for the top-ranked
items (1, 2, 3, · · · )

Fmi:n = Gmi:n = −
n∑

j=i

j−1 = Mi → r29 =

∑n
i=1MiMsi

− n
n+M1

(15)

which is generated by reflected exponential distributions F (x) = G (x) = ex, x <

0. Conversely, by using a positive exponential distribution F (X) = G (x) = 1 −
e−x, x > 0 we obtain

Fmi:n = Gmi:n = −
n∑

j=n+1−i

j−1 = Li → r30 =

∑n
i=1 LiLsi

− n
n+ Ln

(16)

which can be interpreted as a bottom-up rank correlation because it is especially
sensitive to the concordance for low-ranked items (· · · , n− 2, n− 1, n). The co-
efficients r29 and r30 are not antisymmetric under reversal and have a mean value
different from zero.

Crathorne (1925), Fieller et al. (1957), and many other used the expected values
of the standard normal order statistics (or approximations of them) to define a mea-
sure of rank correlation corresponding to the Pearson’s correlation coefficient, that
is, the Fisher-Yates coefficient.

Fmi:n = Gmi:n = Li → r31 =

∑n
i=1NiNsi∑n

i=1N
2
i

(17)

Where Ni are the expected value of the i-th standard normal order statistic. Since
F and G are symmetric about x = 0 and y = 0, respectively, then Fmi:n +F

mn−i+1:n = 0 and Gmi:n +G mn−i+1:n = 0 implying that a similar score is attached
to ordered position at equal depths from the extremes for each distribution. Further-
more, the absolute value of the scores increases as we go from the mediocre item
to extreme items so that (17) is equally sensitive to agreement in both extremes but
not in the center.



Table (6) reports the value of r29 and r30. The scores (15) and (16) have been
rescaled so that the extreme values of (14) will lie in the interval from −1 to 1. In
addition, we have computed r31 for the approximation to the normal scores obtained
by using the Hazen plotting positions

Fmi:n = Gmi:n = Φ−1

(
si − 0.5

n

)
(18)

where Φ−1 (.) is the inverse cumulative normal distribution.

Table 6: Values of rank correlation of scores

C D E F G H I J K L
r29 0.76 -0.21 0.91 -0.71 0.19 -0.52 0.96 -0.59 -0.36 0.15
r30 -0.21 0.76 0.91 -0.71 0.94 -0.52 0.32 -0.59 -0.36 0.25
r31 0.26 0.26 0.88 -0.96 0.63 -0.63 0.72 -0.72 -0.35 0.35

The values of r29 convey the information that there is agreement for configura-
tions dominated by the concordance between low-ranked items (e.g. I). Coefficient
r30 emphasizes the dependence in configuration characterized by the concordance
between top-ranked items (e.g. G). A high positive value for both r29 and r30 is a
signal of a bipolarity ascending pattern whereas a large negative value for both r29

and r30 may indicate either a bipolarity descending pattern or a quadratic link. Rank
correlations based on the normal distribution r31 depict sufficiently well bipolarity
conditions and quadratic relationships, but perform ineffectively for the other com-
parisons (C, D, K, L). We can add that, on the basis of our experiments, the results
of r31 do not change very much if the plotting positions in (18) are substituted with
other expressions.



6 Choice of a rank correlation

When the value of any typing method for r (q, s) is assessed, the two main cha-
racteristics that need to be considered are the robustness and the sensitivity. The
former determines the degree of rank order inconsistency that can be withstood by
the method before mismatches begin to occur. The sensitivity of r (q, s) is an esti-
mate of its ability to differentiate between rankings. Robustness and sensitivity are
antithetical requirements because more robust indices give greater stability against
random change of the ranks whereas more sensitive coefficients offer a richer source
of information on association patterns. Therefore, in order to choose a “good” index
of association, some balancing of conflicting objectives will be required. A reaso-
nable solution can be obtained by considering that ranking is an intrinsically robust
process; thus, the choice of a coefficient should privilege its discriminatory power.

It is plain that a given value of a rank correlation coefficient does not in general
define a unique permutation, except perhaps the maximum value of the coefficient.
Nevertheless, many conventional rank correlations have a “resistance-to-change”
that appears to be of little value for the purposes of rank comparisons. Moreover, a
few of them are antisymmetric under reversal and only r2, · · · , r5, r9, r16 are sym-
metric under inversion.

The weighted coefficients seem more flexible and can discriminate more eas-
ily between permutations than conventional rank correlations. It remains unclear,
however, how to effectively choose among the various indices of this type. As a
preliminary observation, we note that the sensitivity possessed by r19, · · · , r28, also
in consideration that they fail to verify condition (2), seems inadequate to evaluate
the majority of the situations described in Table (1). Finally, the version r26 of the
Kendall coefficient has a negative bias that precludes its usage and application. As
a consequence, the indices r1, · · · , r22 and r26 are not considered suitable statistics
to use when the capacity of an index to respond to changes in a permutation pattern
is of concern.

Correlations of scores have received attention in a wide range of research disci-
plines because their definition gives the researcher the freedom to choose a suitable
system of scores. We studied strengths and weaknesses of some correlations of
scores defined as product-moment correlation between the expected value of the
order statistics from two given distributions. Our analysis would suggest that this
approach is less satisfactory than weighed rank correlation in reflecting certain pat-



terns of agreement/disagreement between rankings. It must be noted, however, that
the two approaches: rank correlation and correlation of scores, are not necessarily
different. The Spearman and the Gini index, in fact, can be obtained from (14)
using the order statistics from the uniform distribution (see [40]). The Blest in-
dex can be well approximated (see [13]) by a reflected power-function distribution
F (x) = 1 −

√
−x for −1 < x < 0, and G (x) = x for 0 < x < 1. On the

other hand, the Mango index can be approximated by a power-function distribution
F (x) =

√
x and G (x) = x for 0 < x < 1. In this sense, the results achieved with

correlations of scores do not appear an effective improvement over weighted rank
correlations. Moreover, a specification of reliable models is required and any such
choice implies a further variant of the index that may be discouraging for a non-
expert user. Consequently, even the indices r29, r30, r31 are not considered further
here. In summary, we have restricted our attention to r23, r24, r25, r27, r28 which are
the most promising indices discussed in the previous sections.

Let us suppose that the values of r (q, s) are rounded after the m-th decimal
place

br (q, s) 10m + 0.5c
10m

(19)

where b.c denotes the integer part of the argument. The discriminatory power of
r (q, s) can be quantified by the fraction of values assumed by (19) in relation to the
maximum potential number of values.

ψ =
ν

min {nPn, 2(10m) + 1}
(20)

where ν is the number of distinct values that (19) takes on over nPn, measured with
m decimal place accuracy. Thusψ = 1 would indicate that r (q, s) has the minimum
number of repeated values at the given level of approximation. Conversely, ψ u 0

would indicate that virtually all members of nPn are considered of an identical type
from the point of view of r (q, s). A value of ψ around 0.50 would mean that if one
ranking is chosen at random then there would be a 50% probability that the next
ranking chosen at random would be indistinguishable from the first.

A summary of (20) for the selected indices is given in Table (7) for n = 9, · · · , 12.
In particular, column 3-6 show the mean, the standard deviation, the standardized
third moment γ1 and the standardized coefficient of kurtosis γ2. The last column re-
ports the ratio [20] where the values have been rounded after the 4th decimal place
(m = 4) to keep computations at a feasible level.



Table 7: summary statistics for some weighted rank correlations

n Coefficient µ σ γ1 γ2 ψ
9 r23 0.0001 0.132 0.00 2.45 5.95

r24 0.0001 0.132 0.00 2.45 5.95
r25 0.0000 0.128 0.02 2.47 5.68
r27 0.0001 0.138 0.00 2.43 93.43
r28 0.0001 0.138 0.00 2.43 93.43

10 r23 0.0001 0.117 0.00 2.51 9.02
r24 0.0001 0.117 0.00 2.51 9.02
r25 0.0000 0.114 0.02 2.52 8.74
r27 0.0001 0.120 0.00 2.49 98.41
r28 0.0001 0.120 0.00 2.49 98.41

11 r23 0.0001 0.106 0.00 2.55 13.15
r24 0.0000 0.106 0.00 2.55 13.15
r25 0.0000 0.103 0.02 2.56 12.83
r27 0.0000 0.106 0.00 2.54 99.63
r28 0.0000 0.106 0.00 2.54 99.63

12 r23 0.0001 0.096 0.00 2.59 18.54
r24 0.0000 0.096 0.00 2.59 18.54
r25 0.0000 0.093 0.02 2.60 18.16
r27 0.0001 0.094 0.00 2.58 99.92
r28 0.0000 0.094 0.00 2.58 99.92

The results suggest that all the rank correlations included in Table (7) are slightly
positively biased (although the bias diminishes as the number of ranks increases)
and their variance decreases with n. For large n, the distributions is nearly nor-
mal with zero mean. It may be also observed that the sensitivity of all the indices
increases as n increases, but r27 and r28 can discriminate most easily between indi-
vidual permutations. Thus, these indices should be preferred to measure the mono-
tone association between two set of rankings and the choice between them depends
on the weight that has to be assigned to each level of the configuration of ranks.



7 Conclusion

There are many methods of rank correlation, from simple ones such as the
Blomqvist’s coefficient to relatively complicated definitions invoking one or two
system of weights and/or special rank transformations. Any of these methods de-
scribes a different aspect of the association between two permutations. The discus-
sion in the previous sections has shown that important factors such as the context
in which we do association analysis, the properties of the items to be ranked, the
purpose of the study, may influence the choice of a particular weighting scheme for
a measure of ordinal association. The flexibility of the formula and the high resolu-
tion over the set of all permutations are primary factors for a general coefficient.

In this paper we have looked at many rank correlations which emphasize or
de-emphasize certain part of the scale by considering special characteristics of the
ranks or by attaching to each comparison a weight that reflects the judgment of the
evaluator about how much a rank matters. It is unlikely that any single coefficient
could cope with or even detect the profusion of nonlinear relationships between
rankings. Nonetheless, in response to the special needs arising from the peculiar
situations discussed in our paper, a reasonably general answer could be given by a
weighted Kendall’s r4 initially proposed by Shieh (1998) and slightly modified in
the present paper.

The subject of dependence between permutations enjoys much current interest,
but it seem that only conventional measures of rank correlation have been generally
employed. We have only covered a subset of all rank correlations and there are
many potential areas for future research e.g. the link between correlation of scores
and copulas or the subject of partial rankings. However, the question of how to
weight and integrate impacts on the different ranks is not trivial. After all, if one
needs to know the proper set of weights before one can choose the proper measure
of rank correlation, the strategy of avoiding bias seems circular.
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