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The “wrong skewness” problem: a re-specification of Stochastic
Frontiers.

Abstract

In this paper, we study the so-called “wrong skewness” anomaly in Stochastic Frontiers

(SF), which consists in the observed difference between the expected and estimated sign of

the asymmetry of the composite error. We propose a more general and flexible specification

of the SF model, introducing dependence between the two error components and asymme-

try (positive or negative) of the random error. This re-specification allows us to decompose

the third moment of the composite error in three components, namely: i) the asymmetry of

the inefficiency term; ii) the asymmetry of the random error; and iii) the structure of depen-

dence between the error components. This decomposition suggests that the “wrong skewness”

anomaly is an ill-posed problem, because we cannot establish ex ante the expected sign of the

asymmetry of the composite error. We report a relevant special case that allows us to estimate

the three components of the asymmetry of the composite error and, consequently, to interpret

the estimated sign.

We present two empirical applications. In the first dataset, where the classic SF displays

wrong skewness, estimation of our model rejects the dependence hypothesis, but accepts the

asymmetry of the random error, thus justifying the sign of the skewness of the composite error.

In the second dataset, where the classic SF does not display any anomaly, estimation of our

model provides evidence of the presence of both dependence between the error components

and asymmetry of the random error.

Keywords: Stochastic frontier models, Skewness, Generalised Logistic distribution, Dependence,

Copula functions.

JEL codes: C13, C18, C46, D24.
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1 Introduction

The basic formulation of a production Stochastic Frontier (SF) model2 can be expressed as y =

f(x;β)eε, where y is the firm production, x is a vector of inputs; β is vector of unknown parame-

ters. The error term, ε = v−u, is assumed to be made of two statistically independent components,

a positive random variable, said u, and a symmetric random variable, said v. While u reflects the

difference between the observed value of y and the frontier and it can be interpreted as a measure

of firms’ inefficiency, v captures random shocks, measurement errors and other statistical noise.

One major difficulty analysts often face when estimating a SF model is related to the choice of

the distribution of random variables u and v. Different combinations have been proposed, includ-

ing the normal-half normal model (Aigner et al., 1977), the normal-exponential model (Meeusen

and van de Broek, 1977), normal–truncated normal model (Battese and Corra, 1977) and normal–

gamma model Greene (1990). Perhaps the range of alternatives has been so far limited by compu-

tational challenges due to tractability issues of the convolution between the two error components.

The choice of distributional specification is sometimes a matter of computational convenience.

The limited alternatives of possible distributions also poses empirical challenges. For instance,

several authors have addressed the problem related to observed difference between the expected

and the estimated sign of the asymmetry of the composite error. Specifically, for the standard SF

model, the third central moment of ε is

E
{

[ε− E(ε)]3
}

= −E
{

[u− E(u)]3
}

, (1)

thereby meaning, for example, a positive skewness for the inefficiency term u implies an expected

negative skewness for the composite error ε. However, in many applications residuals display the

wrong sign. This is called in literature the “wrong skewness” anomaly in SF models, initially

highlighted by Green and Mayes (1991). To overcome this issue, several authors have proposed

the use of distribution functions with negative asymmetry for inefficiency component. In partic-

ular, Carree (2002) uses the Binomial probability function, Tsionas (2007) suggests the Weibull

distribution and Qian and Sickles (2009) whilst Almanidis and Sickles (2011) consider a double
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truncated Normal distribution.

More recent attempts to obtain the desired direction of residual skewness are Feng et al. (2013)

where authors propose a finite sample adjustment to existing estimators and Hafner et al. (2013)

where authors use an artificial truncation.

In this paper we argue that the wrong skewness problem has been only partially addressed

because the relationship described by equation (1), and the consequent discussion about the wrong

skewness anomaly, is a direct consequence of all the assumptions underlying the specification of

the basic formulation of SF model. In fact, in a more general framework, where we relax the

hypothesis of symmetry for v, of positive skewness for u and of independence between u and v,

after simple but tedious algebra, the third central moment of the composite error turns out to be3

E
{

[ε− E(ε)]3
}

= −E
{

[u− E(u)]3
}

+ E
{

[v − E(v)]3
}

+ 3cov
(
u2, v

)
− 3cov

(
u, v2

)
− 6 [E(u)− E(v)] cov(u, v) (2)

From eq. (2), it is clear that the sign of the asymmetry of u and v and the dependence between u

and v both affect the expected sign of the asymmetry of the composite error.

In order to take into account the different sources affecting the asymmetry of the composite error,

in this paper we propose a very flexible specification of the SF model, introducing skewness in

the random error v through a distribution whose shape can be asymmetric negative, positive or

symmetrical depending on the value of one of its parameters, and dependence between the two

error components u and v. The dependence structure is modeled with a copula function that allows

us to specify the joint distribution with different marginal probability density functions. Moreover,

we use a copula function able to model the positive, negative dependence and the special case of

independence according to the value of the dependence parameter.

In some special cases, the convolution between the two error components admits a semi–

closed expression also in cases of statistical dependence between u and v. An example is provided

in Smith (2008), who uses FGM copulas to relax the assumption of independence between the

two error terms. In a basic economic setting and with simple marginal distribution, Smith (2008)

points out that the introduction of statistical dependence between the two error terms may have
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a substantial impact on the estimated efficiency level. The author obtains an expression for the

density of the composite error in terms of Hypergeometric functions for the model with an ex-

ponential distribution for the inefficiency error, a logistic distribution for the random error. We

propose a first generalization of Smith (2008) by using a Generalized Logistic (GL) distribution

for the random error. This distribution describes situations of symmetry or asymmetry (positive

or negative) according to values that takes on one of its parameters. This allows us to analyse the

statistical properties of a model in which both statistical dependence and possible asymmetry in

the random error component. While Kumbhakar and Lovell (2000) attribute some well–known

limitations of the SF approach to incorrect specifications of frontiers, we point out that some of

the anomalies observed in the empirical literature may come from an incorrect specification of the

shape of the density function of the two error components.

Our model allows for statistical dependence through copulas in a straightforward manner. It

can be used to explicate the importance of including dependence in the economic context because

it contributes to capture the effects of shocks that could affect both error components.

The paper is organized as follows. In Section 2 we introduce the economic model and we

list the steps required for the construction of the likelihood function and for the calculation of the

technical efficiency. The new specification of SF models is reported in Section 3 where a semi-

closed expression for the probability density function of the model in terms of Hypergeometric

functions is derived. This allows us to discuss the statistical properties of the model in a rather

transparent way. Section 4 reports the results of two the applications; in particular, Section 4.1

shows the estimations on data from NBER manufacturing productivity database that contains an-

nual information on US manufacturing industries. We propose this example in order to verify our

models in case of wrong skewness. In Section 4.2 we test our tool on data from AIDA dataset

including details of the Italian manufacturing firms. The implementation of traditional SF on this

data does not imply wrong skewness. In Section 5 we conclude. Appendix A presents the proof

of our Proposition 1 and Appendix B derives of Technical Efficiency scores. Despite the semi–

closed formula for the composite error function, estimation of our examples requires numerical

discretization of the density. In this paper we use Gaussian quadratures, and the entire procedure

is described in Appendix C.
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2 Stochastic Frontiers and Copula functions

The generic model of a production function for a sample of N firms is described as follows:

y = xβ + v − u (3)

where y is a (N × 1) vector of firms’ outputs; x is a (N ×K) matrix of inputs; β is a (K × 1)

vector of unknowns elasticities; v is a (N × 1) vector of random errors; u is a (N × 1) vector

of random variables describing the inefficiencies associated to each firm (for a detailed discussion

see Kumbhakar and Lovell, 2000).4

To complete the description of the model we need to specify the distributional properties of

random variables (u, v). The standard specification assumes independence between the random

error and the inefficiency error, and normal distribution for both random variables (though the

inefficiency error must be truncated at zero to guarantee positiveness). We depart from this spec-

ification, by considering a general joint density fu,v(·, ·,Θ) for the couple (u, v), where Θ is the

vector of parameters to be estimated, which includes β, the marginal and the dependence param-

eters. This density is defined on IR+ × IR, since inefficiency needs to be non–negative. The

probability density function (pdf) of the composite error ε := v − u is obtained by convolution of

two dependent random variables u and v, i.e.

fε(ε) =

∫
<+

fu,v(u, ε+ u)du (4)

where the joint probability density function, fu,v(u, v), is constructed using the property of copula

function.

Copulas are widely appreciated tools used for the construction of joint distribution functions.

To highlight the potential of this tool, it is sufficient to consider that a copula function joins mar-

gins of any type (parametric, semi-parametric and non-parametric distributions) not necessarily

belonging to the same family, and captures various forms of dependence (linear, non-linear, tail

dependence etc.). A two-dimensional copula is a bivariate distribution function whose margins are

Uniform on (0, 1). The importance of copulas stands in Sklar’s theorem which proves how copu-
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las link joint distribution functions to their one-dimensional margins. Indeed, according to Sklar’s

theorem any bivariate distributionH(x, y) of variablesX and Y , with marginal distributions F (x)

and G(y), can be written as H(x, y) = C(F (x), G(y)), where C(., .) is a copula function. Thus

any copula, together with any marginal distribution, allow us to construct a joint distribution.

For the seek of parsimony, in this paper we do not include the rigorous construction of copula

function (details are Nelsen, 1999). Rather, we describe the procedure we use to embed the copula

into the stochastic frontier model described above (see also Smith (2008)), through five steps:

1. Choice of marginal distributions for the inefficiency error and the random error. We de-

note with fu(·), gv(·) and Fu(·), Gv(·) their probability density functions and distribution

functions, respectively.

2. Selection of the copula function Cθ(Fu(·), Gv(·)). This usually involves additional depen-

dence parameters, denoted here by θ.

3. The joint distribution function f(u, v) is given by the following standard representation:

fu,v(u, v) = fu(u)gv(v)cθ(Fu(u), Gv(v)), (5)

where c
(
F (u), G(v)

)
= ∂2C(F (u),G(v))

∂F (u)∂G(v) is the density copula.

4. The probability density function of the composite error fε(·; Θ) is obtained by convolution

of the joint density as in (4). Now, observed that εi = yi − xiβ, the likelihood function is

given by

L =

N∏
i=1

fε(yi − xiβ; Θ) (6)

being xi the ith row of matrice x.

5. Finally, the Technical Efficiency (TEΘ) is:

TEΘ = E[e−u|ε = ε∗] =
1

fε(.; Θ)

∫
<+

e−ufu,v(u, ε+ u; Θ)du. (7)
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The complexity of the procedure described above depends on the choice of the marginal distribu-

tion functions Fu(·), Gv(·) and the copula function C(·, ·). It is equally obvious that the same

choice influences the flexibility of the model. In the next section, we present a specification that

represents a balanced trade off between complexity and flexibility.

3 A new specification of SF models

In order to estimate the three components described in equation (2), which determine the sign of

the asymmetry of the composite error, we must use a specification such that the shape of the pdf

of v can be asymmetric (positive or negative) or symmetric according to the value of one of its

parameters, a pdf for u with positive skewness in order to describe the specific characteristics of

the distribution of the inefficiency and a dependence structure between u and v such that it can

describe the situations of positive, negative dependence, or the particular case of independence.

To this end, we choose the Generalized Logistic (GL) distribution for the random error v, the

Exponential distribution for the inefficiency error u and the FGM copula function for dependence

structure between u and v. In table 1, we report the main features of these distributions.

[Table 1 about here.]

The parameter αv of the GL distribution is an indicator of the direction of the skewness (the

distribution is symmetric for αv = 1, asymmetric negative for αv ∈ (0, 1) and asymmetric positive

for αv > 1), while λv is the location parameter. The choice of the Generalized Logistic distribution

makes our results directly comparable with those of Smith (2008), who uses a Standard Logistic

distribution. Our results thus specialize to Smith (2008) with αv = 1 and λv = 0. Moreover, it is

worth recalling that the FGM copula describes a situation of negative dependence, independence

or positive dependence according to the parameter θ is less than, equal to or greater than zero,

respectively.

The following Proposition reports the semi-explicit formulation for the pdf of the compos-

ite error in terms of linear combination of Hypergeometric functions5, the expected value, the

variance and the third central moment of the composite error.
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Proposition 1 Assuming that u ∼ Exp(λu), v ∼ GL(λv, δv, αv) and the dependence between u

and v is modeled by FGM copula. Let k1(ε) be defined as k1(ε) = exp{− ε−λv
δv
}.

1. The density function of the composite error is

fε(ε; Θ) =w1(ε)2F1

(
αv + 1,

δv
δu

;
δv
δu

+ 2;−k1(ε)
)
+

w2(ε)2F1

(
αv + 1, 2

δv
δu

+ 1; 2
δv
δu

+ 2;−k1(ε)
)
+

w3(ε)2F1

(
2αv + 1,

δv
δu

+ 1;
δv
δu

+ 2;−k1(ε)
)
+

w4(ε)2F1

(
2αv + 1, 2

δv
δu

+ 1; 2
δv
δu

+ 2;−k1(ε)
)

(8)

where the functions w1(.), w2(.), w3(.) and w4(.) are, respectively, defined as:

w1(ε) = (1− θ)αvk1(ε)

δv + δu
w2(ε) = 2θ

αvk1(ε)

2δv + δu

w3(ε) = 2θ
αvk1(ε)

δv + δu
w4(ε) = −4θ

αvk1(ε)

2δv + δu

2. The expected value, the variance and the third central moment of the composite error are

given by:

E[ε] = −δu + λv + δv[Ψ(αv)−Ψ(1)], (9)

V [ε] = δ2
u + δ2

v [Ψ
′(αv) + Ψ′(1)]− θ δuδv [Ψ(2αv)−Ψ(αv)] (10)

and

E[ε− E(ε)]3 =− 2δ3
u + δ3

v [Ψ
′′(αv)−Ψ′′(1)] +

3

2
θδu{−δ2

v [Ψ
′(2αv)−Ψ′(αv)]+

δuδv[Ψ(2αv)−Ψ(αv)]− [λv + δv(Ψ(2αv)−Ψ(1))]2+

[λv + δv(Ψ(αv)−Ψ(1))][λv + δv(2Ψ(2αv)−Ψ(αv)−Ψ(1))]}

(11)
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where Ψ(·), Ψ′(·) and Ψ′′(·) are, respectively, the Digamma, Trigamma and Tetragamma func-

tions.

Proof. See Appendix A.

To appreciate the flexibility of our model, we point out that according on the values of some

parameters, we can specify the following four possible models:

• for θ = 0 and αv = 1, we get the model of independence and symmetry, denoted by (I, S);

• for θ = 0 and αv 6= 1, we have the model of independence and asymmetry, denoted by

(I, A);

• for θ 6= 0 and αv = 1, we obtain the model of dependence and symmetry, denoted by

(D,S);

• for θ 6= 0 and αv 6= 1, we have the model of dependence and asymmetry, denoted by (D,A)

In what follows, we will assess the impact of the asymmetry of random error (via parameter

αv) and of the dependence (via parameter θ) between u and v on the variance of composite error.

In particular, we compare four variances of the composite error corresponding to four models de-

scribed above. First, we observe that for αv = 1, given that ψ′(1) = π2

6 and ψ(2) − ψ(1) = 1,

and by eq. (10), we find the special case

V (D,S)
ε = δ2

u +
π2

3
δ2
v − θδuδv (12)

which overlaps Smith (2008) in the case of symmetry of v and dependence between u and v (it

corresponds to variance of ε of model (D,S)). Moreover, to make simple discussion, we highlight

that the variance of composite error in the cases of (a) independence and asymmetry and (b)

independence and symmetry, are given, respectively, by V (I,A)
ε = δ2

u + δ2
v [ψ′(αv) + ψ′(1)] and

V ε(I,S) = δ2
u + π2

3 δ
2
v . Obviously, the variance of composite error in the case of dependence and

asymmetry is V ε(D,A) = V (ε) reported in eq. (10).
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Figure 1 plots the variance of ε as function of αv. The three lines corresponds to different

dependence structures (θ = −1, θ = 0 or θ = 1). In this figure the effect of asymmetry on the

variance of the composite error is particularly evident.

[Figure 1 about here.]

[Figure 2 about here.]

Next, we show the effects of αv on the distribution function of ε.6 In fact, figure 2 shows

how the asymmetry of random error affects the distribution of the composite error. Imposing

maximum positive dependence between u and v (θ = 1), we plot different density functions

for different values of αv and observe that αv impacts not only on the shape of the density, but

also, and more importantly, on the behavior of the distribution at the tails. The effect is more

pronounced in case of negatively skewed distributions of random error. This finding explains the

impact on the variance observed above: negative skewness assigns much more probability mass to

extreme negative values of ε than positive skewness.

The empirical literature often faces estimated skewed density functions of the composite er-

ror contrasting theoretical predictions of the model (wrong skewness anomaly). In this respect,

there is no general consensus on the interpretation of this misalignment between assumptions and

observed facts. For instance, Kumbhakar and Lovell (2000) ascribe the misalignment to econom-

ically significant model misspecifications, while Smith (2008) argues that the observed skewness

may arise from the dependence between the random error and inefficiency. Here, we contribute to

the debate by suggesting one more possible explanation: it would be the interaction between the

dependence (as argued by Smith) and the fundamental asymmetry of the distribution of random

error.

4 Empirical examples of production frontiers

In what follows, we report two examples.7 We use two different data samples, one in which a case

of “wrong skewness” occurs, and one in which it does not occur.
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4.1 Wrong skewness in data from NBER database

We test our model for a SF production frontier using data from NBER manufacturing productivity

database (Bartelsman and Gray, 1996). This archive is free available online and contains annual

information on US manufacturing industries since 1958 to the present. We focus on data of 1979

since, after checking for the asymmetry of OLS residuals, we find the presence of strong positive

skewness in 1979, while negative skewness was expected from the traditional model (this is also

showed in Hafner et al. (2013)). The case of wrong skewness is confirmed when the classic

production SF is estimated.8

In the underlying economic model, the variable value added is our output and total employment

(lemployment) and capital stock (lcap) are input factors (all variables are in logs). The frontier

assumes the Cobb-Douglas functional form. We want to highlight that our specification of the

random error through a GL distribution includes a location parameter, λv that acts as intercept in

the regression. Therefore, to avoid identification issues, our regression model does not include

intercept (see table 2 for more details).9

[Table 2 about here.]

We report the results in table 3 where significant coefficients are in bold (t-statistics are re-

ported in parenthesis).

The last two columns report the classic SF estimates (one model without the intercept, one

with the intercept in the production function) where the residuals are assumed to be normally

distributed and there is independence between u and v. The results show that SF estimates coincide

with OLS because we reject the hypotheses of presence of inefficiency. The estimated measure

of the contribute of the variance of u to the total variance is very close to 0. Standard residual

analysis shows that the model is not correctly specified.10 For these reasons, we do not comment

results about the classic SF estimates.

Turning to our models, the attention goes first at the parameters of marginal distributions and

association measure θ that is not statistically significant. All the other estimated parameters are

widely significant, except the location parameter of the Exponential assigned to inefficiency error,

that is not statistically different from 0 for all specifications.
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The Akaike Information Criterion (AIC) does not give a strong indication of which model

should be preferred, since for the IA model the AIC is equal to −22.44, followed by IS (−21.15),

DA (−20.44) and DS (−19.19).11 Following Burnham and Anderson (2004), even if each of

our four models may be indifferent to others, the association measures are not significant and,

comparing IA with IS, the former is preferred. Thus, the better fit goes in the direction of preferring

models capturing asymmetry of random error and not involving dependence structures.

[Table 3 about here.]

Table 4 contains some descriptive statistics about the estimated parameters and the composite

error ε. Each column represents one model, whose statistical characteristics are in table 2. It

is worth noticing that the true direction of asymmetry is measured as factorisation of the sum

of deviations from the median (Zenga, 1985).12 One element of this decomposition is E[ε −

E(ε)]3, that is the measure derived in equation (11). In table 4 we report the contributes of single

components to explain E[ε− E(ε)]3 and E[ε−Me(ε)]3.

We find positive skewness of ε in IA and DA models, in which the v-component is strongly

positive, while DS models show wrong skewness. For IS model, we can accept the symmetry

of ε (all the skewness measures are very close to 0). In fact, the sign of E[ε − Me(ε)]3 and∑
[ε̂ −Me(ε̂)]3 is the same for IA and DA models, it is opposite for DS. We remark that: i) IS

assumes a priori that v-component and dependence-component are equal to 0, as in classic SF; ii)

dependence-component is negative for both models with dependence structure, DA and DS, but

dependence is statistically rejected in this data sample.

[Table 4 about here.]

Finally, in table 5 we report some descriptive statistics on estimated Technical Efficiency (TE)

for each model. 13 In particular, the bias evident for classic SFs and IS model is solved in our

preferred model (IA).

[Table 5 about here.]

12



4.2 Application on a sample of Italian manufacturing firms

We use data from AIDA (“Analisi Informatizzata delle Aziende Italiane”), that is a database con-

taining financial and accounting information of Italian companies.

We use again a Cobb-Douglas production function where the dependent variable is the value

added representing the firms’ output, while labour and capital are the traditional inputs. Moreover,

we introduce ICT and R&D investments as additional inputs. All variable, referring to 2009, are

in logs.14

[Table 6 about here.]

Going to examine the results from table 6, we highlight the robustness of the estimates across

our models and the significance of all fitted parameters (t-statistics are in bracket). Moreover, from

AIC measure, the classic SF models are very far from the other specifications. The distance is

much more than 10 points (Burnham and Anderson, 2004). In particular the better fit is due to the

more general DA model (AIC 1089.84), while the worst is the more parsimonious IS (1112.18).

The results highlight the presence of positive dependence (θ is equal to 0.7016 in DA) in this data

sample.

Switching to analyses the descriptive statistics of the various models (table 7), there is not case

of wrong skewness in the simpler model IS.15

[Table 7 about here.]
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5 Conclusions

In this paper, we have shown that the so-called “wrong skewness” anomaly in Stochastic Frontiers

is a direct consequence of the basic hypotheses that appear to be overly restrictive. In fact, relaxing

the hypotheses of symmetry of the random error and independence between the components of the

composite error, we obtain a re-specification of Stochastic Frontiers sufficiently flexible that allows

us to explain the difference between the expected and the estimated sign of the asymmetry of the

composite error, found in various applications of the classic Stochastic Frontier.

The decomposition the third moment of the composite error in three components, namely: i) the

asymmetry of the inefficiency term; ii) the asymmetry of the random error; and iii) the structure

of dependence between the error components enables us to reinterpret the unusual asymmetry in

the composite error by measuring the contribution of each component in the model. This is shown

in one of the two empirical examples, i.e. on data from NBER archive, for which a case of wrong

skewness is reported (present) with the classic SF specification.

When wrong skewness occurs, estimations with classic SF correspond to OLS estimations,

and the inefficiency scores are zeros. This misleads to the conclusion of absence of inefficiency.

Our specification allows to overcome this difficulties, as witnessed in both empirical applications,

where our estimation of the output elasticities with respect to inputs are quite robust against to the

standard SF specification, but estimated efficiency scores are lower than the unity.
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A Proof of Proposition 1

In order to prove Proposition 1 easily, we report some preliminary results in the following Lemma.

Lemma 2 1. If U ∼ Exp(δu) then

• r-th moment is E(U r) = λruΓ(r + 1). Consequently, we have: E(U) = δu, E(U2) =

2δ2
u and E(U3) = 6δ3

u.

• Denoted with F (u) = 1 − e−
u
δu the distribution function of the random variable U ,

after algebra, we obtain E [U rF (U)] = E(U r)
(
1− 1

2r+1

)
2. If V ∼ GL(λv, δv, αv) then

• E(V ) = λv + δv [Ψ(αv)−Ψ(1)];

• E(V 2) = δ2
v [Ψ′(αv) + Ψ′(1)] + [λv + δv (Ψ(αv)−Ψ(1))]2;

• E(V 3) = δ3
v [Ψ′′(αv)−Ψ′′(1)] + [λv + δv (Ψ(αv)−Ψ(1))]3 +

3δ2
v [λv + δv (Ψ(αv)−Ψ(1))] [Ψ′(αv) + Ψ′(1)]

• Denoted with G(v) =
(

1 + e−
v−λv
δv

)−αv
the distribution function of the random vari-

able V , we have E
[
V kG(V )

]
= 1

2E
[
V k|2αv, λv, δv

]
, where E [.|2αv, λv, δv] is the

expectation with respect to the GL with parameters 2αv, λv and δv.

3. if (U, V ) ∼ fu,v(u, v) = f(u)g(v) [1 + θ (1− 2F (u)) (1− 2G(v))] then

E
(
U rV k

)
= (1 + θ)E(U r)E(V k)− 2θ

{
E(U r)E

[
V kG(V )

]
+ E [U rF (U)]E(V k)−

2E [U rF (U)]E
[
V kG(V )

]}
=

= E(U r)E(V k) + θ

(
1

2r
− 1

)
E(U r)

{
E(V k)− E(V k|2αv, λv, δv)

}
Now, we can prove the Proposition 1.

1. The pdf of composite error is f(ε) =
∫
<+ f(u, ε + u)du where f(u, ε + u) = f(u)g(ε +

u)c (F (u), G(ε+ u)).
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Given that c(·, ·) is a density copula of a FGM copula, we have

f(u, ε+ u) = (1 + θ)f(u)g(ε+ u)− 2θf(u)g(ε+ u)G(ε+ u)

− 2θf(u)g(ε+ u)F (u) + 4θf(u)g(ε+ u)F (u)G(ε+ u) (A.1)

Using (A.1), we have f(ε) = (1 + θ)I1 − 2θ {I2 + I3 − 2I}, where I =
∫
<+ f(u)g(ε +

u)F (u)G(ε+ u)du, and Ii, for i = 1, 2, 3 are special cases of I .

Now, in order to calculate the integral I , we observe that

f(u)g(ε+ u)F (u)G(ε+ u) =
αvk1(ε)

δuδv
e−

u
δu
− u
δv

(
1− e−

u
δu

)(
1 + k1(ε)e−

u
δu

)−2αv−1
(A.2)

where k1(ε) = e−
ε−λv
δv . After algebra, we can write

I =
αvk1(ε)−2αv

δuδv

{∫
<+

(
e−u
) 1
δu

+ 1
δv

[
1 + k1(ε)

(
e−u
) 1
δv

]−2αv−1

du−

−
∫
<+

(
e−u
) 2
δu

+ 1
δv

[
1 + k1(ε)

(
e−u
) 1
δv

]−2αv−1

du

}

If before we put y = e−u and then t = y
1
δv , after algebra, we obtain

I =
αvk1(ε)

δu

{∫ 1

0
t
δv
δu (1 + k1(ε)t)−2αv−1 dt −

∫ 1

0
t2
δv
δu (1 + k1(ε)t)−2αv−1 dt

}

Bearing in mind that for hypergeometric function is true the following

Γ(c− b)Γ(b)

Γ(c)
2F1(a, b; c; s) =

∫ 1

0
tb−1(1− t)c−b−1(1− st)−adt
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We obtain

I =
αvk1(ε)

δu

{
1

δv
δu

+ 1
2F1

(
2αv + 1,

δv
δu

+ 1;
δv
δu

+ 2;−k1(ε)

)

− 1

2 δvδu + 1
2F1

(
2αv + 1, 2

δv
δu

+ 1; 2
δv
δu

+ 2;−k1(ε)

)}

2. By Lemma, we can to verify that

• E(ε) = −E(U) + E(V ) = −δu + λv + δv [Ψ(αv)−Ψ(1)]

• V (ε) = V (U)+V (V )−2cov(U, V ) = δ2
u+δ2

v [Ψ′(αv) + Ψ′(1)]−2cov(U, V ), where

cov(U, V ) = θ
2E(U) {E(V )− E(V |2αv, λv, δv)} = θ

2δuδv [Ψ(2αv)−Ψ(αv)] .

• Moreover, recalling that for a generic random variable, Z, we have E [Z − E(Z)]3 =

E(Z3)− 3E(Z2)E(Z) + 2 [E(Z)]3, after simple algebra, E [U − E(U)]3 = 2δ3
u and

E [V − E(V )]3 = δ3
v [Ψ′′(αv)−Ψ′′(1)]. Moreover, by Lemma, we have:

cov(U2, V ) = E
[
U2V

]
− E(U2)E(V ) =

3

2
θδ2
uδv [Ψ(2αv)−Ψ(αv)]

and

cov(U, V 2) = −θ
2
δu

{
δ2
v

[
Ψ′(αv)−Ψ′(2αv)

]
+ [λv + δv (Ψ(αv)−Ψ(1))]2 +

− [λv + δv (Ψ(2αv)−Ψ(1))]2
}

by (2), after algebra, we obtain E [ε− E(ε)]3 as in equation 11.
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B Calculation of TE scores

Given the Proposition 1, its Proof in Appendix A and equation (7) in Section 2, we derive the

formula to calculate the Technical Efficiency scores TEΘ for our model.

We can write

TEΘ =E[e−u|ε = ε∗] =
1

fε(.; Θ)

∫
<+

e−ufu,v(u, x+ u; Θ)du

=
1

fε(.; Θ)

∫
<+

e−uf(u, ε+ u)du =
1

fε(.; Θ)

∫
<+

e−uf(u, ε+ u)du

(B.1)

where f(u, ε+ u) is derived in equation A.1.

After algebra, we obtain:

TEΘ = E[e−u|ε] =
ω1(ε)H1(ε) + θ[ω1(ε)H1(ε)− 2ω2(ε)H2(ε)− 2ω3(ε)H3(ε) + 4ω4(ε)H4(ε)]

ω1(ε)H1(ε)− θ[ω1(ε)H1(ε)− 2ω2(ε)H2(ε)− 2ω3(ε)H3(ε) + 4ω4(ε)H4(ε)]
(B.2)

where the H − functions represent hypergeometric functions. In particular, we have:
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H1 = 2F1

(
αv + 1,

δv
δu

+ δv + 1;
δv
δu

+ δv + 2;−k1(ε)

)
H1 = 2F1

(
αv + 1,

δv
δu

+ 1;
δv
δu

+ 2;−k1(ε)

)
H2 =

1[
δv
(

1
δu

+ 1
)]2F1

(
αv + 1, δv

( 1

δu
+ 1
)

+ 1; δv
( 1

δu
+ 1
)

+ 2;−k1(ε)

)
− 1[

δv
(

2
δu

+ 1
)]2F1

(
αv + 1, δv

( 2

δu
+ 1
)

+ 1; δv
( 2

δu
+ 1
)

+ 2;−k1(ε)

)
H2 = 2F1

(
αv + 1, 2

δv
δu

+ 1; 2
δv
δu

+ 2;−k1(ε)

)
H3 = 2F1

(
2αv + 1,

δv
δu

+ δv + 1;
δv
δu

+ δv + 2;−k1(ε)

)
H3 = 2F1

(
2αv + 1,

δv
δu

+ 1;
δv
δu

+ 2;−k1(ε)

)
H4 =

1[
δv
(

1
δu

+ 1
)]2F1

(
2αv + 1, δv

( 1

δu
+ 1
)

+ 1; δv
( 1

δu
+ 1
)

+ 2;−k1(ε)

)
− 1[

δv
(

2
δu

+ 1
)]2F1

(
2αv + 1, δv

( 2

δu
+ 1
)

+ 1; δv
( 2

δu
+ 1
)

+ 2;−k1(ε)

)
H4 = 2F1

(
2αv + 1, 2

δv
δu

+ 1; 2
δv
δu

+ 2;−k1(ε)

)

and where the ω − functions are respectively defined as:

ω1(ε) = ω3(ε) =
αvk1(ε)

δu
[
δv
(

1
δu

+ 1
)] ω2(ε) = ω4(ε) =

αvk1(ε)

δu

ω1(ε) = ω3(ε) =
αvk1(ε)

δv + δv
ω2(ε) = ω4(ε) =

αvk1(ε)

2δv + δv
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C The numerical procedure

The estimation of models like that described in Section 2 requires the ability to compute the density

of composite error. Closed–form expressions for this quantity are available only in some few

special cases such as the notable case addressed by Smith (2008). While in the previous section

we provide one more example of closed–form expression, this section is intended to describe the

scheme we use to approximate the likelihood (6) starting from a general joint density fu,v. Our

goal is to provide a numerical tool capable of managing different joint distributions for the couple

(u, v), thus widening the set of alternatives one can use when defining SF models.

Our approach is fairly simple. We approximate the convolution between u and v by means

of numerical quadratures. To be more precise, set ε = v − u, its density function, fε(·; Θ), is

obtained by the convolution of of u and v:

fε(x; Θ) =

∫ ∞
0

fu,v(u, x+ u; Θ)du (C.3)

Explicit evaluation of the integral in (C.3) is in general infeasible, keeping a potential range of

possible joint densities almost unexplored. However, approximation of (C.3) by Gauss–Laguerre

quadrature has proved to be easy and effective, and is reported below.

Let us first rewrite (C.3) as

fε(x; Θ) =

∫ ∞
0

e−ugx(u)du, (C.4)

with gx(u) = eufu,v(u, x + u). Fix an integer m that we refer to as the order of quadrature and,

for h = 1 . . . ,m let: i) th be the h–th root of the Laguerre polynomial of order m, Lm(u), and ii)

ωh defined by the following system of linear equations16, 17

∫ ∞
0

ske−sds =
n∑
h=1

ωht
k
h k = 1, . . . , 2m− 1. (C.5)
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Then, we can write

fε(x; Θ) ≈
m∑
h=1

ωhgx(th). (C.6)

As far as the function gx(·) is Reimann–integrable over the interval [0,∞), standard results in

numerical analysis ensure the goodness of the approximation.

We can thus approximate the integral appearing in (C.3) (and its gradient with respect to Θ)

with a finite sum, and insert the approximated density function and its gradient into a Quasi–

Newton–like iteration (however, from experience with the Normal/Half–Normal with FGM copula

model, a few initial iterations with the algorithm of Berndt et al. (1974) is highly recommended).

As for the order of quadrature, practice with the Normal/Half–Normal with FGM copula case

shows that m = 12 is sufficient to obtain safe approximations. For values of m around 12,

computations of the Laguerre nodes and weights require a fraction of a second, and this is needed

only once.

Notes

1Corresponding author. Ponte Bucci Cubo 0C. 87036 Arcavacata di Rende (Cosenza) – ITALY. Tel: +39 0984492427.

Fax: +39 0984492421. Email: f.domma@unical.it

Graziella Bonanno receives a Research Fellowship from the Regione Calabria and EU Commission. The views and

opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of

EU Commission and Regione Calabria.

2The original formulation of the SF model is based on the pioneering works of Aigner et al. (1977), Meeusen and

van de Broek (1977) and Battese and Corra (1977) (see Kumbhakar and Lovell (2000) and Battese et al. (2005) for a

recent and comprehensive overview).

3The proof of this statement is available upon request.

4Here and throughout the rest of the paper, overlined variables denote logarithmic transformation of original vari-

ables. For example y = log(y).

5The general form of a Hypergeometric function is given by

2F1(a, b; c; s) =
Γ(c)

Γ(c− b)Γ(b)

∫ 1

0

tb−1(1− t)c−b−1(1− st)−adt =

∞∑
i=0

(a)i(b)i
(c)i

si

i!
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In the region {x : |s| < 1}, it admits the following representation:

2F1(a, b; c; s) =

∞∑
i=0

(a)i(b)i
(c)i

si

i!

where Γ(.) is the Gamma function and (d)i = d(d+ 1) . . . (d+ i− 1) is the Pochhammer symbol, with (d)0 = 1. In

our case, a = 2αv + 1, b = 2αv + δv
δu

, c = 2αv + δv
δu

+ 1 and s = −k−1
1 .

6We have analysed the impact of the dependence structure on the density of ε. Smith (2008) show this effect in the

case of symmetric-v. We observe the same results in different conditions of skewness for v (negative or positive). For

this reason we do not report here the plots.

7The maximisation routine is been developed in the software R-projet using ”maxLik” package and then the esti-

mates are been controlled with the algorithm discussed in Appendix C.

8When positive skewness is found, classic SF estimates coincide with the OLS, because we reject the hypotheses of

presence of inefficiency.

9In both the empirical applications, however, the estimates of λv are very close to the estimate of the intercepts of

the classic SFs (see table 3 in this sub-section about NBER data and table 6 in the next sub-section 4.2 about AIDA

data).

10Also the software R-project provides the following warning message: “The residuals of the OLS estimates are

right-skewed; this might indicate that there is no inefficiency or that the model is misspecified.”.

11Burnham and Anderson (2004) consider the measure ∆i = AICi−AICmin. According with the authors, models

having ∆i ≤ 2 have substantial evidence, those for which 4 ≤ ∆i ≤ 7 have less support, and models having ∆i > 10

have no support.

12Departing from the demonstration of Zenga (1985) for descriptive measures, we obtain the following expression to

account for the sign of skewness:

E[ε−Me(ε)]3 = E[ε− E(ε)]3 + [E(ε)−Me(ε)]3 + 3[E(ε)−Me(ε)]V (ε). (C.7)

13The derivation of TEΘ scores is reported in Appendix B.

14We calculate ICT and R&D investments as percentage of yearly sales. This percentage is from EFIGE dataset

(“European Firms in a Global Economy: internal policies for external competitiveness”), which combines measures of

firms’ international activities with quantitative and qualitative information with focus on R&D and innovation.

15We propose this example also to show the validity of our models in case of absence of wrong skewness.

16The system is over-determined, but posses a unique solution ω1, . . . , ωn.
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17These are basic concepts in numerical analysis. For more details about orthogonal polynomials and Gaussian

quadrature any textbook in this topic is valid. A standard reference for economists is Judd (1998).
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Figure 1: Plot of V AR(ε) for a production frontier with θ = −1, θ = 0 and θ = 1 (αv ranges
between 0 and 2).
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Figure 2: Density function of ε of a production frontier with λv = 0, δu = δv = 1, αu = 1 and
θ = 1 (αv ranges between 0.25 and 3).
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Table 1: Marginal distribution functions and FGM copula.

Parameters Density Distribution

Exponential δu > 0 1
δu
e−

u
δu 1− e−

u
δu

GL αv, δv > 0, λv ∈ < αv
δv

e
− v−λv

δv(
1+e

− v−λv
δv

)αv+1
(1 + e−

v−λv
δv )−αv

FGM θ ∈ (−1, 1) 1 + θ(1− 2Fu)(1− 2Gv) FuGv
(
1 + θ(1− Fu)(1−Gv)

)
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Table 2: Summary of the statistical models.
Name Random Error Distribution Inefficiency Distribution Dependence

IA GL ∼ (αv, δv, λv) Exp ∼ (δu) No

DA GL ∼ (αv, δv, λv) Exp ∼ (δu) FGM copula

IS Symmetric GL ∼ (αv = 1, δv, λv) Exp ∼ (δu) No

DS Symmetric GL ∼ (αv = 1, δv, λv) Exp ∼ (δu) FGM copula

Classic SF Normal ∼ (0, σv
2) Half-Normal ∼ (0, σu

2) No

Legend: IA is the model with independence and asymmetry; DA stands for FGM dependence and asymmetry; IS
stands for independence and symmetry; finally, DS is the model with FGM dependence and symmetry.
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Table 3: Estimations of production SF using US textile industry data (1979).

IA DA IS DS Classic SF
Classic SF

Intercept

β0 2.4507
(8.85)

β1(lemployment) 0.8316 0.8179 0.7968 0.7995 0.7373 0.7920
(8.43) (25.19) (23.84) (23.09) (0.72) (20.67)

β2(lcap) 0.1817 0.1864 0.1912 0.1879 0.6097 0.1913
(1.60) (8.29) (7.12) (6.89) (1.01) (6.28)

δu 0.0132 0.0458 0.0002 0.0750
(0.54) (0.79) (0.01) (0.79)

αv 5.5389 2.6832 - -
(79.34) (4.53)

δv 0.1361 0.1291 0.0994 0.1035
(8.88) (2.36) (8.63) (3.48)

λv 2.0938 2.2616 2.4218 2.5075
(5.86) (24.06) (19.25) (16.40)

θ - 0.9995 - 0.99998
(0.18) (0.35)

Obs 54 54 54 54 54 54

log-likelihood 17.22 17.22 15.58 15.59 -41.07 13.58

AIC -22.44 -20.44 -21.15 -19.19 90.14 -17.17
Source: our elaborations on data from the NBER productivity database. The dependent variable is the value added (in

log).
Legend: IA = model with independence and asymmetry; DA = model with FGM dependence and asymmetry; IS =

model with independence and symmetry; DS = model with FGM dependence and symmetry.
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Table 4: Summary measures and skewness of the composite error (data from NBER).
IA DA IS DS

δu 0.0132 0.0458 0.0002 0.0750
αv 5.5389 2.6832 1 1
δv 0.1361 0.1291 0.0994 0.1035
λv 2.0938 2.2616 2.4218 2.5075
θ 0 0.9995 0 0.99998

E(ε) 2.3794 2.3923 2.4216 2.4325
V (ε) 0.0343 0.0323 0.0325 0.0331
Me(ε) 2.3549 2.3741 2.4216 2.4331

E[ε− E(ε)]3 0.005953 0.004435 -1.82E-11 -0.002381
u-component -0.000005 -0.000192 -1.82E-11 -0.000844
v-component 0.005957 0.004746 0 0
dependence-component 0 -0.000119 0 -0.001537

E[ε−Me(ε)]3 0.0085 0.0062 6.80E-09 -0.0024∑
[ε̂−Me(ε̂)]3 0.5749 0.5125 0.4513 0.4498

Source: our elaborations on data from the NBER productivity database.
Legend1 IA = model with independence and asymmetry; DA = model with FGM dependence and asymmetry; IS =

model with independence and symmetry; DS = model with FGM dependence and symmetry.
E[ε−Me(ε)]3 = E[ε− E(ε)]3 + [E(ε)−Me(ε)]3 + 3[E(ε)−Me(ε)]V (ε)

E[ε− E(ε)]3=u-component+v-component+dependence-component∑
[ε̂−Me(ε̂)]3 is calculated as shown in Zenga (1985) for descriptive measures.
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Table 5: Some descriptive statistics of Technical Efficiency (data from NBER).

IA DA IS DS Classic SF
Classic SF -

Intercept

Mean 0.9870 0.9563 0.9998 0.9305 1 0.999546
Stand. Dev. 0.0011 0.0028 2.26e-07 0.0085 0 6.18e-07
Min 0.9831 0.9492 0.9997 0.9066 1 0.999545
Max 0.9881 0.9587 0.9998 0.9385 1 0.999548

Source: our elaborations on data from the NBER productivity database.
Legend1 IA = model with independence and asymmetry; DA = model with FGM dependence and asymmetry; IS =

model with independence and symmetry; DS = model with FGM dependence and symmetry.
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Table 6: Estimations of production SF for the Italian manufacturing firms using data from AIDA
(2009).

IA DA IS DS Classic SF
Classic SF -

Intercept

β0 2.5619
(20.78)

β1(llabour) 0.7497 0.7525 0.7372 0.7219 0.5583 0.7203
(37.39) (37.78) (36.62) (35.92) (20.73) (32.59)

β2(lcapital) 0.0972 0.0970 0.0969 0.0979 0.1132 0.0970
(8.12) (8.15) (7.97) (8.06) (5.47) (7.28)

β3(lICT ) 0.0923 0.0909 0.1058 0.1188 0.2448 0.1110
(6.62) (6.52) (7.49) (8.34) (13.59) (7.17)

β4(lR&D) 0.0956 0.0947 0.1047 0.1054 0.2059 0.0986
(7.33) (7.32) (7.92) (8.01) (11.82) (6.62)

δu 0.3123 0.3499 0.2533 0.2688
(16.12) (9.85) (10.07) (6.01)

αv 3.4756 2.4054 - -
(2.65) (3.32)

δv 0.2205 0.2362 0.1939 0.2188
(19.57) (12.21) (20.49) (17.80)

λv 2.2115 2.3439 2.3254 2.2408
(15.34) (16.87) (20.58) (18.65)

θ - 0.7016 - 0.7854
(1.61) (2.91)

Mean Efficiency 0.7651 0.7432 0.7997 0.7887 0.99996 0.6897

Obs 939 939 939 939 939 939

log-likelihood -538.56 -535.92 -549.09 -546.52 -751.81 -599.94

AIC 1093.12 1089.84 1112.18 1109.04 1515.62 1211.88
Source: our elaborations on data from the AIDA dataset. The dependent variable is the value added (in log).

Legend: IA = model with independence and asymmetry; DA = model with FGM dependence and asymmetry; IS =
model with independence and symmetry; DS = model with FGM dependence and symmetry.
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Table 7: Summary measures and skewness of the composite error (data from AIDA).
IA DA IS DS

δu 0.3123 0.3499 0.2533 0.2688
αv 3.4756 2.4054 1 1
δv 0.2205 0.2362 0.1939 0.2188
λv 2.2115 2.3439 2.3254 2.2408
θ 0 0.7016 0 0.7854

E(ε) 2.2678 2.2852 2.0722 1.9720
V (ε) 0.1937 0.1961 0.1878 0.1836
Me(ε) 2.2887 2.3057 2.0988 1.9890

E[ε− E(ε)]3 -0.0364 -0.0404 -0.0325 -0.0506
u-component -0.0609 -0.0857 -0.0325 -0.0389
v-component 0.0246 0.0283 0 0
dependence-component 0 0.0170 0 -0.0117

E[ε−Me(ε)]3 -0.0485 -0.0525 -0.0475 -0.0599∑
[ε̂−Me(ε̂)]3 -22.74 -24.25 -23.49 -22.37

Source: our elaborations on data from AIDA dataset.
Legend1 IA = model with independence and asymmetry; DA = model with FGM dependence and asymmetry; IS =

model with independence and symmetry; DS = model with FGM dependence and symmetry.
E[ε−Me(ε)]3 = E[ε− E(ε)]3 + [E(ε)−Me(ε)]3 + 3[E(ε)−Me(ε)]V (ε)

E[ε− E(ε)]3=u-component+v-component+dependence-component∑
[ε̂−Me(ε̂)]3 is calculated as shown in Zenga (1985) for descriptive measures.
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