Capitolo 2

Analisi in componenti principali

2.1 Introduzione

L'analisi in componenti principali è una tecnica di analisi multivariata tra le più diffuse. Viene utilizzata quando nel dataset osservato sono presenti numerose variabili e si è interessati a ridurne la dimensionalità. L'analsi in componenti principali è assolutamente necessaria quando un certo carattere (o variabile) non è direttamente osservabile e quantificabile, per cui bisogna lavorare e analizzzare diversi indicatori legati al quel carattere¹. Nella sostanza l'analisi in componenti principali porta alla creazione di nuove variabili, dette *Componenti Principali* appunto, che sono combinazioni lineari delle originarie, e che godono delle due seguenti proprietà:

- 1. sono tra loro incorrelate (ortogonali),
- 2. sono elencate in ordine decrescente della loro varianza,

Questa tecnica viene impiegata esclusivamente per variabili quantitative e chiaramente con un certo grado di correlazione.

Di seguito riportiamo un'analisi in componenti principali (d'ora in avanti abbreviata in acp).

¹Un esempio è la misurazione dell'intelligenza degli individui sulla base dei risultati di specifici test

2.2 Un'analisi in componenti pricipali

2.2.1 Descrizione del dataset

Il dataset che utilizzeremo riguarda l'osservazione di alcne variabili su automobili di diverse case di produzione e diversi modelli. L'analisi consiste nel valutare se è possibile predire le vendite delle vettura in base ad alcuni indicatori. Le varibili contenute nel dataset sono:

- manufact: il costruttore della vettura,
- model: il modello della vettura,
- sales: numero di vetture vendute,
- resale: numero di vetture vendute dopo quattro anni,
- type: tipo di vettura,
- price: prezzo di vendita
- engine_s: misura del motore,
- horsepow: potenza (in cavalli),
- wheelbas: il passo, distanza tra gli assi delle ruote,
- width: la larghezza della vettura,
- length: la lunghezza della vettura,
- fuel_cap: capacità del serbatoio,

Il dataset si trova nel file in formato .sav denominato vendite auto².

Una volta aperto, il file si presenta come in Figura 2.1,

²Il file è reperibile nella sezione 'Materiale Didattico' sul sito del corso di laurea in Statistica (www.economia.unical.it/statistica/)

				and and					
T	resale	type	price	engine_s	horsepow	wheelbas	width	length	fuel_cap
1	16,360	Automobile	21,500	1,8	140	101,2	67,3	172,4	13,2
2	19,875	Automobile	28,400	3,2	225	108,1	70,3	192,9	17,2
3	18,225	Automobile	4	3,2	225	106,9	70,6	192,0	17,2
4	29,725	Automobile	42,000	3,5	210	114,6	71,4	196,6	18,0
5	22,255	Automobile	23,990	1,8	150	102,6	68,2	178,0	16,4
6	23,555	Automobile	33,950	2,8	200	108,7	76,1	192,0	18,5
7	39,000	Automobile	62,000	4,2	310	113,0	74,0	198,2	23,7
8		Automobile	26,990	2,5	170	107,3	68,4	176,0	16,6
9	28,675	Automobile	33,400	2,8	193	107,3	68,5	176,0	16,6
10	36,125	Automobile	38,900	2,8	193	111,4	70,9	188,0	18,5
11	12,475	Automobile	21,975	3,1	175	109,0	72,7	194,6	17,5
12	13,740	Automobile	25,300	3,8	240	109,0	72,7	196,2	17,5
13	20,190	Automobile	31,965	3,8	205	113,8	74,7	206,8	18,5
14	13,360	Automobile	27,885	3,8	205	112,2	73,5	200,0	17,5
15	22,525	Automobile	39,895	4,6	275	115,3	74,5	207,2	18,5
16	27,100	Automobile	44,475	4,6	275	112,2	75,0	201,0	18,5
17	25 725	Automobile	39 665	4.6	275	108.0	75.5	200.6	19.0

Figura 2.1: Il dataset

2.2.2 La procedura in SPSS

Il pacchetto statistico SPSS non prevede una procedura specifica per effettuare l'acp, ma la racchiude tra la famiglia dei metodi fattoriali.

Il primo passo da compiere è un'attenta analisi della matrice dei dati iniziali che ci permette di avere una visione più ampia del dataset in esame. L'acp prevede una prima analisi di tipo descrittivo sulle variabili per cui si può evitare di effettuare queste analisi separatamente.

Dal menù Analizza selezionare Riduzione dei dati e di seguito Fattoriale (Analizza \rightarrow Riduzione dei dati \rightarrow Fattoriale).

🛅 Ve	🗰 Vendita auto - Editor dei dati SPSS											
File	Modif	fica Visualizza	i Dati Trasfo	orma	Analizza	Grafici	Strumenti	Fine	str	a ?		
⊯ 1:		ð 🔍 🗠		- [Report Statist Confro	t iche desc onta medi	rittive e	+ + +	*	0		
í –		resale	type	F	Modell Modell	o lineare : i misti	generalizzato))	Ì	wheelbas	width	Γ
	1	16,360	Automobile		Correl	azione		÷	1	101,2	67,3	
	2	19,875	Automobile		Regre	ssione		•	5	108,1	70,3)
	3	18,225	Automobile		Logline	eare		►	5	106,9	70,6	j 👘
	4	29,725	Automobile		Classif	icazione		►	j	114,6	71,4	Ţ
	5	22,255	Automobile		Riduzio	one dati		Þ		Fattoriale		
	6	23,555	Automobile		Scaling	3		•		Analisi corrisp	ondenze	
	7	39,000	Automobile		Test n	on param	etrici	ł		Scaling ottima	le	1
	8		Automobile		Sopra	/vivenza		1)	107,3	68,4	T
	9	28,675	Automobile		Kispos	ce multipl	e 4,9		3	107,3	68,5	;
									-			-

Figura 2.2: La procedura per avviare un'acp

Si apre la finestra mostrata in Figura 2.3, in cui vengono visualizzate le variabili che possono essere selezionate per effettuare l'analisi³.

🗖 Analisi fattoriale	
Seles in thousands 4-year resale value Vehicle type [type] Price in thousands Crojine size [engine Horsepower [horse Wheelbase [wheell Width [width] Evength [length] Fuel capacity [fuel	Variabili: OK Incolla Ripristina Annulla Aiuto Variabile di selezione: Valore
Descrittive	Estrazione Rotazione Punteggi Opzioni

Figura 2.3: La finestra di avvio della perocedura

A questo punto, si procede selezionando le varibili⁴ presenti nell'elenco posto a sinistra e 'inviandole' nella parte destra della finestra (vedi Figura 2.4,

Figura 2.4: Selezione delle variabili

³Si tratta delle sole variabili di tipo quantitativo

⁴ATTENZIONE! Quali delle variabili presenti nel dataset vanno utilizzate per l'analisi?

Questa finestra mostra alcuni titoli, *Statistiche..., Estrazione..., Rotazione..., Punteggi..., Opzioni...* che andiamo a considerare nel dettaglio:

- *i*. selezionando *Statistiche* si apre una nuova finestra che contiene un elenco di statistiche descrittive e selezioniamo
 - Statistiche descrittive,
 - Coefficienti per la matrice di correlazione,

cliccare su Continua;

- *ii.* selezionando *Estrazione* si apre una nuova finestra in cui selezioniamo come metodo di estrazione dei fattori *componenti principali*; inoltre scegliamo di condurre l'indagine dalla matrice di correlazione e di ottenere il grafico decrescente degli autovalori, cliccare su *Continua*;
- *iii.* selezionando *Rotazione* si ha la possibilità di scegliere il metodo di rotazione, nel nostro caso lasciamo la scelta di *default*, cliccare su *Continua*;
- *iv.* selezionando *Punteggi* si sceglie di salvarli come punteggi, cliccare su *Continua* e infine su *Ok*.

Viene eseguita la procedura dell'acp e aperto il file di *output* su cui vengono visualizzate le tabelle che riportano i risultati dell'analisi (Figura 2.5).

Figura 2.5: L'output

2.3 L'interpretazione dei risultati

Nelle Figure 2.6 e 2.7 sono riporate, rispettivamente le statistiche descrittive e la matrice di correlazione delle variabili in esame. Si lascia allo studente l'analisi accurata delle due tabelle e le osservazioni e riflessioni in merito⁵.

	Media	Deviazione std.	Analisi fattoriale N
Sales in thousand	59,0	74,6	119
4-year resale valu	18,1	11,5	119
Price in thousand	26,1	14,1	119
Engine size	3, 1	1, 1	119
Horsepower	182,2	58,8	119
Wheelbase	107,4	8,0	119
Width	71,3	3, 5	119
Length	188,0	13,9	119
Fuel capacity	17,8	3,8	119

Statistiche descrittive

Figura 2.6: Tabella delle Statistiche Descrittive

	Salas in	4.vear	Price in	Fngine					Fuel
	thousands	resale value	thousands	size	Horsepower	Wheelbase	Width	Length	capacity
Sales in thousands	1,000	-,279	-,257	,029	-,157	,484	,174	,268	,13
4-year resale value	-,279	1,000	,954	, 531	,771	-, 052	,179	,027	,32
Price in thousands	-,257	,954	1,000	,655	,854	,071	,306	,188	,40
Engine size	,029	, 531	,655	1,000	,862	,410	,670	,536	,61
Horsepower	-,157	,771	,854	,862	1,000	,233	,514	,409	,47
Wheelbase	,484	-, 052	,071	,410	,233	1,000	,678	,854	,65
Width	,174	,179	,306	,670	,514	,678	1,000	,748	,66
Length	,268	,027	,188	, 536	,489	,854	,748	1,000	,55
Fuel capacity	,136	,326	,486	,614	,476	,656	,666	,556	1,00

Matrice di correlazione

Figura 2.7: L a matrice di correlazione

I primi risultati che l'acp effettuata con SPSS produce sono mostrati nella tabella delle comunalità (Figura 2.8).

⁵Vedi la sezione Esercizi

	Iniziale	Estrazione
Sales in thousand	1,000	, 422
4-year resale valu	1,000	,879
Price in thousand	1,000	,924
Engine size	1,000	,805
Horsepower	1,000	,901
Wheelbase	1,000	,863
Width	1,000	,772
Length	1,000	,813
Fuel capacity	1,000	,662

Comunalità

Figura 2.8: Tabella delle comunalità

In essa troviamo le quote di varianza di ciascuna variabile spiegate dalle *componenti principali* appena estratte. Per cui osserviamo che esse spiegano più del 90% della varianza delle variabili PREZZO,POTENZA, una percentuale superiore all'80% per le variabili PREZZO DOPO ANNI, DIMENSIONE DEL MOTORE, PASSO, LUNGHEZZA, mentre la variabile VENDITE è quella riprodotta meno bene dalle *componenti principali*, solo il 42% della varianza spiegata. Ma quante *componenti principali* abbiamo estratto? Questa informazione la troviamo nella tabella intitolata 'Totale varianza spiegata'(Figura 2.9) Questa tabella ci dice che la prima componente estratta, il cui autovalore è pari a 4, 591, spiega il 51,014% della varianza totale e la seconda, il cui autovalore è pari a 2,450, un'ulteriore 27,227%, per in totale esse spiegano il 78,24% della varianza totale⁶.

			Autovalori iniz:	iali	Pesi dei fattori non ruotati			
		Totale	% di varianza	% cumulata	Totale	% di varianza	% cumulata	
	1	4,591	51,014	51,014	4, 591	51,014	51,014	
	2	2,450	27,227	78,241	2,458	27,227	78,241	
	3	,713	7,925	86,165				
	4	,467	5,184	91,349				
Componente	5	,374	4,159	95,508				
	6	,225	2, 498	98,007				
	7	,090	1,001	99,008				
	8	,861	,674	99,682				
	9	,829	,318	100,000				

Varianza totale spiegata

Metodo di estrazione: Analisi componenti principali.

Figura 2.9: Tabella della Varianza Spiegata

⁶Vedi Esercizio 1.2

Il numero di *componenti principali* che vengono ritenute sufficienti e utilizzabili può essere osservato nel grafico che riporta gli autovalori in funzione del numero delle componenti (da 1 a 9 poichè sono nove le variabili originarie). Il grafico, mostrato in Figura 2.10, si presenta come una spezzata sempre decrescente e ad un certo punto avviene una brusca variazione della pendenza (il gomito) che ci segnale il numero delle componenti da utilizzare. Nel nostro caso il gomito avviene tra la seconda e la terza componente, per cui sono le prime due le componenti da considerare⁷.

Figura 2.10: Grafico descrescente degli autovalori

La procedura dell'acp presente in SPSS non restituisce in maniera immediata gli autovettori corrispondenti alle *componenti principali*, ma fornisce in una tabella intitolata 'matrice delle comunalità', i coefficienti di correlazione tra ogni variabili e ogni componente estratta.

Per cui osserviamo che la prima componente risulta correlata positivamente (lo si deduce dal segno dei coefficienti) con tutte le variabili, ma questa relazione lineare è più *forte*

⁷Vedi Esercizio 1.3

con le varibili DIMENSIONE DEL MOTORE, POTENZA, mentre la seconda componente risulta correlata in maniera negativa e consistente con la variabile PREZZO DOPO 4 ANNI⁸.

	Componente		
	1	2	
Engine size	,890	-,110	
Horsepower	,856	-, 410	
Width	,797	,370	
Fuel capacity	,780	,233	
Price in thousand	,730	-,626	
Length	,715	,550	
4-year resale valu	,611	-,711	
Wheelbase	,633	,680	
Sales in thousand	,063	,647	

Matrice di componenti

Figura 2.11: Tabella delle componenti

Per ottenere i coefficienti della combinazione lineare che determina le componenti possiamo ricorrere ai valori contenuti nella matrice delle componenti e ricordando che:

$$r(Y_i,X_j)=a_{i,j}\sqrt{\lambda_i}$$

dove Y_i è l'i-esima componente, X_j è la j-iesima variabile e λ_i è l'autovettore corrispondente all'i-esima componente, possiamo deterimare gli autovettori⁹.

Otteniamo che gli autovettori corrispondenti sono:

⁸Vedi Esercisio 1.4

⁹Si consiglia di calcolare gli autovettori utilizzando l'applicativo Excel di Microsoft

Variabile	alj	12j
Sales in thousands	0,0294	0,4132
4-year resale value	0,2851	-0,4542
Price in thousands	0,3406	-0,3997
Engine size	0,4156	-0,0701
Horsepower	0,3994	-0,2622
Wheelbase	0,2954	0,4342
Width	0,3721	0,2361
Length	0,3337	0,3510
Fuel capacity	0,3640	0,1486

Capitolo2. Analisi in componenti principali

Tabella 2.1: Gli autovettori

Gli elementi di tali autovettori sono i coefficienti della combinazione lineare che definisce rispettivamente la prima e la seconda componente in funzione degli scostamenti standardizzati delle 9 variabili¹⁰.

Utilizzando questi valori si calcolano i punteggi con media nulla e varianza uguali a λ_1 e λ_2 per la prima e per la seconda componente, per ciscuna vettura presente nel dataset.

Infine SPSS produce il grafico delle componeti in cui i punti sono le variabili e le coordinate di ogni variabile sono i pesi fattoriali di ciascuna componnete.

Per leggere in maniera corretta il grafico bisogna considerare che:

- sull'asse orizzontale troviamo la correlazione tra le variabili e la prima componente,
- sull'asse verticale troviamo la correlazione tra le variabili e la seconda componente,
- le variabili presenti nel grafico sono vettori che contengono i coefficienti di correlazione tra le due componenti e le variabili, tutti compresi in un cerchio di raggio unitario il cui cebtro coincide con l'origine,
- l'angolo compreso tra ciascun vettore e l'asse relativo alla componente che si vuole esaminare individua l'entità della loro correlazione. Per cui se l'angolo è picco-

¹⁰Per esercizio si scrivino le espessioni delle due componenti.

lo vuol dire che tra la variabile e la componente sussiste una forte correlazione viceversa una debole correlazione.

Figura 2.12: Grafico delle componenti

Si lascia allo studente l'interpretazione del grafico relativo all'analisi appena condotta.

2.4 Esercizi

Esercizio 2.1

Effetuare un'analisi di tipo esplorativo sulle variabili contenute nel dataset *Vendite auto*, (tabelle frequenza, statistiche descrittive, grafici rappresentativi di ogni distribuzioni, correlazione). Commentare accuratamente i risultati.

Esercizio 2.2

La percentuale di varianza totale spiegata dalle prime due componenti principali risulta sufficiente? Esse tengono conto di una ragionevole quota della varianza totale?Si argomenti la risposta.

Esercizio 2.3

Quali sono i criteri a cui bisogna far riferimento per determinare il numero di componenti principali da utilizzare?

Esercizio 2.4

Commentare il grado di correlazione delle altre variabili con le componeti principali estratte.