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Abstract 
 
 A risk theoretical simulation model is here applied in order to assess the default risk of a 
general insurer along a medium-term time horizon. Different ruin barriers are regarded and by 
the results of the simulation model is then built up a Risk vs Return trade-off to analyse the most 
appropriate strategies in order to satisfy the insurer targets.  
Clearly not only profitability level but also risk measures must be taken into account, with special 
reference to minimum capital levels required by the insurance regulators. At this regard different 
suitable strategies may be pursued and, among these, reinsurance is one of the most relevant for 
the insurance risk management. Only conventional covers as quota share and excess of loss 
reinsurance are here regarded, but it is emphasized how effective they can be on the risk/return 
profile of a general insurer. 
To increase the volume of business is a natural target for the management of an insurance 
company, but that may cause a need of either new capital or/and reinsurance for solvency 
requirements and consequently a reduction in profitability for stockholders is likely to occur. 
 
Keywords:  Non-Life Insurance Solvency, Risk Theory, Monte Carlo simulations, Return on 

Equity, Probability of Ruin, Minimum Solvency Margin. 
 
 
 
 
1. INTRODUCTION. 
 
 Many studies have been carried out on the topic of insurance solvency and 
extensive researches have been appointed by governments and various institutions 
over the last decades. Among these, a particular mention has to be deserved to the 



well known studies carried out by Campagne, Buol and De Mori for both life and 
non-life insurance solvency, on whose results the minimum solvency margin in 
the EEC countries were established in 70’s for both life and non-life insurers. The 
results of those studies are still a relevant benchmark also in the most recent 
European and North American actuarial studies, analysing the Risk-Based Capital 
system applied in USA and the reform of the EU minimum solvency margin 
formula1. Notwithstanding the numerous and relevant criticism addressed to their 
studies it is to be recognised to them the merit to have fixed, a long time ago 
nowdays, a first general criteria for the solvency conditions and to have promoted 
a larger cooperation on the matter amongst the European countries.  
Anyway, notwithstanding in the assurance legislation a simple formula for the 
minimum solvency margin is needed, a universal formula is commonly considered 
to be an impossible achievement, moreover for the increasing complexity of the 
real insurance world. At this regard, many researches2 have pointed out how the 
simulation of comprehensive model may represent a suitable tool for the 
supervisory authority, in order to perform, after the “solvency test” (that may be 
regarded as a tool of “first level control”), a “second level control” taking into 
account all possible features of the company which can not be simply considered 
in the “first level” analysis.  
 
These studies have mainly made use of simulation techniques in order to be able 
to draw some conclusions for whatever insurer. In the present paper, it is 
emphasized how such kind of models may be suitable for the risk management in 
general insurance, with particular reference to underwriting, pricing, reserving, 
reinsurance and investment. The attention is here focused only on the pure 
underwriting risk with the analysis of the reinsurance impact, modelling a single-
line general insurer with a portfolio affected by short-term fluctuations on claim 
frequencies but without any claim reserving run-off. 
 
 When a solvency analysis is carried out, great attention must be paid to the 
well-known trade-off in force in insurance (Solvency vs Profitability) affecting a 
large part of the management strategies. 
Indeed, the main pillars of the insurance management are: 
- high growth in the volume of business and in the market share; 
- sound financial strength; 
- competitive return for stockholders’ capital.  
To increase the volume of business is a natural target for the management, but that 
may cause a need of new capital for solvency requirements and consequently a 
reduction in profitability of equity is likely to occur.  

                                                           
1  See e.g. Report O.C.S.E. (1961), Actuarial Advisory Committee to the NAIC Property & Casualty 
Risk-Based Capital Working Group (1992), Johnsen et al. (1993), Müller Working Party (1997). 
2  As to pioneer researches in general insurance at this regard, see e.g. Pentikäinen and Rantala 
(1982), British General Insurance Solvency Group (1987), Pentikäinen et al. (1989) and Daykin and 
Hey (1990). 
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In other words, the main goal for the insurance management is how to increase 
return for stockholders with the relevant constraint to afford all underwritten 
liabilities and to guarantee them with a relevant risk capital invested into the 
company such to fulfil minimum capital requirements approved by the 
supervisory authority, and possible extra voluntary risk capital to face 
supplementary insurance risks. 
An appropriate risk management analysis is then needed in order to assess the 
measure of risk (probability of ruin, capital-at-risk, unconditional expected 
shortfall, etc.), clearly depending on both the structure of its insurance and 
investment portfolio and the risk capital available at the moment of the evaluation.  
Once the tolerable ruin probability3 is fixed and regarded as suitable for the 
company, that is the upper limit to be not exceeded and then for a short-medium 
term an estimate of the actual probability of ruin is needed together with the 
probability distribution of the return on equity linked to alternative strategies. 
 
 
 
 
 
2. A RISK THEORETICAL APPROACH FOR MODELLING THE RISK RESERVE OF A 

GENERAL INSURER. 
 
 The main target of the present paper is to analyse the risk profile of a 
general insurer specialized in a single personal line of casualty, on both solvency 
and return benchmarks, and moreover to show the effects of some traditional 
reinsurance treaties. The framework of the model provides a risk theoretical 
approach where the underwriting risk is almost exclusively dealt with, and at the 
present stage of the model the financial variables are simply regarded as 
deterministic and the run-off risk rising from loss reserving is not considered. 
In classical Risk-Theory literature the stochastic Risk Reserve tU~  at the end of 
the generic year t is given by: 
 
(1)  [ ] 2/1

1 )1()~()~(~)1(~ jCXBEXBUjU RE
t

RE
t

RE
tttttt +⋅−−−−−+⋅+= −  

with gross premiums volume (Bt), stochastic aggregate claims amount ( tX~ ) and 
general and acquisition expenses (Et) realized in the middle of the year, whereas j 
is the annual rate of investment return, assumed to be a constant risk-free rate. As 
to reinsurance,  denotes the gross premiums volume ceded to reinsurer RE

tB
                                                           
3    As emphasized in Coutts and Thomas (1997) “the risk tolerance level of an individual company is 
clearly a matter for its Board of Director to establish, subject to regulatory minimum standards”, and 
the concept of probability of ruin may be used as a measure of this “risk tolerance”. In particular, these 
authors defined five different measures of ruin, according the failure of management target, the 
regulatory intervention level, net worth turning negative, exhaustion of cash and investments and, 
finally, inability to dispose of illiquid investments. 
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whereas RE
tX~   and  are respectively the amount of claims refunded by 

reinsurer and the reinsurance commissions. Neither dividends nor taxation are 
considered into the model. 

RE
tC

The gross premium amount is composed of risk premium Pt=E ( tX~ ), safety 
loadings applied as a (constant) quota of the risk premium λ*Pt and of the 
expenses loading as a (constant) coefficient c applied on the gross premium: 
 

tttt BcPPB ⋅+⋅+= λ  
 
Notwithstanding the risk loading coefficient λ is kept constant over the full time 
horizon, it is initially computed according to the standard deviation premium 
principle for the initial portfolio structure as follows: 
 

)~()~( XXE σβλ ⋅=⋅  
 
in order to ask for a risk loading amount equal to β for each unit of the standard 
deviation of the total amount of claims. 
Disregarding reinsurance covers, in case the actual expenses are equal to the 
expense loadings ( ), the classical risk reserve equation (1) becomes: tt BcE ⋅=
 
(1bis)   [ ] 2/1

1 )1(~)1(~)1(~ jXPUjU tttt +⋅−⋅++⋅+= − λ  
 
It is here assumed that claims settlement will take place in the same year as the 
claim event and therefore no claims provision at the end of the year is needed. 
Actually, for many general insurance lines (e.g. third-party liability) the run-off 
risk concerning the development of the initial estimate of claim reserve is not 
negligible at all and therefore is an additive source of risk, but on the other hand, 
at the present stage of the model it may be assumed to be offset by the investment 
returns of the claim reserves, not accounted for in the formula (1bis). 
 
The nominal gross premium volume increases yearly by the claim inflation rate (i) 
and the real growth rate (g): 
 

1)1()1( −⋅+⋅+= tt BgiB  
 
assumed rates i and g to be constant in the regarded time horizon. 
Following the collective approach, the aggregate claims amount tX~  is given by a 
compound process: 

(2)     ∑
=

=
tk

i
tit ZX

~

1
,
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where tk~  is the random variable of the number of claims occurred in the year t 

and tiZ ,
~

 the random claim size of the i-th claim occurred at year t. 
As well known an usual assumption in general insurance for the number of claims 
distribution is the Poisson law, and having assumed a dynamic portfolio the 
Poisson parameter will be increasing (or decreasing) recursively year by year by 
the real growth rate g. It means that tk~  is Poisson distributed with parameter 

 depending on the time. t
t gnn )1(0 +⋅=

 
In practice the simple Poisson law frequently fails to provide a satisfactory 
representation of the actual claim number distribution. Usually the number of 
claims is affected by other types of fluctuations4 than pure random fluctuations: 
a) Trends: when a slow moving change of the claim probabilities is occurring. 

They can produce an either increase or decrease of the expected value since a 
systematic change in the line environment conditions; 

b) Short-period fluctuations: when fluctuations are affecting only in the short-
term (usually less than a year) the assumed probability distribution, without 
any time-dependency. In practice, they can be caused for instance by 
meteorological changes5 or by epidemic diseases; 

c) Long-period cycles: when changes are not mutually independent and they 
produce their effect on a long term and a cycle period of several years may be 
assumed. They are usually correlated to general economic conditions. 

 
In the present paper trends as well as long-term cycles are disregarded and only 
short-term fluctuations are taken into account. For this purpose a structure 
variable will be introduced to represent short-term fluctuations in the number of 
claims. In practice the (deterministic) parameter of the simple Poisson distribution 
for the number of claims of year t will turn to be a stochastic parameter qnt

~⋅  , 
where q~  is a random structure variable6 having its own probability distribution 
depending on the short-term fluctuations it is going to represent. If no trends are 
assumed, the only restriction for the probability distribution of q~  is that its 
expected value has to be equal to 1.  
The presence of this second source of randomness will clearly increase the 
standard deviation in the number of claims tk~  and very often the skewness will be 
greater, thus increasing the chance of excessive claim numbers.    

                                                           
4  See Beard, Pentikainen and Pesonen (1984). 
5  Seasonal fluctuations are here disregarded because annual results are investigated. They should be 
clearly taken into account if results were analysed on a six-months basis (for instance when variation in 
claim frequencies between summer and winter are present in a motor insurance portfolio).  
6 Here the variation of the Poisson parameter n from one time unit to the next is analysed. It is worth to 
recall that a “structure variable” have been also used when the variableness of the Poisson parameter 
from one risk unit to the next is to be investigated (see Bűhlmann (1970)). 
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In the following a Gamma distribution will be assumed as the probability 
distribution of the structure variable q~ . Then a negative binomial distribution is 

obtained for the random number of claims. Under these assumptions tX~  is 
denoted to be a compound Polya Process, as a special case of the more general 
compound Mixed Poisson Process. In this particular case, the moments of the 
structure variable q are given by: 

hqhqqE /2)~(/1)~(1)~( === γσ  

A usual estimate of h is the reciprocal value of the observed variance of q.  
 
The claim amounts, denoted by tiZ ,

~ , they are assumed to be i.i.d. random 
variables with a continuous distribution - having d.f. S(Z) – and to be scaled by 
only the inflation rate in each year. The moments about the origin are equal to: 
 

0,0,, )1()~()1()~( jZ
tjj

i
tjj

ti aiZEiZE ⋅+=⋅+= ⋅⋅  
 
with tk~  and tiZ ,

~  mutually independent for each year t. 
The expected claim size has been simply denoted by m whereas r2Z and r3Z are 
risk indices of the claim size distribution7. Further, the skewness of the aggregate 
claim amount is reducing (increasing) time by time accordingly the positive 
(negative) real growth rate g as a natural result of the Central Limit Theorem. 
 
 The risk reserve ratio ttt BUu /~~ =  is usually preferred to be analysed 
instead of the risk reserve amount, and its equation (disregarding for the moment 
the reinsurance effect) is given by: 

 (3)    ⎥
⎦

⎤
⎢
⎣

⎡
−+⋅+⋅= −

t

t
tt P

X
puru

~
)1(~~

1 λ  

where r and p denote the following two non negative joint factors: 
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+
−
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The annual factor r is depending on the investment return rate j, the claim 
inflation i and the real growth rate g; on the other hand factor p is depending on 
the incidence of the risk premium by gross premium (P/B), constant if expenses 

                                                           
7   Risk indices of the claim size distribution are: 
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and safety loading coefficients (c and λ) are maintained constant along the time, 
increased of the investment return for half a year. 
After some manipulations, the stochastic equation (3) of the ratio  turns to: tu~
 

(4)   ⎥
⎦
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The expected value of this capital ratio can be easily derived: 
 

(5)   
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As well known in actuarial literature8, if r=1 the expected value of the ratio  is 
a straight line by time t (linear increase if loading coefficient λ is positive) 
whereas if r≠1 a non linear behaviour of the expected value of risk reserve ratio is 
realised. It is worth to emphasize 

tu~

)~( tuE  initially depends significantly on the 
initial ratio u0 (by the factor rt) but in case r<1 its dominance is shortly decreasing 
in favour of the second addendum, where the safety loading coefficient λ is 
playing a key role. Besides, the dimension n of the Insurer is not affecting the 
expected level of the capital ratio U/B; actually n is affecting both risk reserve U 
and premiums volume B but according to the same proportion (at least in the 
present model) and then the expected ratio is independent from the number of 
policies in force. 
Further, only if r<1 is fulfilled a finite convergence level of the expected ratio is 
obtained ("equilibrium level"): 
 

(6)     
r
puEu tt −
⋅

==
∞→ 1

)~(lim λ  

 
Some comments are needed here. Firstly, not only the dimension n but also the 
initial value u0 do not contribute to the equilibrium level u . Secondly, whether 
that equilibrium level is either improving or not over the initial value u0 is 
depending on the input parameters λ, c and r, whereas higher safety loading and 
investment return clearly will drive up the equilibrium level while higher 
expenses, real growth and claim inflation will depress it. 

                                                           
8   At this regard see Pentikäinen and Rantala (1982) and Beard et al. (1984). 

 7



In case r≥1 the expected ratio )~( tuE  diverges to positive or negative infinite 
values according to sign and value of the safety loading coefficient. 
As regards variance, skewness and higher moments of the risk reserve ratio 
described in equation (4) see Pentikainen & Rantala (1982) and, for further 
results, Savelli (2002a). 
 
 
 
 
 
3. A MEASURE OF RISK IN INSURANCE SOLVENCY ANALYSES. 
 
 In practical analyses when different management strategies may be pursued 
in the market then it is necessary to compare multiple pairs of risk and return 
measures. A traditional approach is to face the problem according to a mean-
variance efficient frontier, where the best strategy for the time horizon is to 
maximize the expected value of the risk reserve (or either the ratio U/B) once 
fixed the initial capital (equivalent to maximize the return for stockholders) and, 
at the same time, to minimize its variance.  
The main shortcoming in using the variance as a risk measure is that according to 
this view the risk is entailed in all deviations from the mean, without any 
reference to the algebraic sign. Very often in insurance and finance the real risk is 
only the downside risk and then a semi-variance approach would be preferred in 
spite of “favourable” signs are not counted for in the risk measure.  
 
Another well known one-sided approach to risk evaluation is the Value-at-Risk 
(VaR) widely used when the risk relies on the occurrence of unfavourable events 
such as insolvency are to be estimated. That kind of approach has a sound 
background in actuarial literature, where Capital-at-Risk (CaR) and probability of 
ruin have usually been the main pillars in solvency analyses. 
In insurance solvency, CaR can be summarized as the expected maximum loss for 
an insurer over a target horizon within a given confidence level (e.g. 99%); in 
other words it denotes a monetary amount for the risk of managing an insurance 
company. 
The CaR for the horizon time (0,t) given a 1-ε confidence level is then given by: 
 

)(),0( 0 tUUtCaR ε−=  
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where Uε(t) is the ε-th quantile of the Risk Reserve amount at time t (with a 
confidence level required in the analysis rather large, at least 95%) and U0 the 
initial risk reserve. 
In the present framework both premium volume and investment return are 
deterministic and )()()( tBtutU ⋅= εε  is always fulfilled. If a CaR measure 
compared to initial capital U0 is preferred, the following ratio can be easily 
obtained: 
 

t

t
t

CaR r
j

u
tu

U
Btu

U
tCaRtu )1()(1)(1),0(),0(

000

+
⋅−=⋅−== ε

ε  

 
as a relative measure of the initial risk capital under the risk of default. In 
practice, it gives the measure of the CaR as a percentage of the initial capital 
when it is a non-zero amount. It is obviously dependent on the time horizon (0,t) 
as well as the requested confidence level 1-ε, increasing as much as confidence 
level and time horizon are greater. 
 
 Another analogous measure for insurance solvency analyses is the minimum 
risk-based capital (possibly required by either regulators and/or legislation) in 
order to be still in a solvency state after t years since the valuation date (Ut ≥ 0) 
within a given 1-ε confidence level. In practice, disregarding the presence of an 
initial risk capital, in the present framework this measure (here denoted by UReq) 
should fulfil the following equation: 
 
(7)     )(),0()1( Re tUtUj q

t
ε−=⋅+

 
where Uε is always the ε-th order quantile of the risk reserve distribution in year t. 
The amount UReq(0,t) is then the minimum capital to be required as a buffer to 
ensure that maximum losses accumulated by the insurer until year t (within a 1-ε 
confidence level) can be offset and a solvency state still maintained. For 
supervisory purposes the time horizon t is mostly included between 1 and 2 years. 
In simulation models an initial risk capital (or a capital ratio) is usually given as 
an input parameter of the model, and in order to use the simulation results to draw 
up the measure UReq(0,t), reminding that investment return is here assumed 
deterministic and then the total financial contribution of the initial capital is 
deterministic as well, the equation (7) can be easily used in the equivalent form: 
 
(7bis)   [ ]t

q
t jUtUtUj )1()(),0()1( 0Re +⋅−−=⋅+ ε  

 
In practice this means that initial required capital, plus compound interests, are 
sufficient to cover (within a 1-ε confidence level) the unfavourable deviations 
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(losses) among the input initial capital (increased by compound interests) and the 
quantile of the risk reserve distribution at year t. 
Therefore, through formula (7bis) the minimum capital required at time 0 in order 
to be assured the state of solvency at year t (always with a confidence level of 1-ε) 
is obtained: 
 
(8)    [ ]0Re )()1(),0( UtUjtU t

q −⋅+−= −
ε  

 
Expressed as a ratio of the initial gross premiums volume (B0), that risk measure 
can be written as9: 
 

(9)    t
q

q r
tu

u
B

tU
tu
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Re
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ε−==  

 
A possible shortfall in these two approaches is that a simple quantile of the U/B 
probability distribution at year t (partly) disregards the state of the simulation 
paths in the previous years (1, 2,…t-1). For instance, it occurs when the 
simulation paths of ratio U/B are partly negative at time t-1 and afterwards all of 
them are positive at the next time point t, from which a favourable quantile Uε 
(positive and rather large) is drawn up for year t; and consequently no minimum 
capital might be required if the time horizon is fixed at year t, notwithstanding the 
probability to be in state of ruin at year t-1 is not zero.
 
To avoid such kind of drawbacks, it could be useful to analyse simultaneously 
these quantile measures and the probability of ruin for the time horizon (0,t) 
which takes into account also ruins occurred at years t-1, t-2 …1.  
Given the initial capital U0=U and defined the state of ruin when the Risk Reserve 
is negative, let denote by );( tUϕ  the “probability to be in ruin state at year t” 
irrespective of the (ruin or not-ruin) state at previous years (t-1, t-2,…1): 

(10)     ⎟
⎠

⎞
⎜
⎝

⎛
=<= UUUtU t 0/0~Pr);(ϕ

On the other hand, the “finite time ruin probability” in the time span (0,T) is the 
probability to be in ruin state at least in one of the time points 1, 2 … T-1 and T10: 

                                                           
9 According the mentioned framework a simple relation among uCaR and uReq is in force: 
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10 Natural lower and upper limits for the time span ruin can be derived: 
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(11).  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==<= UUTtoneleastatforUTU t 0/,...2,10~Pr);(ψ  

and consequently the survival probability ),( TUΦ is given by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==≥=−=Φ UUTteachforUTUTU t 0/,...2,10~Pr);(1);( ψ  

Finally, the “one-year ruin probability” ),1;( ttU −ψ  is the probability to fail in a 
ruin state for the first time at the time point t, having been in a no-ruin state for all 
the previous years: 

⎭
⎬
⎫

⎩
⎨
⎧

−=≥<=− 1,...,2,100~Pr),1;( thforUandUttU htψ  

It can be also derived from the finite-time ruin probabilities by the well known 
relation: 
 

[ ] [ ]),1;(1)1;(1);(1 ttUtUtU −−⋅−−=− ψψψ  
 
from which the one-year ruin probability is easily obtained: 
 

(12)    
)1;(1

);(11),1;(
−−

−
−=−

tU
tUttU

ψ
ψψ  

 
In case the ruin barrier is otherwise defined than URUIN(t)=0, the above mentioned 
ruin probabilities will be consequently modified. For instance, an alternative ruin 
barrier can be assumed to be either the EU Minimum Solvency Margin of the year 
(MSMt) or the Guarantee Amount equal to one third of the EU MSM of the year: 
 

URUIN(t) = MSM(t)    or    URUIN(t) = 1/3*MSM(t). 
 
 
 As well as the CaR or VaR approaches (based on quantile values) the main 
shortcoming of the ruin probability as a risk measure is that it does not say 
anything on the left tail of risk reserve probability distribution and which is the 
most likely amount of ruin shortfall )()( tUtURUIN −  to occur. In practice, as well 
as quantile measures, also for ruin probability no measure is given on the 
probability distribution of the shortfall (the amount of ruin). 
 
 More recently, Artzner et al. (1999) have pointed out how in the use of 
quantile measures the size of the loss is not taken properly into account, because 
no reference is made at the shape of the tail distribution exceeding the quantile. 
Indeed, in two different cases having the same VaR (or equivalently CaR or ruin 
probability) it may happen to get different expected shortfalls. Moreover, the 
same authors advocated calculating the Conditional Tail Expectation (CTE) as a 
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more useful risk measure taking into account either the probability of the event 
occurring and the magnitude of the resulting loss.  
 In practice, a similar approach is here preferred (see Haberman et al. (2003)) 
in order to device a suitable measure of solvency risk: the Unconditional Expected 
Shortfall.   
Having denoted the event that a “ruin” occurs at year t for the insurer by 
Ut<URUIN(t) (equivalent to ut<URUIN(t)/Bt=uRUIN(t))11 and the conditional Mean 
Excess Shortfall (the expected value of the ruin deficit) by MES(t), the 
Unconditional Expected Shortfall (UES) at year t is given by: 
 
(13)
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In the recent actuarial literature is emphasized how this risk measure can be 
regarded as the risk premium of an insurance contract which would cover the 
shortfall of the company in case it occurs, being the sum of the expected shortfalls 
(ruin deficits) weighted by their probabilities.  
Furthermore, the UES is a one-sided risk measure, like the semi-variance, in 
which deficits are included but surpluses are ignored. 

                                                           
11 As mentioned before a state of ruin can be established also if the risk reserve, notwithstanding 
positive, is under the level of a positive amount, as the EU minimum solvency margin (MSM) or other 
correlated measures as the Guarantee Amount (=1/3*MSM). For management purposes the ruin barrier 
may be fixed also at a certain percentage of premium volume (e.g. 5% of gross premiums) as an early 
warning level. That may be preferred when medium or long-term analyses are carried out. As regards 
some other definitions  of a “failure” state for an insurer see Coutts and Thomas (1997).  
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4. A MEASURE OF PERFORMANCE AND SOME RELATIONS WITH THE CAPITAL 

LEVEL. 
 
 Here the expected Return on Equity (RoE) will be preferred as a measure 
for the Insurer’s performance and let ),0( TR  denote the expected RoE all over 
the full time horizon (0,T). In the framework here assumed, where no dividends 
are present, it will be equal to: 
 

(14)   1)~()1()1(
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In case the joint factor r is less than 1, reminding the formula of the expected 
capital ratio at time T and its asyntotic value (i.e. the “equilibrium level”): 
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another relevant expression that may be used is: 
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Once the finite-time expected RoE is computed we can also derive the expected 
forward rate ),1( ttfwR −  from the well-known recursive equation: 
  

[ ] [ ] ),0(1),1(1)1,0(1 tRttfwRtR +=−+⋅−+  
 
from which (being no dividends assumed), the following rate (gross of taxation) is 
obtained12 : 
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In our basic scenario it can be roughly approximated by the rate of investment 
return (j) plus approximately 2-3 times the safety loading coefficient (λ), where 
the value of the factor 2-3 is heavily affected by the reciprocal value of the 
expected initial capital ratio 1/E(ut-1). Further, a larger risk reserve will indeed 
depress the global relative return if the volume of business is not as larger and the 

                                                           
12    Note that it does not necessary imply that: 
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rate of profitability ( pλ ) is unchanged. Moreover, the expected forward return 
will be monotonically decreasing if, as usual, the expected value of the ratio U/B 
is constantly rising up (here dividends to shareholders or fresh new capital are 
disregarded).  
 
Another useful way is to present ),1( ttfwR −  as function of either the initial 
capital ratio and the equilibrium level, as in the next formula: 
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It shows clearly as the expected forward RoE is only depending on the next six 
market and insurer no-dimensional parameters:  
- initial capital (by u0); 
- safety loading (by λ); 
- expenses loading (by the presence of c in the parameter p); 
- real growth (by g); 
- claim inflation (by i); 
- investment return (by j). 
Furthermore, a strong relationship between return and capital for a general insurer 
is included. If r<1 the expected forward annual return has a limit for the time 
going to infinity only depending on the real growth and the claim inflation: 
 

1)1)(1(),1(lim −++=−=
∞→

igttfwRR
t

 

 
In case the monotony of expected value of the capital ratio U/B13 is fulfilled, as it 
is in our framework where no shock effects or business cycles are regarded, then 
the monotony of the expected annual return is assured too (as confirmed by the 
formula (15) where the only time-dependent factor is the joint factor r – assumed 
to be minor than 1).  
In practice, if the starting value of the capital ratio is higher (lower) than the 
equilibrium level then the expected annual forward RoE will be monotonically 
increasing (decreasing) until its limit value: 

 
if  uu >0  then ),1( ttfwR −  monotonically increasing to  1)1)(1( −++ ig
if  uu <0     “ ),1( ttfwR −            “            decreasing to  1)1)(1( −++ ig

                                                           
13 Monotonically either increasing or decreasing to the finite equilibrium level 

r
puEu tt −
⋅

==
∞→ 1

)~(lim λ
  if r<1.  Consequently, if the initial capital ratio U/B will be lower (higher) 

than the mentioned equilibrium level, the expected value of U/B will be monotonically increasing 
(decreasing) towards that value. 
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This relation displays the strong relation between capital and return and the key 
role of the capital ratio available at the valuation time ( ):  0u
- if uu >0  (see Figure 1, upper graph) the insurer would expect an increasing 

annual forward RoE for the next years until the upper limit R . Meanwhile, a 
depressed capital ratio  will be expected along the time, towards the bottom 
limit 

tu
u  (represented by the equilibrium level), and consequently a larger risk 

of ruin will be likely in force year by year reminding also the rising variability 
of the time process; 

- vice-versa (see Figure 1, lower graph), if the insurer has available only an 
initial capital ratio uu <0 , the annual forward RoE will be expected to be 
decreasing (but clearly at a higher level than in the previous case uu >0 ) in 
the time horizon until the lower limit R  (that is the upper limit in the previous 
case). On the other hand, the capital ratio  will be expected to increase until 
the upper limit 

tu
u  and consequently it might reduce its risk of ruin year by 

year in case this increase were sufficient to offset the rising variability of the 
process over the time. 

 
FIGURE 1:  Comparison between the Expected Value of capital ratio U/B and the 

Expected value of the forward rate RoE (time horizon of 20 years) 
  Parameters:   λ=3.5%  c=25%  g=8%  i=2%  j=4%  
 

Case uu0  u> : % 0=67.5

 
 

se uu <0  u: % 0=25.0Ca
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 In Figure 1 an example is figured out in both cases for these expected values 
in a rather general scenario with a particular set of parameters. These parameters 
identify a limit value for the expected capital ratio U/B equal to 46.25% 
(“equilibrium level”) and a limit value of the expected forward rate of RoE equal 
to 10.16%.  
For instance, if the initial capital ratio u0 is 67.5% then E(U/B) is decreasing to 
62.19% at year 5 and to 52.98% at year 20 whereas E(Rfw) is increasing from the 
initial rate of 8.14% to 8.51% at year 5 and to 9.34% at year 20.  
On the other hand, if u0 is 25% then E(U/B) is increasing to 30.31% at year 5 and 
to 39.53% at year 20 whereas E(Rfw) is decreasing from the initial rate of 16.00% 
to 13.70% at year 5 and to 11.28% at year 20. 
 
 
 
 
 
5. THE PARAMETERS OF A THEORETICAL STANDARD INSURER. 
 
 In the present section some results of the simulation model illustrated in the 
previous sections are reported for a theoretical Standard Insurer in a time horizon 
of five years (T=5). 
The features of this Standard Insurer are not drawn by a real data set but are 
assumed in order to be representative of a small insurer with a single line of 
business made by a rather homogenous personal line as Motor Third-Party 
Liability insurance (MTPL). The assumed parameters of this Standard Insurer are 
reported in the next Table 1 and the results of  2.000 simulations of the ratio U/B 
are shown in Figure 2 in order to give a first general idea on the simulation 
bundle and the risk profile of the insurer. 
 
 The parameters have been fixed in order to have as target a MTPL insurer 
with a standard deviation of its loss ratio X/B not far from 5% and a poor risk 
loading for competitive pressure. At this regard the safety loading coefficient λ 
has been fixed equal to 1.80% based on the standard deviation premium principle 
mentioned in Section 2, with coefficient β close to 0.28, applied at the portfolio in 
force at year 0.  
In case the claim size variability were different from the present standard value 
cZ=4, then the corresponding measure of the safety loading (if the same β is still 
regarded as suitable notwithstanding the different level of skewness and kurtosis), 
would have been approximately 1.5% if cZ=2 and 3.1% in case of cZ =10. 
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  TABLE 1: Parameters of  the Standard Insurer 
 

Parameters : 
  

STANDARD 
INSURER 

   
   

Initial risk reserve ratio                     u0  0,250 
 

Initial Expected number of claims     n0

  
10.000 

 St.Dev. structure variable q               σq  0.05 
 Skewness structure variable q            γq  + 0.10 

   
Initial Expected claim amount (EUR) m0  3.500 
Variability coeffic. of Z                     cZ  4 

   
Safety loading coeffic.                        λ  + 1.80 % 
Expense loadings coefficient              c  25.00 % 
Real growth rate                                  g  5.00 % 
Claim inflation rate                             i  5.00 % 
Investment return rate                         j  4.00 % 

   
   

Initial Risk Premium (mill EUR)          P  35,00 
Initial Gross Premiums (mill EUR)      B  47,51 

   
Joint factor  (1+j)/(1+g)(1+i)                r  0,9433 

   
   

 
It is worth pointing out that the coefficient λ is kept constant (1.80%) for the 
entire time horizon. Anyway, a periodical annual adjustment of the safety loading 
coefficient would have not affected significantly the results because of only a 
slight reduction of the ratio σ(X)/E(X) as the expected number of claims are 
increasing year by year (as an effect of the positive real growth of the premium 
volume), reminding that the pooling effect is less relevant when a not negligible 
structure variable (no diversifiable risk) is present as in this case (with σq =5%). 
In case a dynamic adjustment were adopted, the coefficient λ would have been 
slightly reduced time by time from 1.80% to 1.72% at year t=5. 
 
 In Figure 2 the upper dotted line represents the expected value of the EU 
Minumum Solvency Margin divided by the gross premiums amount whereas the 
lower dotted line is the classical Ruin Barrier U=0. As expected (see Figure 2a) 
the line MSM/B is rather constant over the time, close to 16.5% and rarely in 
excess of 17.5%, and its fluctuations are not so significant. 
In case a Quota Share reinsurance treaty (with a ceding quota of 20%) were in 
force with a reinsurance commission at 20% of ceded premiums, the simulation 
values of the capital ratio U/B depicted in Figure 2 would turn to the values 
figured out in Figure 3. 
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FIGURE 2: results of 2.000 simulations of the ratio u=U/B for the Standard Insurer  
  (u0=25%, n0=10.000, σq=5%, E(Z)=3.500, cZ=4) – Results gross of reinsurance.  

 
 
FIGURE 2a: results of 2.000 simulations of the ratio MSM/B for the Standard Insurer  

  (u0=25%, n0=10.000, σq=5%, E(Z)=3.500, cZ=4) – Results gross of reinsurance.  

 
 
FIGURE 3: results of 2.000 simulations of the ratio u=U/B for the Standard Insurer  

     (u0=25%, n0=10.000, σq=5%, E(Z)=3.500, cZ=4) – Results net of QS reinsurance 

 
Reins. Cover: Quota Share Reinsurance – Insurer retention 80% and reins. commission 

20% of Ceded Premiums (cRE=20%). 
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At a first glance the simulation bundle shows a reduced expected ratio of the 
capital ratio (for the unfavourable reinsurance commission) but on the other hand 
the variability of the bundle is clearly reduced and both ruin frequencies and ruin 
deficits are significantly lower. 
 
 
 
 
 
6. THE RESULTS OF THE SIMULATION MODEL. 
 
 Clearly, the number of simulations needed for a more comprehensive risk 
analysis is by far larger than only 2.000; in the following, the results of  300.000 
simulations are worked out for the assumed Standard Insurer. 
In Figures 4 and 5 the results of the simulations are reported with classical Monte 
Carlo scenarios. In Figure 4 the percentiles of the capital ratio U/B are figured out 
for some extreme percentiles (0.1%-1%-5%-50%-95%-99%-99.9%) gross and net 
of quota reinsurance and in Figure 5 the same results are presented with reference 
to lower and upper quartiles. 
 
The main numerical results of the simulations are summed up in Table 2, where 
the main simulation moments of both the capital ratio U/B and the loss ratio X/B 
are reported. Instead, in Table 3 the percentiles of those two indices are 
calculated. 
 
 
TABLE 2: Standard Insurer – Results of 300.000 simulations 
 SIMULATION MOMENTS OF THE CAPITAL RATIO U/B AND PURE LOSS RATIO X/P 
 SIMULATION MOMENTS OF U/B  SIMULATION MOMENTS OF X/P 

 
t MEAN 

% 
ST.DEV. 

% 
SKEW. KURT. MEAN 

% 
ST.DEV. 

% 
SKEW. KURT. 

   
         
0 25.00    100.000   - 
1 24.94 4.82 - 0.26 3.43 99.998 6.41 + 0.25 3.43 
2 24.88 6.60 - 0.18 3.25 99.993 6.37 + 0.28 3.70 
3 24.82 7.82 - 0.15 3.15 100.001 6.30 + 0.26 3.68 
4 24.78 8.73 - 0.13 3.12 99.983 6.24 + 0.24 3.32 
5 24.73 9.45 - 0.11 3.10 99.999 6.17 + 0.23 3.31 
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Figure 4: Mean and Percentiles of U/B  -  Results of 300.000 simulations. Standard Insurer: 

u0=25%, n0=10.000, σq=5%, E(Z)=3.500, cZ=4. 
  Percentiles figured out: 0.1% 1% 5% 50% 95% 99% 99.9%. 
 
 GROSS OF REINSURANCE 

 
 
 Net OF REINSURANCE (Quota Share with Ins. Retention 80% and cRE=20%) 

 
 

Figure 5: Lower and Upper Quartiles of the ratio U/B (Gross and Net of Reins.) 
 Standard Insurer: u0=25%, n0=10.000, σq=5%, E(Z)=3.500, cZ=4. 
 Results of 300.000 simulations.  
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TABLE 3: Standard Insurer – Results of 300.000 simulations 
 SIMULATION MEAN AND PERCENTILES OF CAPITAL RATIO U/B AND PURE LOSS RATIO X/P  

(% values) 
Time                       SIMULATION PERCENTILES OF U/B                      SIMULATION PERCENTILES OF X/P 

             
t MEAN 0.1% 1% 5% MEDIAN 99.9% MEAN 0.1% 1% 5% MEDIAN 99.9% 
             
0 25.00      100.000      

1 24.94 7.48 12.97 16.77 25.11 38.47 99.998 81.98 86.05 89.92 99.77 123.23 
2 24.88 2.40 8.75 13.77 25.04 44.17 99.993 82.19 86.07 89.94 99.77 122.83 
3 24.82 1.45 5.92 11.75 24.97 47.51 100.001 82.23 86.24 90.04 99.78 122.30 
4 24.78 -4.17 3.62 10.19 24.95 50.44 99.983 82.44 86.36 90.13 99.78 122.03 
5 24.73 -6.44 1.94 8.98 24.89 52.69 99.999 82.43 86.51 90.21 99.81 121.67 

             

 
 
Moreover, in Table 4 different ruin probabilities are reported for two different 
ruin barriers whereas in Table 5 the associated expected return on equity is 
contained: 
 
TABLE 4: Standard Insurer – Results of 300.000 simulations 
 RUIN PROBABILITIES 

(% VALUES) 
                                   WITH RUIN BARRIER URUIN =0            WITH RUIN BARRIER URUIN=1/3*MSM 

 
Tim

e 
t 

 ANNUAL 
RUIN  
PROB. 

ONE-YEAR 
RUIN PROB. 

FINITE  
TIME  
RUIN 
PROB. 

 ANNUAL 
RUIN 
PROB. 

ONE-
YEAR 
RUIN 
PROB. 

FINITE 
TIME 
RUIN 
PROB. 

   
         

1  0.01 0.01 0.01  0.05 0.05 0.05 
2  0.05 0.04 0.05  0.31 0.28 0.33 
3  0.16 0.13 0.18  0.87 0.68 1.01 
4  0.36 0.25 0.44  1.60 1.03 2.05 
5  0.61 0.38 0.81  2.33 1.19 3.27 
         

 
TABLE 5: Standard Insurer – Results of 300.000 simulations 

EXPECTED RETURN ON EQUITY 
(% VALUES) 

                                    
Tim

e 
t 

 FORWARD 
RATE 

 FINITE-TIME 
RATE 

  
     

1  9.96  9.96 
2  9.98  20.54 
3  9.99  32.58 
4  10.01  45.85 
5  10.02  60.47 
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Because of the small variance and skewness of the process, it is to be emphasized 
these results of 300.000 simulations are extremely consistent with the exact value 
for the mentioned moments (at this regard see Savelli(2002b)). In case of an 
insurer with a much more variable portfolio (e.g. cZ=10) and with a large 
skewness of the aggregate claim amount (e.g. +10) the required number of 
simulations to get the same consistency is obviously greater. 
 
From the Figures 3 and 4 as well from numerical results reported in Tables 2, 3 
and 4, the next main comments can be summed up: 
- on a 1-year time horizon the simulated scenario for our Standard Insurer is 

rather promising as regards solvency, with a rather small probability at 0.01% 
(equivalent to a survival probability of 99.99%) to become ruined (U<0). 
Among other factors, it is clearly influenced by the initial capital ratio, 
assumed to be 25% (approximately 1.5 times the EU minimum solvency 
margin). Clearly worse or better results would have been obtained (as to the 
downside risk) if the initial capital were either lower (e.g. 20%) or higher (e.g. 
30%); 

- on an extended time horizon (0,T) the survival probability is clearly slightly 
decreasing as the required time horizon is larger: 99.95% for T=2, 99.82% for 
T=3, 99.56% for T=4 and finally 99.19% for T=5; 

- the above mentioned survival probabilities are affected by the variability of 
the stochastic process defined by the risk reserve amount U (or U/B), in our 
framework depending by the variance of the aggregate amount of claims (X) 
or equivalently by the variance of the loss ratio (X/B). At this regard, it is 
worth to mention that for the assumption made at the present stage of the 
model the loss ratio X/B is equal to the pure loss ratio X/P multiplied for the 
factor P/B (depending only on safety and expenses loading, and then constant 
over the whole time horizon for the assumptions here made), factor always 
less than one. Then a crucial element is the variance of the random ratio X/P; 
for the Standard Insurer here investigated the standard deviation of this annual 
ratio is only slightly declining over the time because the increasing number of 
expected claims (by the factor 1+0.05) is not reducing significantly the 
variability by the time because of the presence of a non diversifiable factor 
(the structure variable has a significant standard deviation, assumed to be 5% 
in our simulations). From Table 2 the standard deviation of X/P is indeed only 
decreasing from 6.41% to 6.17% and it can be easily observed its impact on 
the variability of the ratio U/B at year 1, where a value of 4.82% is obtained, 
equal to 6.41% multiplied by roughly P/B (equal to 0.752); 

- the shape of the U/B probability distribution is close to the Normal 
distribution, with special evidence at time 3-4-5. That is because of a 
skewness rather close to 0 (with values slightly decreasing from -0.3 to -0.1) 
and a kurtosis not so far from the value 3 of a normal distribution (decreasing 
from 3.4 to 3.1). Furthermore, reminding that in our framework the process U 
is defined by a sum of independent random variables (the annual aggregate 

 22



claims amounts Xt), it follows from the Central Limit Theorem that the 
ultimate limit for the probability distribution of U (and then of U/B) at infinity 
time is Normal distributed. The speed and the accuracy of the approximation 
are clearly depending on the parameters defining the risk reserve process. In 
case of a portfolio structure much more instable, i.e. with larger skewness and  
kurtosis (e.g. industrial risks), the approximation to the Normal distribution 
would be by far more unreliable and it might drive to undesirable 
underestimation of the risk; 

- as regards the approximation of the U/B process to the Normal distribution, it 
is to be emphasized that usual short-cut formulas for minimum requirements 
or risk analysis making use of Normal-Power or other normal-related 
approximations must be carefully handled, bearing in mind that the reliability 
of the results is heavily affected by the higher order moments of the U 
distribution (skewness and kurtosis over all). It is beyond the goal of the 
present paper, but a comparison between the results of short-cut formulas and 
simulations would clearly put in evidence this crucial aspect in practical 
analysis; 

- as regards profitability, for the moment we can observe that the expected 
value of the ratio U/B is deteriorating from 25% to approximately 24.73% 
(notwithstanding no dividends and no taxations are here regarded). The 
expected forward rate of RoE is almost constant around 10% with a negligible 
increase over the examined years from 9.96% of year 1 to 10.02% of year 5; 

- finally, reinsurance covers could improve the risk profile of the Insurer, but 
are clearly depressing its profitability. For instance, if a 20% Quota Share 
reinsurance treaty would be in force all over the 5-years time horizon, with the 
Insurer receiving commissions equal to 20% of the ceded premiums (5% less 
than the general and acquisition costs annually afforded by the Insurer), the 
finite-time probability of ruin and the expected forward RoE would change 
significantly (see Table 6). In the depicted scenario the expected annual rate 
of return will be more than halved (see at year 1, where the expected RoE will 
turn from 9.96% to only 4.28%, just a little more than the investment return of 
the equity capital j=4%). Furthermore, the ruin probability will be improved 
with the mentioned cover but, as the value of the expected U/B net of 
reinsurance is faster decreasing on the bottom, for time t=5 the probability of 
ruin net of reinsurance (0.91%) will be higher than the figure obtained without 
any reinsurance (0.81%): 

 

 23



 
TABLE 6:  FINITE-TIME EXPECTED ROE AND FINITE-TIME RUIN PROBABILITY  

GROSS AND NET OF A QUOTA SHARE REINSURANCE (URUIN=0). 
Standard Insurer – Results of 300.000 simulations 

 (% VALUES) 
Time Horizon GROSS. OF REINS. NET OF 20% QS REINS. 

 
T FINITE TIME 

EXP. ROE 
R(0,T) 

FINITE-TIME 
RUIN PROB. 

FINITE TIME 
EXP. ROE 

R(0,T) 

FINITE-TIME 
RUIN PROB. 

     
1 9.96 0.01 4.28 0.00 
2 20.54 0.05 8.77 0.02 
3 32.58 0.18 13.45 0.10 
4 45.85 0.44 18.42 0.36 
5 60.47 0.81 23.56 0.91 

  

 
 
- the mentioned probabilities are referred to a ruin barrier URUIN=0. But in case 

one of the main risk target of the Insurer were to be compliant with the 
compulsory rules concerning the minimum solvency margin, in order to avoid 
as much as possible to claim fresh new capital from shareholders in the 
forthcoming years, the ruin barrier could be URUIN=MSM. In this case the 
probability to cross that new ruin barrier is obviously much higher; from 
Figure 4 it can be observed it results larger than 5% and increasing in the 
forthcoming years. Moreover, if a ruin barrier corresponding to the Guarantee 
Amount equal to 1/3 of the EU minimum solvency margin were in force, the 
results would be somewhere between the mentioned probability figures (see 
Table 4). 

 
Moreover, in Figure 6a it is showed for our Standard Insurer the effect of the 
20% Quota Share Reinsurance on the shape of simulation distributions of the 
capital ratio U/B at years 1-2-5. 
The skewness values of the distributions gross and net of reinsurance are exactly 
the same for the proportional feature of the QS cover whereas the standard 
deviation of the ratio U/B net of reinsurance is exactly 80% of the standard 
deviation gross of reinsurance. Finally, as regards the expected values of the ratio 
U/B, the reinsurance cover is significantly reducing its value of approximately 5% 
at year 1, 10% at year 2 and 25% at year 5, because of the unfavourable 
reinsurance commissions. 
On the other hand, in Figure 6b the simulation distributions of the capital ratio 
U/B at years 1-2-5 for the Standard Insurer are compared with the analogous 
distributions for a different Insurer (with a rough reference to a corporate liability 
line) having a more volatile portfolio (cZ=10) with large skewness values. In both 
cases as the time increases the shape of the probability distributions becomes less 
skew but the variances are significantly increasing. 
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FIGURE 6a: Standard Insurer: comparison of the simulation distributions of the ratio U/B at years 
1, 2 and 5 gross and net of a 20% Quota Share Reinsurance. 

 Results of 300.000 simulations. 
 

Gross of Reinsurance 
 
 

 
 

Net of QS Reinsurance 
insurer retention quota    = 80% 
fixed reins. commissions = 20% 

 

 

 
Year 1: mean=0.2494  std=0.0482  skew.=-0.26 

 

 
Year 2: mean=0.2488  std=0.0660  skew.=-0.18 

 

 
Year 5: mean=0.2473  std=0.0945  skew.=-0.11 
 

 
Year 1: mean=0.2365  std=0.0385  skew.=-0.26 

 

 
Year 2: mean=0.2237  std=0.0528  skew.=-0.18 

 

 
Year 5: mean=0.1896  std=0.0756  skew.=-0.11 
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 Figure  6b: Comparison of the simulation distributions of the capital ratio U/B at 
years 1, 2 and 5 between Standard Insurer and a No Standard Insurer  

  Results of 300.000 simulations (Gross of Reins.) 
 
 
 

No Standard Insurer  
 

u0=25%, n0=10.000, σq=5%, 
E(Z)=10.000, cZ=10 and λ=5% 

 
Standard Insurer 

(MTPL line) 
u0=25%, n0=10.000, σq=5%, 

E(Z)=3.500, cZ=4 and λ=1.8% 
 

 

 
Year 1: mean=0.2792   std=0.0799   skew.=-4.79 

 
Year 2: mean=0.3076   std=0.1103   skew.=-2.93 

 
Year 5: mean=0.3878  std=0.1625  skew.=-1.66 

 
Year 1: mean=0.2494  std=0.0482  skew.=-0.26 

 
Year 2: mean=0.2488  std=0.0660  skew.=-0.18 

 
Year 5: mean=0.2473  std=0.0945  skew.=-0.11
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From the results of the simulation model we can also focus our attention to the 
amount of capital needed to be still in a solvency state at year t (within a given 
confidence interval). In Section 3 this amount has been denoted by UReq(0,t) and 
by the ratio uReq(0,t) if that required amount is divided by the initial gross 
premiums volume. 
The results for our Standard Insurer (see Table 7 and Figure 7) show how this 
measure is high sensitive to both confidence level and time horizon. Regarded 
only the cases T=1 and T=2 for supervisory targets, the required ratio with a 
confidence level of 99.0% and T=2 (15.2%) is not so far from the minimum ratio 
requested by the EU Minimum Solvency Margin (close to 16.4% in our case). As 
expected, the ratio uReq(0,T) is higher when a larger time horizon is preferred but 
according a non-convex behaviour. That means, as well known in actuarial 
literature that the short-cut approximation formula  )1,0(),0( ReRe eq uTTu ⋅≅  is 
roughly confirmed in the present assumed framework, where no autocorrelation 
between aggregate amount of claims has been assumed. Moreover, it is worth 
pointing out how for insurers with skewness and kurtosis higher than those here 
registered for the Standard Insurer this approximation is by far less reliable 
because of the leading factor is not anymore the standard deviation only. 
Furthermore it is to be emphasized as for a more risky insurer, with a larger 
deviation of the loss ratio, would display results not so consistent with EU 
minimum capital requirements (e.g. when a more risky business line is regarded 
having a standard deviation of the loss ratio by far higher than 5%, e.g. industrial 
and corporate third-party liability). 

 
TABLE 7: Standard Insurer – Results of 300.000 simulations 
 MINIMUM RISK CAPITAL REQUIRED FOR A DIFFERENT TIME HORIZON AS A PERCENT 

VALUE OF THE INITIAL GROSS PREMIUMS (UREQ(0,T)/B0) ACCORDING TWO DIFFERENT 
CONFIDENCE LEVELS 

 GROSS OF REINS. NET OF REINS.  
 

Time 
Horizon 

T 

 CONFID. 
99.9% 

CONFID. 
99.0% 

 

UREQ(T)  /
UREQ(1) 

 

 CONFID. 
99.9% 

CONFID. 
99.0% 

 

UREQ(T)  / 
UREQ(1) 

 
   
         

T = 1  17.07 % 11.26 % 1.00  14.73 % 10.09 % 1.00 
T = 2  22.31 % 15.17 % 1.35  20.07 % 14.36 % 1.42 
T = 3  26.73 % 17.94 % 1.59  24.83 % 17.80 % 1.76 
T = 4  30.27 % 20.43 % 1.81  28.94 % 21.07 % 2.09 
T = 5  33.62 % 22.40 % 1.99  32.99 % 24.01 % 2.38 

         

 
Finally, as regards the impact of the Quota Share Reinsurance, the simulation 
results show how the minimum required capital amount is greater than 80% of the 
amount required gross of reinsurance (as instead provided in the EU MSM 
formula). Concerning only the time horizon T=1 and T=2 the results show how 
this measure should be much more than 80% figure before mentioned, actually 
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equal to roughly 85% for an annual horizon time and 90% for a two-years time 
span. It is worth to emphasize that it comes from reinsurance commissions of only 
20% (against expenses for the Insurer equal to 25% of premiums), depressing the 
profit amount and consequently its solvency profile. Indeed, the shortcoming of 
the EU formula at this regard is to take into account only the actual retention of 
paid claims, but no reference is made to the treaty profitability (in a Quota Share 
the key role is played by the measure of the commissions), who heavily affects, as 
mentioned, the solvency level of the company also for short-time analyses, as 
shown in our case. Similar comments may be derived in case of scalar reinsurance 
commissions depending on the loss ratio. 
 
FIGURE 7: Standard Insurer – Results of 300.000 simulations 
 MINIMUM RISK CAPITAL REQUIRED FOR DIFFERENT TIME HORIZON AS A PERCENT 

VALUE OF THE INITIAL GROSS PREMIUMS     uReq(0,T)=UReq (0,T)/B0
RESULTS GROSS AND NET OF Q.S. REINSURANCE  

 
CONFIDENCE LEVEL 99.9% 

 
Figures Gross of Reinsurance: 1st bar Figures Net of Reinsurance: 2nd bar 

 
CONFIDENCE LEVEL 99% 

 
Figures Gross of Reinsurance: 1st bar Figures Net of Reinsurance: 2nd bar 
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Even though to investigate on the fairness of the EU minimum solvency margin 
according to the features and the dimension of a general insurer is not the target of 
this paper, it is worth to mention that for the MTPL single-line small-dimensioned 
insurer here considered the EU solvency formula (approximately 16-18% of 
retained premiums) is sufficient to afford the unfavourable deviations in almost 
99.9% but only regarding the pure underwriting risk. That suitability will be 
consistently reduced if either taxation and dividends will be regarded or also if 
other types of risks will be regarded, as e.g. financial and loss reserving risks, 
long-term cycles and catastrophic events. 
 
 
 
 
 
7. RISK VS RETURN ANALYSES. 
 
 In Figure 8 is illustrated the trade-off Risk vs Return of the examined 
Insurer for all the 5 years of the time horizon, where the measure of risk has been 
denoted by the Unconditional Expected Shortfall (UES) of the year (with two 
different ruin barriers) and as regards profitability by the finite time Expected 
RoE ),0( TR . 
A similar trade-off is represented also in Figure 9 with two different ruin barriers 
but there the risk measure is the finite time ruin probability. 
 
On these trade-off figures the following comments are to be pointed out: 
- first of all both the risk measures are consistent each other. Actually, for the 

Standard Insurer here assumed and for the designed QS reinsurance treaty the 
slopes of the curves are very similar and they drive at the same strategies; 

- as the time horizon is extended, the expected return ),0( TR is rising up as 
well as the risk measure (for either finite time ruin probability or 
unconditional expected shortfall) for both strategies (no reinsurance at all and 
the mentioned 20% QS reinsurance); comparing the results given by the 
model, in the designed framework the strategy to choose a 20% QS coverage 
is also efficient for any time horizon but not for T=5; 

- actually, for T=1,2,3, or 4 in case the QS reinsurance strategy is preferred it 
would get less profitability and less risk of default (for both ruin barriers) but 
for the time horizon T=5 that is not the case: it would get a significant cut in 
the periodical profitability compared to no reinsurance strategy (23.56% 
instead of 61.12%) but notwithstanding that a larger measure of default risk is 
obtained (e.g. for the ruin barrier URUIN=0 the UES at year 5 is 0.237‰ of 
gross premiums, to be compared with the measure of 0.225‰ in case of no 
reinsurance). That is clearly due to the significant cut in profitability of the 
company as for a large portion of its business (20%) the technical profitability 
will be dramatically reduced for the unfavourable reinsurance commissions of 
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only 20% of the ceded premiums whereas the Insurer has a 25% level of 
expenses. On the long term this lack of profitability will bring the expected 
value of the capital ratio U/B closer to the ruin line and then a larger risk of 
insolvency will arise notwithstanding the process fluctuations are reduced by 
the reinsurance cover (see either Figure 4 and Table 6). 

 
 
FIGURE 8: Risk vs Return trade-off for the Standard Insurer. Results of 300.000 simulations.  
  Risk measure:   uncond. exp. shortfall  /  gross premiums   TBTUES /)(
  Performance measure:  finite time expected RoE   ),0( TR  

 
URUIN(t) = 0   (straight line: Gross Reins.   -   dotted line: Net Reins.) 

 
 

URUIN(t) = 1/3*MSM(t) (straight line: Gross Reins.   -   dotted line: Net Reins.) 

 
 
 
 In the management practice usually the Insurer must choose, among 
different “efficient” strategies, according to a minimum target for its profitability 
and a maximum target for the risk measure (let say of UES with a classical ruin 
barrier U=0) and that can heavily affect the results. For instance, let assume that 
our Standard Insurer will decide his reinsurance strategy according to the 
estimated results at time 3, with the next min/max Insurer’s constraints: 
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)3;0(MINR =25% and UESmax(3)=0.04‰*BT (the latter constraint equivalent, for 
instance, to a probability to be in ruin at year 3 equal to 1‰ combined with an 
expected value of the ruin deficit not exceeding 4% of gross premiums). In our 
case no practical strategy is available for the management fulfilling both targets: 
the no-reinsurance strategy has a periodical profitability by far larger than 25% 
but its UES is larger than 0.04‰ of premiums (0.058‰). On the other hand the 
20% QS reinsurance strategy fulfils the requested upper limit of risk but its 
periodical profitability is rather poor (only 13.45% over the 3 years term). 
 
FIGURE 9: Risk vs Return trade-off for the Standard Insurer. Results of 300.000 simulations.  
  Risk measure:    finite time ruin probability  ),0( Tψ   

  Performance measure:  finite time expected RoE  ),0( TR  
 

URUIN(t) = 0 (straight line: Gross Reins.    -   dotted line: Net Reins.) 

 
 

URUI(t) = 1/3*MSM(t) (straight line: Gross Reins.   -   dotted line: Net Reins.) 

 
 

 
It is clear that the available 20% QS treaty (Treaty A) is not suitable for our 
Standard Insurer, first of all for its heavy lack of profitability and secondly for an 
unnecessary large cover.  
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Let assume now that on the reinsurance market there are two other reinsurance 
covers available for the company (with the identical risk of default estimated for 
the reinsurers involved): 
- Treaty B (5% QS): a Quota Share reinsurance treaty providing for a small 

quota to be reinsured (5%) and a more favourable reinsurance commission 
(22.5%) compared with Treaty A; 

- Treaty C (XL): is an Excess-of-Loss reinsurance treaty, providing the 
coverage (on a single claim basis) for each claim of the portfolio exceeding 
the single claim Insurer Retention M equal to EUR 115.000 (equal to the 
expected value of the claim size plus 8 times the standard deviation) and a 
safety loading equal to 10.8% of the ceded premiums (6 times the 1.8% figure 
applied by the Insurer). 

It is worth pointing out that for both treaties B and C the amount of the ceded risk 
premium is exactly 5% of the total risk premiums P. Then both Reinsurers are 
expected to have a reinsured aggregate claim amount XRE equal to 5% of the total 
aggregate claim amount X. 
 
On the basis of these treaties, the new Risk-vs-Return simulation results are 
illustrated in Figure 10, where the ruin barrier is Uruin(t)=0 and besides only the 
UES risk measure is figured out. 
 
 As expected, in case the Treaty B is taken into account the Risk/Return 
curves (no reinsurance and reinsurance) are closer each other compared to the 
Treaty A (20% QS): that is due to the fact that a smaller amount of risk is 
transferred (5% instead of 20%) and consequently either profitability and 
insolvency risk are closer to the values for no-reinsurance strategy. Moreover, the 
XL coverage (Treaty C) is more expensive than 5% QS coverage but it is more 
effective on reducing the downside risk (see also numerical values in Table 8). 
 Coming back to the management targets (Rmin=25% and UESmax=0.04‰ for 
T=3), among the new two available treaties only the XL treaty strictly complies 
with the requested management constraints. Any way, it is worth to notice that 
also the 5% QS treaty is rather close to a full compliant of the constraints (in 
particular the risk measure - 0.0416‰ - is just a little bit over the 0.04‰ target 
measure and the expected return is significantly higher than the XL strategy, 
30.41% vs 26.84%). 
 
 In spite of those mentioned reinsurance covers are theoretical, what 
explained here is a practical issue to assess the most appropriate reinsurance 
strategy according to a reliable valuation of the default risk and under the 
requested management constraints. 
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FIGURE 10: Risk vs Return trade-off for the Standard Insurer. Results of 300.000 simulations.  
  Risk measure:   uncond. exp. shortfall  /  gross premiums   TBTUES /)(
  Performance measure:  finite time expected RoE   ),0( TR  

 
Treaty B: 5% Quota Share with cRE=22.5% 

URUIN(t) = 0 (straight line: Gross Reins.    -   dotted line: Net Reins.) 

 
 

Treaty C: XL with M=EUR 115.000 and λRE=10.8% 
URUIN(t) = 0 (straight line: Gross Reins.    -   dotted line: Net Reins.) 

 
 
 
TABLE 8: Standard Insurer – Results of 300.000 simulations 
 RISK VS RETURN RESULTS FOR THE THREE THEORETICAL REINSURANCE TREATIES 

(% VALUES) 
TIME 

HORIZON 
NO REINSURANCE TREATY A:  

20% QS AND CRE=20% 
TREATY B:  

5% QS AND CRE=22.5% 
TREATY C:  

XL  AND λRE=10.8% 
         

T EXP. 
RETURN 

UES(T) / 
BT

EXP. 
RETURN 

UES(T) /  
BT

EXP. 
RETURN 

UES(T) / 
BT

EXP. 
RETURN 

UES(T) /  
BT

 (0,T)  (0,T)  (0,T)  (0,T)  
 % ‰ % ‰ % ‰ % ‰ 
   
         
1   9.97 0.0064 4.28 0.0026   9.16 0.0087   8.18 0.0000 
2 20.97 0.0228 8.77 0.0112 19.11 0.0123 17.07 0.0005 
3 33.05 0.0584 13.45 0.0304 30.11 0.0476 26.84 0.0068 
4 46.44 0.1259 18.42 0.0934 42.28 0.1093 37.42 0.0288 
5 61.12 0.2253 23.56 0.2375 55.37 0.2093 49.03 0.0761 
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 Here mainly two different risk measures have been taken into account for 
these analyses: the finite time ruin probability and the unconditional expected 
shortfall. 
As above mentioned in our numerical examples both risk measures drive to the 
same strategies and a similar measure of risk is estimated. This is mainly due to 
the fact that a single-line insurer is here regarded and the right tail of the amount 
of claim distribution X is regularly decreasing. The same two risk measures would 
likely drive to different strategies in case a multi-line insurer is analysed, 
expecially in case the aggregate claim distribution of X for all the lines would 
present multiple local modes on the right tail, with a general impact depending on 
the weight and the concentration of the claim distribution of each line of business. 
 
 
 
 
 
8. FINAL COMMENTS. 
 
 As emphasized in this paper a reliable comparison of the results given by 
different reinsurance covers provided by the real market makes the insurer able 
to identify the most appropriate strategic planning. Moreover, Monte Carlo 
simulation technique could provide a useful insight of the whole risk process, 
with special advantage in cases of portfolios with a large skewness of the loss 
distribution, where the use of approximation formula is not reliable. 
 The risk theoretical model described is clearly a simplified version of the 
complex model to be taken into account, but here suitable analyses about 
primary insurance aspects have been preferred.  
At this regard an appropriate analysis is highly recommended on investment and 
insurance long-term cycles, loss reserving run-off risk, stochastic investment 
return, dividends, taxation and ALM. These aspects will be the target of further 
researches in connection with the analysis of a multiline general insurer, where 
the combination of so many parameters and the correlation among more random 
variables should be summed up in the comprehensive risk profile of a general 
insurer. Moreover, suitable investigations are also needed when “financial” 
reinsurance programs are included in the available covers. 
The real insurance world is clearly much more complicated, but this kind of 
approach, nowdays widespread in the actuarial literature under the umbrella 
term DFA (Dynamic Financial Analysis), is of real interest and it is promising of 
large improvements for a rational and coherent practical risk management in 
insurance. 
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