Prova scritta di Analisi Matematica 1 Corso di Laurea in M.E.G.Q.A.

del 11 Luglio 2006, Professoressa Paolamaria Pietramala, A.A. 2005/2006

Cognome	Nome	Anno	Matricola
Esercizio 1	Esercizio 2		
Determinare il dominio della seguente funzio $f(x) = e^{\sqrt{\frac{\log(x-1)}{x^2+4}}}$ Risposta:		o della seguente fu $f(x) = \sqrt{(x+1)} $	
Esercizio 3 Calcolare il seguente limite: $\lim_{x \to +\infty} \frac{e^x + x^2}{\sin(x^2) + x^3}$		Esercizio 4	
Risposta:	Risposta:		
Esercizio 5	Esercizio 6		
Stabilire l'intervallo in cui la funzione $f(x)$ è	crescente. Calcolare il seguer		
$f(x) = (x^2 + x + 1)^3$		$\int x^2 \cdot e^{x^3 + 5} dx$	
Risposta:	Risposta:		

Esercizio 7	Esercizio 8	
Stabilire per quali valori di a e b la funzione $f(x)$ è	Calcolare il seguente limite	
derivabile		
$f(x) = \begin{cases} \cos x + 1 & x \ge 0\\ x^2 + ax + b & x < 0 \end{cases}$	$\lim_{x \to 0} \frac{\log(1 + 3x^2)}{x \cdot (e^{2x} - 1)}$	
$\int (x^2 + ax + b x < 0$	$x \to 0$ $x \cdot (e^{2x} - 1)$	
Risposta:	Risposta:	
Esercizio 9	Esercizio 10	
Calcolare il valore del seguente integrale improprio:	Stabilire il carattere della serie:	
	$\sum_{n=0}^{\infty} \frac{3n^2 + 1}{n^4 + n^3 + n + 1}$	
$\int_{16}^{+\infty} \frac{2\sqrt{x} + 3}{2\sqrt{x}(x - 3\sqrt{x})} \ dx$	$\sum_{n=0}^{\infty} \frac{n^4 + n^3 + n + 1}{n^4 + n^3 + n + 1}$	
Risposta:	Risposta: $n=0$	
Tusposta.	Teloposia.	
Esercizio 11	Esercizio 12	
Vero o falso. Motivare la risposta.	Scrivere la definizione di	
Se esiste $\lim_{x\to 0} \frac{f(x)}{g(x)}$ allora esistono $\lim_{x\to 0} f(x)$ e $\lim_{x\to 0} g(x)$.	$\lim_{x \to x_0} f(x) = +\infty$	
Risposta:	Risposta:	
•	-	
Esercizio 13	Esercizio 14	
Determinare il numero e il segno delle soluzioni	Sia $f(x)$ una funzione continua in $[2, +\infty)$ allora:	
dell'equazione		
$\arctan(3x) + e^x + x + 1 = 0$	(a) $f(x)$ ha massimo	
	(b) $f(x)$ non ha massimo	
Risposta:	(c) $f(x)$ è limitata in $[3,4]$	
	Motivare la risposta.	
	_	
	I.	