Università della Calabria Seminario sul tema:

RISK-BASED CAPITAL MODELLING FOR P\&C INSURERS

Arcavacata (Cosenza), 9 Febbraio 2006

prof. N. Savelli

Università Cattolica di Milano
E-mail: nino.savelli@unicatt.it

Agenda

This presentation is based on two papers having as coauthor
L. Ballotta (Cass Business School - City University, London)

- Insurance Risk Management and Solvency
- General framework of the model
- The Insurance sub-model
- The Investment sub-model
- The RBC obtained from simulation results (VaR and TVaR)
- The impact of the main model's parameters on the RBC measures
- Further researches and improvements of the Model
- References

Insurance Risk Management
 and Solvency

- MAIN PILLARS OF THE INSURANCE MANAGEMENT:

the strategic triangle of competing forces:

- market share / return for stockholders' capital / financial strength \& stability
- NEW RISK-BASED CAPITAL REQUIREMENTS:
to assess the risk capital of the company according to its own real risk profile (and not according a "fit for all" rule as provided in Solvency I).
Simulation models may be used for defining Capital Adequacy - Internal Model approach (e.g. IAA Solvency Working Party, CEIOPS, etc.)
- INTERNAL RISK MODELS (IRM):
to be used:
- for solvency purposes (e.g. Pillar 1\&2 of Solvency II)
- for management purposes: to define the most appropriate management's strategies
IRM could allow for a more comprehensive representation of the business of an individual firm than a standard formula (risk-factor based formula).
- A NEW APPROACH FOR THE SUPERVISORY AUTHORITIES:
- Stress testing in order to assess the solvency profile of the Insurer
- Validation and approval of the Insurer IRM on the basis of
- Prudential requirements
- Comparability \& consistency requirements (with respect to the supervisor's view of key minimum performance criteria)
- Indication of the appropriate course of action to follow in case of an excessive risk of insolvency over the short term
- THE AIM OF THIS PRESENTATION:
- to figure out a possible risk model for a P\&C insurer incorporating
- the (pure) underwriting risk
- the financial risk
- to analyse the results of different risk measures as capital requirements;
- to show the impact of main parameters on the capital requirements (as e.g. asset allocation, company's dimension, claim size variability, etc.)

General framework of the model

General framework of the model

- Company:

General Insurer with only 1 line of casualty insurance
Time Horizon: 3 years

- Aggregate Claim amount Compound Mixed Poisson Process
- Number of Claims:

Negative Binomial distribution

- Claim Size:

LogNormal distribution

- Dynamic Ins. Portfolio: Volume of premiums increases every year according to real growth and claim inflation
- Reinsurance:
reinsurance cover is ignored
- Investment Portfolio:

1 category of assets for Equities and other 5 categories for Gov.Bonds, differentiated according to time to maturity ($1,2,3,5$ and 10 years)

- Investment Return:
- Geometric Brownian motion for equities
- CIR process for interest rates
- Asset Allocation rule:
constant proportion
- Monte Carlo approach:

400,000 simulations
Risks not included:

- Claim Reserve risk
- Credit and Operational risk
- ALM risk

$$
\begin{aligned}
& U_{t}=U_{t-1}+j_{t} \cdot\left(U_{t-1}+L R_{t-1}+P R_{t-1}+C F_{t}\right)+ \\
& {\left[\left(P R_{t-1}+\Pi_{t}-P R_{t}\right)-X_{t}-E_{t}\right]-T X_{t}-D V_{t}}
\end{aligned}
$$

$\mathbf{U}_{\mathbf{t}}=$ Risk Reserve at time t
$\Pi_{t}=$ Gross premiums year t
$X_{t}=$ Aggregate claims amount year t
$E_{t}=$ general and acquisition expenses year t
$\mathrm{CF}_{\mathrm{t}}=$ Cash Flows year $\mathrm{t}-$ at time ($\mathrm{t}-1$)+
$=\left(\Pi_{t}-E_{t}-C_{t}\right)-\left(T X_{t-1}+D V_{t-1}\right)$
$\mathbf{j}_{\mathrm{t}} \quad=$ Investment return rate of year t
$\mathbf{L R} \mathbf{t}_{\mathbf{t}-1}=$ Loss Reserve at time $\mathrm{t}-1$
$\mathbf{P R}_{\mathrm{t}-1}=$ Premium Reserve at time t-1
$\mathrm{TX}_{\mathrm{t}}=$ Taxation amount year t
$D V_{t}=$ Dividends year t

The Insurance sub-model

Gross Premiums, Safety Loading
 and Loss Reserve

- Gross Premiums (dynamic rule):

$$
\Pi_{t}=(1+i)^{*}(1+g)^{*} \Pi_{t-1}
$$

i = claim inflation rate (constant) e.g. $+5 \%$
$\mathrm{g}=$ real growth rate (constant) - assumed not related to the market level of the premiums - e.g. $+5 \%$

- Loss Reserve and Premium Reserve:

$$
L_{t}=\delta^{*} \Pi_{t} \quad P R_{t}=\xi^{*} \Pi_{t}
$$

with coefficients δ and ξ constant over the time
(e.g. $\delta=\mathbf{1 0 0 \%}$ and $\boldsymbol{\xi}=\mathbf{3 5 \%}$)

- Gross Premiums and safety loading:

$$
\Pi_{t}=(1+\varphi)^{*} E\left(X_{t}\right)+c^{*} \Pi_{t}
$$

where:

- $\varphi=$ safety loading coefficient (e.g. 5\%)
- c = exp. loading coefficient (e.g. 25\%)
- The safety loading coefficient φ is computed according to the standard deviation principle:
$E(U W P)+E(F P-R F F P)=\boldsymbol{b}$ * STD (UWP+TFP):
UWP = Undewriting Profit (depending on φ)
TFP = Total Financial Profit (depending on asset alloc.)
RFFP = Risk-Free Financial Profit (depending on risk-free rate)

In other words, the insurer is asking for an expected profit in excess of the risk-free rate from the overall insurance business equal to b (e.g. 0.30) for each unit of risk (measured as standard deviation)

Total Claims Amount year $\mathrm{t}\left(\mathrm{X}_{\mathrm{t}}\right)$

- $\mathrm{k}_{\mathrm{t}}=$ Claim Number of year t
here assumed to be Negative Binomial distributed, i.e.
- kfollows a Poisson distribution with a random parameter $\mathrm{n}^{*} \mathrm{q}$ (as n parameter and q random),
- q is a multiplicative random structure variable with mean 1 and distributed as a Gamma(h,h), which captures short-term fluctuations (Note: q is here regarded as time independent variables),
- n is the expected number of claims (dimensional parameter) increasing according to the real growth rate, i.e. $n_{t}=n_{0}{ }^{*}(1+g)^{t}$
- $\mathrm{Z}_{\mathrm{i}, \mathrm{t}}=$ Claim Size for the i -th claim of year t (independent of \mathbf{k})
here assumed to be LogNormal distributed, with values increasing every year according to the deterministic claim inflation (i) only.
The claim sizes Z_{t} are assumed to be i.i.d. random variables
- $\quad X_{t}$ are time independent variables. In the real world, though, long-term cycles are present and then significant auto-correlation might be observed (especially for the case of medium/long-term analyses).

Number of claims distribution

(simulation examples)

- Poisson p.d.f.
$\mathrm{n}=10.000$
$\sigma(q)=0$ \%
results of 10.000 simulations

- Negative Binomial p.d.f.
$\mathrm{n}=10.000$
$\sigma(q)=\underline{2,5 \%}$
results of 10.000 simulations

Negative Binomial p.d.f.
$\mathrm{n}=10.000$
$\sigma(q)=\underline{5 \%}$
results of 10.000 simulations

Negative Binomial p.d.f.
$\mathrm{n}=10.000$
$\sigma(q)=10 \%$
results of 10.000 simulations

As h is increasing, the mixed Poisson distribution is approximating to the (simple) Poisson distribution.

Claim Size distribution

(simulation examples)

\qquad $E(Z)=m$ $\operatorname{Std}(Z)=m{ }^{*} c_{z}$ Skew(Z) $=c_{z}{ }^{*}\left(3+c^{2}{ }_{z}\right)$
$E(Z)=m=€ 10.000$
$c_{z}=10$
$m=€ 10.000$
$\mathrm{c}_{\mathrm{z}}=5$

$$
\begin{gathered}
m=€ 10.000 \\
c_{z}=1,00
\end{gathered}
$$

$$
m=€ 10.000
$$

$$
c_{z}=0,25
$$

The (exact) Moments of the Total Claim amount X

(NO structure variable)

$$
\begin{aligned}
& E(\tilde{X})=n \cdot a_{1 z}=n m \\
& \sigma^{2}(\tilde{X})=n \cdot a_{2 z} \\
& \gamma(\tilde{X})=\frac{1}{\sqrt{n}} \cdot \frac{a_{3 z}}{\left(a_{2 z}\right)^{3 / 2}}
\end{aligned}
$$

Note:
$a_{j z}=j$-th moment about origin claim size Z

- As \mathbf{n} (dimension parameter) is increasing, Variance is increasing to ∞ and skewness is decreasing to 0 .
- Skewness in this case is always >0.

(YES structure variable q)

$$
\begin{aligned}
& E(\tilde{X})=n \cdot a_{1 Z}=n \cdot m \\
& \sigma^{2}(\widetilde{X})=n \cdot a_{2 Z}+n^{2} \cdot m^{2} \cdot \sigma^{2}(\widetilde{q}) \\
& \gamma(\tilde{X})=\frac{n a_{3 Z}+3 n^{2} m a_{2 Z} \sigma^{2}(\widetilde{q})+2 n^{3} m^{3} \cdot \sigma^{3}(\widetilde{q}) \cdot \gamma(q)}{\sigma^{3}(\widetilde{X})}
\end{aligned}
$$

- Variance is obviously larger
- Skewness may also be negative for extremely high negative values of the structure variable's skewness (q).

Variability of Loss Ratio

- Loss Ratio = X / E(X) = Claims / Risk Premiums

$$
\lim _{n \rightarrow \infty} \frac{\sigma(\tilde{X})}{E(\tilde{X})}=\lim _{n \rightarrow \infty} \sigma\left(\frac{\tilde{X}}{E(\tilde{X})}\right)=\lim _{n \rightarrow \infty} \sqrt{\frac{1+c_{Z}^{2}}{n}+\sigma^{2}(\widetilde{q})}=\sigma(\widetilde{q})
$$

- As we can see, the growth of dimensional parameter \mathbf{n} (i.e. a larger insurance portfolio) is not deleting the variability of the loss ratio, because of the structure variable \mathbf{q}, which represents a systematic risk (diversifiable only by reinsurance covers as e.g. Quota Share and Stop-Loss).

Standard parameters of the Insurance Model

Initial expected number of claims $\left(\mathrm{n}_{0}\right)$	20.000
St. Deviation structure variable $\sigma(\mathrm{q})$	0.10
Initial expected claim size $(\$) \mathrm{E}(\mathrm{Z})$	6.000
Variability coefficient of claim size $\left(\mathrm{c}_{\mathrm{z}}\right)$	7

Claim Inflation (i)

Real Growth rate (g)
Expenses Loading coefficient (c)
Safety Loading coefficient (φ)
Loss Reserve ratio (δ)
Premium Reserve ratio (ξ)
Taxation rate (tx)
Dividends rate (dv)

Initial Risk Premium (mill \$)	120.0
Initial Gross Premiums (mill \$) π_{0}	Depending on asset allocation

The simulated claim distribution X

 (Standard Insurer)
$\mathrm{t}=1$

The Investment sub-model

The Investment Model

- The insurer invests

- $\alpha \%$ of the available resources in an equity index, S, and
- (1- α) \% in a portfolio of zero coupon bonds, P, with different redemption dates - $\beta^{(\tau)} \%$ is invested in the bond with time to maturity τ
- the asset allocation and the asset mix are constant over time

Cash Flows and Total Assets

- We also assume that at the beginning of every year the insurer invests the cashflows (CF), originated by the "pure" insurance business in the financial portfolio A
- The cashflows arise from consideration of
- Premium income, $\left(\Pi_{t}\right)$ depending on the assumed overall annual rate of growth (g and i)
- General and acquisition expenses of the year (c*B)
- the amount of claims deferred from the previous year and paid in the current year, $\mathbf{C}_{\mathrm{t}}{ }^{\mathrm{d}}$
- the amount of claims occurred in the current year and settled during the same period, $\mathbf{C}_{\mathbf{t}}{ }^{c}$
- the payment of taxation regarding the previous financial year $\mathrm{TX}_{\mathrm{t}-1}$
- The payment of dividends to stockholders regarding the previous financial year $\mathrm{DV}_{\mathrm{t}-1}$ $\mathrm{CF}_{\mathrm{t}}=$ Cash Flows year t at time $(\mathrm{t}-1)+=\left(\Pi_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}}-\mathrm{C}_{\mathrm{t}}\right)-\left(\mathrm{TX}_{\mathrm{t}-1}+D V_{\mathrm{t}-1}\right)$

The value of Total Assets at time t

$$
A_{t}=\alpha \cdot\left(A_{t-1}+C F_{t}\right) \frac{S_{t}}{S_{t-1}}+(1-\alpha) \cdot\left(A_{t-1}+C F_{t}\right) \sum_{i \in N} \beta^{(i)} \frac{P(t, t-1+i)}{P(t-1, t-1+i)}
$$

Asset Allocation and Asset Mix

- Asset allocation

		Insurer \boldsymbol{A}	St. Insurer	Insurer B	Insurer \mathbf{C}
Equity	α	0%	15%	30%	100%
Bond port.	$1-\alpha$	100%	85%	70%	0%

- Asset mix (bond portfolio)

Maturity (years)	i	1	2	3	5	10
Weight	$\beta(\mathrm{i})$	40%	25%	15%	10%	10%

Parameters of the Investment Model

Interest rate (CIR)	$\boldsymbol{\theta}$	4.78%
Long run mean	$\boldsymbol{\kappa}$	0.10
Speed	\boldsymbol{v}	4.70%
Diffusion	$\boldsymbol{\lambda}$	-0.005
Market price of interest rate risk	$\boldsymbol{\rho}$	-0.2
Correlation	\mathbf{r}_{0}	4.38%
Current short rate	Risk-free rate	

Zero Yield Curve		
$\mathbf{1}$ year	$\mathbf{r}(0,1)$	4.47%
$\mathbf{2}$ years	$\mathbf{r}(\mathbf{0 , 2})$	4.38%
$\mathbf{3}$ years	$\mathbf{r}(0,3)$	4.39%
$\mathbf{5}$ years	$\mathbf{r}(\mathbf{0 , 5})$	4.43%
$\mathbf{1 0}$ years	$\mathbf{r}(0,10)$	4.49%

The Equity Index S_{t} over 3 years (100 simulations by GBM model)

The short rate of interest over 3 years (100 simulations by CIR model)

Simulated rate of total return (over 1 year)

500.000 simulations
.

Simulated rate of total return (over 3 years)

The RBC obtained from

simulation results

(VaR and TVaR for TH=1-2-3 years)

Prob. Distrib. of the capital ratio u_{t}

(Standard Insurer - $\alpha=15 \%$)

$t=1$

NO Taxation

\& Dividends
As we can see when also taxation and dividends are regarded (in our case $\mathrm{tx}=35 \%$ and $\mathrm{dv}=20 \%$) the negative values distribution remain unchanged whilst the postive values are rescaled by the coefficient
$(1-t x)(1-d v)=0.65 * 0.80=0.52$.
The resulting ex-post distribution has then: - a mean equal to 40% of the ex-ante distrib.; - a standard deviation equal to roughly 65% of the ex-ante distrib.;

- the ex-post distribution is not any more symmetric (skew=-0.08) but has a significant negative skewness (-1.02).

But the unfavourable quantiles (see at the left hand side of distribution) remain unchanged !! Then RBC measures with TH=1 are not affected by taxation \& dividends

WITH Taxation

Prob. Distrib. of the capital ratio U/П

(net of taxation and dividends)

Moments of the capital ratio

NOTE: Risk Reserve \mathbf{U} is affected by both financial and underwriting result

	Insurer B (30\% Equities - 70\% Bonds) Saf.loading $\varphi=+\mathbf{1 . 5 7 \%}$			```Insurer C (100% Equities - 0% Bonds) Saf.loading \varphi=+1.54%```		
Mean (\%)	3.17	6.46	9.55	3.99	8.42	12.62
Std (\%)	8.05	10.91	12.78	19.85	27.17	32.51
Skew	-0.61	-0.47	-0.36	-0.14	-0.02	+0.11
Kurt	4.90	4.12	3.69	3.37	3.02	3.02

From Ins. A to Ins. C the distribution of \mathbf{U} / Π becomes more and 400,000 simulations

Quantiles of the capital ratio
(0.1\% 0.5\% 1\% 5\%
50\%
95\% 99.0\% 99.5\% 99.9\%)

Insurer A
Insurer A ($\alpha=0 \%$)

Insurer B

St. Insurer

Insurer C
Insurer C $(\alpha=100 \%)$

Risk-Based Capital ratio according VaR and TVaR approach

- The maximum loss for an insurer over a target time horizon (0,t) within a given confidence level $1-\varepsilon$ (e.g. 99%):

$$
\begin{aligned}
& r b c_{1-\varepsilon}^{V a R}(0, t)=\frac{-u_{\varepsilon}^{V a R}(t) \cdot \Pi_{t} \cdot[1+(1-t x) E(\widetilde{j})]^{-t}}{\Pi_{0}} \\
& r b c_{1-\varepsilon}^{T V a R}(0, t)=\frac{-u_{\varepsilon}^{T V a R}(t) \cdot \Pi_{t} \cdot[1+(1-t x) E(\widetilde{j})]^{-t}}{\Pi_{0}}
\end{aligned}
$$

whereas $\mathrm{u}^{\mathrm{VaR}}{ }_{\varepsilon}(\mathrm{t})$ is the ε-th quantile of the capital ratio U / Π distribution at time t

The Risk-Based Capital ratio with 99.5% confidence (Var and TVaR approach)

RBC ratio (per unit of initial Gross Premiums π_{0})	Insurer A (0\% Equities - 100\% Bonds) Saf.loading $\varphi=+3.19 \%$			Standard Insurer (15% Equities - 85% Bonds) Saf.loading $\varphi=+2.07 \%$		
	T=1	$\mathrm{T}=2$	$\mathrm{T}=3$	$\mathrm{T}=1$	T=2	T=3
VaR 99.5\% TVaR 99.5 \%	$\binom{18.5}{23.8}$	22.4 29.1	$\begin{aligned} & 24.3 \\ & 32.1 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 25.5 \end{aligned}$	25.0 31.8	27.5 35.1

	Insurer B (30\% Equities - 70\% Bonds) Saf.loading $\varphi=+\mathbf{1 . 5 7 \%}$			Insurer C (100\% Equities - 0\% Bonds) Saf.loading $\varphi=+\mathbf{1 . 5 4 \%}$		
VaR 99.5\% TVaR 99.5 \%	23.6 28.7	29.8 36.5	33.5 40.9	$\binom{50.4}{56.0}$	63.9 71.0	71.6 79.5

400,000 simulations

Some comments on the RBC measures

Regarding the Standard Insurer only ($\alpha=15 \%$):

- For whatever risk measure (VaR or TVaR) and confidence level (99.0\%/99.5\%/99,9\%): - if TH is increasing from 1 to $\mathbf{2}$ years, capital requirements are increasing by roughly $\mathbf{2 0}$ 25\%;
- if TH is increasing from 2 to 3 years, capital requirements are further increasing by 10-13\% approx.;
- If a $\operatorname{TVaR}(99.0 \%)$ is compared with a $\operatorname{VaR}(99.5 \%)$ the capital requirement is larger by $\mathbf{1 0 \%}$ (that seems be confirmed by the results obtained by FOPI in the SST Field Test 2005, +13\% for non-life companies and $+9 \%$ for life companies);
- In case a TVaR instead of a VaR approach (with the same confidence level $1-\varepsilon$) is used, the capital requirement is increased by 25-30\%

RBC/Premiums according VaR and TVaR at 99.0\%

Insurer B $(\alpha=30 \%)$

RBC/Premiums according VaR and TVaR at 99.5\%

RBC/Premiums according VaR and TVaR at 99.9\%

Insurer B ($\alpha=30 \%$)

The impact of the main

 model's parameters on the RBC
Sensitivity of RBC (VaR 99.5\%) according to the main parameters

Initial Exp. Numb. Claims (n_{0})

CV claim size (c_{z})

St. Dev. Struct. Variable (σ_{q})

Loss Reserve ratio ($\overline{\text { (}}$

Real Growth rate (g)

Further Researches and improvements of the Model

- Run-Off dynamics of Claims Reserving (in some countries Claim Reserving Risk has been playing a prominent role in case of insolvencies)
- To regard also Credit Risk, Market Risk and Operational Risk
- Premium Rating and Premium Cycles
- Correlation among different insurance lines (other than by catastrophe events
- Copula analyses)
- Reinsurance and ART
- Claims amount of a line simulated separately for small and large claims
- Dynamic Asset allocation strategies and non-life ALM
- Dynamic dividends policy and taxation
- Analyse the impact of IAS
- Modeling a multiplayer market with high policyholders' sensitivity to either premium measure and insurer's financial strength, with special reference to TPML (Game Theory)
- Daykin C. D., Pentikäinen T., Pesonen M. [1994], "Practical risk theory for actuaries", Chapman and Hall, London
- Financial Services Authority (2003): "Enhanced Capital Requirements and Individual Capital Assessments for non-life insurers", Consultation Paper 190 (July 2003)
- Financial Services Authority (2003). Calibration of the general insurance risk based capital model. Itextit\{prepared by Watson Wyatt\}, July 2003
- Federal Office of Private Insurance (2004): "White Paper of the Swiss Solvency Test", November 2004, www.bpv.admin.ch.
- Luder, T.(2005): "Swiss Solvency Test in non-life insurance". XXXVI International Astin Colloquium, Zurich.
- IAA Insurer Solvency Assessment Working Party (2004): "A Global Framework for Insurer Solvency Assessment", June 2004
- Savelli N. (2003), "A risk theoretical model for assessing the solvency profile of a general insurer", Proceedings XXX GIRO Convention, 14-17 October 2004, Cardiff
- Havning, M, Savelli N. (2005): "Risk-based capital requirements for property and liability insurers according to different reinsurance strategies and the effect on profitability", The ICFAI Journal of Risk \& Insurance, vol. 2/2005, Andhra Pradesh (India).
- Ballotta, L., Savelli N. (2005): "Risk based capital modelling for P\&C insurers and financial sensitivity",'Proceedings XXXVI International Astin Colloquium, Zurich.
- Ballotta L., Savelli N. (2006): "Dynamic Financial Analysis and Risk-Based Capital for a General Insurer", to be presented at the XXVIII International Congress of Actuaries, Paris.

- Cox, J., J. Ingersoll, and S. Ross (1985): "A theory of the term structure of interest rates", Econometrica, 53, 385-408.
- Hull, J. H. and A. White (1990): "Pricing interest rate derivative securities", The Review of Financial Studies, 3, 573-592.
- Stanton, R. (1997): "A non parametric model of term structure dynamics and the market price of interest rate risk", The Journal of Finance, 52, 1973-2002.

