<section-header><section-header><section-header><section-header><text><text><text><text><text>

Savelli - RBC Modelling for P&C Insurers

General framework of the model

- <u>Company</u>:
 Concred Insurer with only **1 lin**
 - General Insurer with only **1 line of casualty** insurance
- <u>Time Horizon</u>: 3 years
- <u>Aggregate Claim amount</u>: Compound Mixed Poisson Process
- Number of Claims:
 Negative Binomial distribution
- <u>Claim Size</u>: LogNormal distribution
- <u>Dynamic Ins. Portfolio</u>: Volume of premiums increases every year according to real growth and claim inflation
- Reinsurance:
 reinsurance cover is ignored

Investment Portfolio:

1 category of assets for **Equities** and other **5** categories for **Gov.Bonds**, differentiated according to time to maturity (1, 2, 3, 5 and 10 years)

- Investment Return:
- Geometric Brownian motion for equities
- CIR process for interest rates
- Asset Allocation rule:
- constant proportion
- Monte Carlo approach:
- 400,000 simulations
- Risks not included:
 - Claim Reserve risk
 - Credit and Operational risk
 - ALM risk

Risk Reserve process (U_t) $U_t = U_{t-1} + j_t \cdot (U_{t-1} + LR_{t-1} + PR_{t-1} + CF_t) + [(PR_{t-1} + \Pi_t - PR_t) - X_t - E_t] - TX_t - DV_t$ $U_t = \text{Risk Reserve at time t}$ $I_t = \text{Gross premiums year t}$ $X_t = \text{Aggregate claims amount year t}$ $E_t = \text{general and acquisition expenses}$ year t $X_t = \text{Taxation amount year t}$

DV, = Dividends year t

Savelli - RBC Modelling for P&C Insurers

 CF_t = Cash Flows year t - at time (t-1)+

 $= (\Pi_t - E_t - C_t) - (TX_{t-1} + DV_{t-1})$

Savelli - RBC Modelling for P&C Insurers

The (exact) Moments of the Total Claim amount X

(NO structure variable)

$$E(\widetilde{X}) = n \cdot a_{1Z} = nm$$

$$\sigma^{2}(\widetilde{X}) = n \cdot a_{2Z}$$

$$\gamma(\widetilde{X}) = \frac{1}{\sqrt{n}} \cdot \frac{a_{3Z}}{(a_{2Z})^{3/2}}$$

Note:

a_{jZ} = j-th moment about origin claim size Z

• As **n** (dimension parameter) is increasing, Variance is increasing to $^{\infty}$ and skewness is decreasing to 0.

• Skewness in this case is always > 0.

Savelli - RBC Modelling for P&C Insurers

(YES structure variable q)

$$E(\widetilde{X}) = n \cdot a_{1Z} = n \cdot m$$

$$\sigma^{2}(\widetilde{X}) = n \cdot a_{2Z} + n^{2} \cdot m^{2} \cdot \sigma^{2}(\widetilde{q})$$

$$\gamma(\widetilde{X}) = \frac{na_{3Z} + 3n^{2}ma_{2Z}\sigma^{2}(\widetilde{q}) + 2n^{3}m^{3} \cdot \sigma^{3}(\widetilde{q}) \cdot \gamma(q)}{\sigma^{3}(\widetilde{X})}$$

- Variance is obviously larger
- Skewness may also be negative for extremely high negative values of the structure variable's skewness (q).

Variability of Loss Ratio

Loss Ratio = X / E(X) = Claims / Risk Premiums

$$\lim_{n \to \infty} \frac{\sigma(\widetilde{X})}{E(\widetilde{X})} = \lim_{n \to \infty} \sigma\left(\frac{\widetilde{X}}{E(\widetilde{X})}\right) = \lim_{n \to \infty} \sqrt{\frac{1 + c_Z^2}{n} + \sigma^2(\widetilde{q})} = \sigma(\widetilde{q})$$

 As we can see, the growth of dimensional parameter n (i.e. a larger insurance portfolio) is not deleting the variability of the loss ratio, because of the structure variable q, which represents a systematic risk (diversifiable only by reinsurance covers as e.g. Quota Share and Stop-Loss).

19

20

Savelli - RBC Modelling for P&C Insurers

Standard parameters of the Insurance Model

i de la companya de l	i			
Initial expected number of claims (n_0)	20.000			
St. Deviation structure variable $\sigma(q)$	0.10			
Initial expected claim size (\$) E(Z)	6.000			
Variability coefficient of claim size (c _z)				
Claim Inflation (i)	5%			
Real Growth rate (g)	5%			
Expenses Loading coefficient (c)	25%			
Safety Loading coefficient (q)	Depending on asset allocation			
Loss Reserve ratio (δ)	100%			
Premium Reserve ratio (ξ)	35%			
Taxation rate (tx)	35%			
vidends rate (dv) 20%				
	-			
Initial Risk Premium (mill \$)	120.0			
Initial Gross Premiums (mill \$) $\pi_{_0}$	Depending on asset allocation			
Sovelli DBC Modelling for D&C Insurers				

Asset Allocation and Asset Mix					
Asset allocation					
	Insurer A	St. Insurer	Insurer B	Insurer C	
Equity α	0%	15%	30%	100%	
Bond port. $1-\alpha$	100%	85%	70%	0%	
Asset mix (bond ports Maturity (years	folio) S) i	1 2	3	5 10	
 Asset mix (bond port) Maturity (years) Weight 	iolio) 5) <i>i</i> β(i) 4	12 10%25%	3 6 15% 1	5 10 10% 10%	Ó
 Asset mix (bond port) Maturity (years) Weight 	folio) δ) i β(i) 4	12 40%25%	3 % 15% 1	5 <u>10</u> 10% 10%	,

Parameters of the Investment Model

Equity Index			Interest rate (CIR)		_	
Expected rate of return	μ	10%	Long run mean	(θ	4.78%
Volatility	σ	20%	Speed		к	0.10
			Diffusion		υ	4.70%
			Market price of interest rate risk		λ	-0.005
			Correlation		ρ	-0.2
			Current short rate		r ₀	4.38%
				Risk-free rate		
			Zero Yield Curve			
			1 year	r(0,1)		4.47%
			2 years	r(0,2)		4.38%
			3 years	r(0,3)		4.39%
Source: Bank of I	England (31/1	2/2004)	5 years	r(0,5)		4.43%

Savelli - RBC Modelling for P&C Insurers

		Mom	ents of	the ca	pital ra	tio		
Ν	IOTE: Risk Res financial	erve U is affeo and underwrif	ted by both ting result				/	
		Insurer A (0% Equities - 100% Bonds) Saf.loading φ = +3,19%			Insurer A Standard Insurer (0% Equities - 100% Bonds) (15% Equities - 85% Bonds) Saf.loading φ = +3.19% Saf.loading φ = +2.07%			
		T=1	T=2	T=3	T=1	T=2	T=3	
	Mean (%)	2.94	5.89	8.64	3.01	6.07	8.94	
	Std (%)	5.54	7.38	8.55	6.36	8.52	9.90	
	Skew	-1.31	-1.03	-0.84	-1.02	-0.80	-0.65	
	Kurt	8.93	6.98	5.37	6.95	5.54	4.54	
•								
		Insurer B				Insurer C		
		(30% E	quities - 70% Bo	nds)	(1009	% Equities - 0% Bo	nds)	
ſ		Saf.loading $\varphi = +1.57\%$				at.loading $\varphi = +1.54$	%	
	Mean (%)	3.17	6.46	9.55	3.99	8.42	12.62	
	Std (%)	8.05	10.91	12.78	19.85	27.17	32.51	
	Skew	-0.61	-0.47	-0.36	-0.14	-0.02	+0.11	
	Kurt	4.90	4.12	3.69	3.37	3.02	3.02	

 From Ins. A to Ins. C the distribution of U/I becomes more and Savelli - RBC Modelling for P&C Insurers
 400,000 simulations

 Savelli - RBC Modelling for P&C Insurers
 more Normal distributed (skewness close to 0 and kurtosis to 3)
 34

Risk-Based Capital ratio according VaR and TVaR approach

The maximum loss for an insurer over a target time horizon (0,t) within a given confidence level 1-ε (e.g. 99%):

$$rbc_{1-\varepsilon}^{VaR}(0,t) = \frac{-u_{\varepsilon}^{VaR}(t) \cdot \Pi_{t} \cdot \left[1 + (1-tx)E(\widetilde{j})\right]^{-t}}{\Pi_{0}}$$
$$rbc_{1-\varepsilon}^{TVaR}(0,t) = \frac{-u_{\varepsilon}^{TVaR}(t) \cdot \Pi_{t} \cdot \left[1 + (1-tx)E(\widetilde{j})\right]^{-t}}{\Pi_{0}}$$

whereas $u^{VaR}_{c}(t)$ is the ϵ -th quantile of the capital ratio U/I distribution at time t

The Risk-Based Capital ratio with 99.5% confidence (Var and TVaR approach)

RBC ratio (per unit of initial Gross Premiums π_0)	Insurer A (0% Equities - 100% Bonds) Saf.loading $\varphi = +3.19\%$		$\label{eq:standard} \begin{array}{l} \textbf{Standard Insurer} \\ (15\% Equities - 85\% Bonds) \\ Saf.loading \ \varphi = +2.07\% \end{array}$			
	T=1	T=2	T=3	T=1	T=2	T=3
VaR 99.5%	18.5	22.4	24.3	20.3	25.0	27.5
TVaR 99.5 %	23.8	29.1	32.1	25.5	31.8	35.1
	Insurer B (30% Equities - 70% Bonds) Saf.loading φ = +1.57%			Insurer C (100% Equities - 0% Bonds) Saf.loading φ = +1.54%		
VaR 99.5% TVaR 99.5 %	23.6 28.7	29.8 36.5	33.5 40.9	50.4 56.0	63.9 71.0	71.6 79.5
					400,000 simulation	S

Some comments on the RBC measures

Regarding the Standard Insurer only (a=15%):

• For whatever risk measure (VaR or TVaR) and confidence level (99.0%/99.5%/99,9%):

- if TH is increasing from 1 to 2 years, capital requirements are increasing by roughly 20-25%;

- if TH is increasing from 2 to 3 years, capital requirements are further increasing by 10-13% approx.;

- If a TVaR(99.0%) is compared with a VaR(99.5%) the capital requirement is larger by 10% (that seems be confirmed by the results obtained by FOPI in the SST Field Test 2005, +13% for non-life companies and +9% for life companies);
- In case a TVaR instead of a VaR approach (with the same confidence level 1-ε) is used, the capital requirement is increased by 25-30%

Further Researches and improvements of the Model

- Run-Off dynamics of **Claims Reserving** (in some countries Claim Reserving Risk has been playing a prominent role in case of insolvencies)
- To regard also Credit Risk, Market Risk and Operational Risk
- Premium Rating and Premium Cycles
- Correlation among different insurance lines (other than by catastrophe events - Copula analyses)
- Reinsurance and ART
- Claims amount of a line simulated separately for small and large claims
- Dynamic Asset allocation strategies and non-life ALM
- Dynamic dividends policy and taxation
- Analyse the impact of IAS
- Modeling a multiplayer market with high policyholders' sensitivity to either premium measure and insurer's financial strength, with special reference to TPML (Game Theory)

