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Summary. In this paper we extend the Least Squares Monte Carlo approach pro-
posed by Longstaff and Schwartz for the valuation of American-style contingent-
claims to the case of life insurance contracts. These contracts, in fact, often embed
an American-style option, called surrender option, that entitles its owner to early
terminate the contract and receive a cash amount, called surrender value. The addi-
tional complication arising in life insurance policies with respect to purely financial
American contracts is that there is not a fixed date within which the option can be
exercised, since its “maturity” is driven by mortality factors. This complication has
been handled by very few papers, often at the cost of excessively simplified valua-
tion frameworks. Then the aim of this contribution, that is not a specific valuation
model but a methodological approach, is to allow a full exploitation of the flexibility
inborn in Monte Carlo and quasi-Monte Carlo methods in order to deal with more
realistic valuation frameworks.
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1 Introduction

The surrender option embedded in several types of life insurance contracts gives the
policyholder the right to early terminate the contract, before its natural termination
(that is typically death or maturity), and to receive a cash amount, called surrender
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value. It is a non-standard knock-out American put option written on the residual
contract, with exercise price given by the surrender value. The knock-out feature
is implied by the fact that this option can be exercised only if the insured is still
alive, hence it expires in case of death (“knock-out event”). Then the additional
complication arising in life insurance policies with respect to standard American
options is that there is not a fixed date within which the option can be exercised,
since its “maturity” is driven by mortality factors. Moreover, the value of the residual
contract depends both on mortality and on financial uncertainty and, even if pooling
arguments can be applied in order to hedge the mortality risk, it is not possible, in
the valuation, to keep separate these two sources of uncertainty because there is a
continuous interaction between them.

The literature concerning the valuation of the surrender option in a contingent-
claims framework is not very abundant, and most of the papers on this subject deal
with purely financial contracts, without mortality risk, applying them the results
on American options. There are only very few exceptions that deal with actual life
insurance contracts, characterized by both financial and mortality risk. However the
complexity of the problem involved in this case often forces the assumption of ex-
cessively simplified valuation frameworks (deterministic interest rates, deterministic
volatility for reference portfolios, deterministic mortality trends).

The valuation approaches followed to tackle the problem can be essentially clas-
sified in three categories:

1. binomial/multinomial trees (see [Bac03a], [Bac03b], [Bac05], [Van03a], [Van03b]);
2. Partial Differential Equations with free boundaries (see [SX05]);
3. Monte Carlo simulation (see [AC03], [BDF06]).

In particular, the papers [AC03] and [BDF06] combine the Least Squares Monte
Carlo approach (LSM henceforth) proposed by [LS01] for the valuation of purely-
financial American-style contingent-claims with the approach proposed by [Bac03a]
and [Bac03b] to manage the mortality risk in the valuation of the surrender option.
More in detail, they follow the LSM approach only to handle the financial uncertainty
(stochastic interest rates, stochastic evolution of reference portfolios), but resort to
“analytic” tools for the mortality one. Then the two sources of uncertainty are not
treated in the same way and the mortality uncertainty does not enter either the
simulation process or the definition of the stochastic discounted cash-flow of the
contract.

This paper extends instead the LSM approach to the case of life insurance con-
tracts in a very natural way, according to which the mortality uncertainty is treated
exactly as the financial one and is part of the whole LSM mechanism. The aim of this
contribution, that is not a specific valuation model but a methodological approach, is
to allow a full exploitation of the flexibility inborn in Monte Carlo and quasi-Monte
Carlo methods, in order to deal with very realistic valuation frameworks includ-
ing, e.g., stochastic interest rates, stochastic volatility, jumps, stochastic mortality
trends, ... .

The paper is structured as follows. In Section 2 we present our notation and
assumptions, in Section 3 we describe the valuation approach and in Section 4 we
discuss about the numerical accuracy of its results. Finally, Section 5 concludes the
paper.
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2 Notation and assumptions

Consider an endowment policy issued at time t0 and maturing at time tN or, alterna-
tively, a whole-life assurance policy issued at time t0. In both cases assume that the
policy is paid by a single premium at issuance, denoted by U . Assume moreover that
the endowment policy can be surrendered at the discrete dates t1, t2, ..., tN−1 before
maturity, if the insured is still alive. Similarly, also the whole-life assurance policy
can be surrendered at the discrete dates tn, n = 1, 2, ..., belonging to a given set and
before death of the insured. In case of death between times tn−1 and tn, n = 1, 2, ...,
the benefit is assumed to be paid at the end of the interval, that is at time tn. Of
course, if we consider an endowment policy and the insured is still alive at maturity
tN , the benefit is paid at maturity.

Observe that, to avoid adverse selection, the surrender option is usually offered
only when a life insurance contract provides benefits with certainty (even if their
amount and/or the time at which they are due are uncertain). That is why we limit
ourselves to consider these two types of contracts, where the benefit is due with
certainty, soon or later.

Assume that the contract under scrutiny is a unit-linked or a participating policy
characterized, as usual, by a rather high level of financial risk. The benefit and the
surrender value can then be linked to the value or to the performance of a reference
portfolio, with possible minimum guarantees, or upper bounds, or other. Here it is
not important to specify their structure. We only denote by Ftn , n = 0, 1, 2, ..., the
value of the reference portfolio at time tn and by Rtn , n = 1, 2, ..., the surrender
value paid in case of surrender at time tn. Then the “payoff” of the contract is given
by the benefit, at death or maturity, or the surrender value, in case of surrender.

3 The valuation approach

In this section we describe our valuation approach. This approach concerns the whole
contract, including the surrender option. Its output is the fair value of the contract
at time 0, that is also the fair single premium to require for it. Note that with a
drastic simplification, that we briefly describe at the end of the section, the same
procedure provides the single premium for the corresponding European version of
the contract, that is without surrender option. Then, if one is interested to separately
value this option, the simplest way to do it is to compute the difference between the
time 0 value of the whole contract and that of its European version.

The valuation procedure can be schematized in the following steps.

Step 1. Generate a certain number, say H, of (independent) simulated values of
the remaining lifetime of the insured. Then, with reference to the h-th iteration
(h = 1, 2, ..., H):

- let T (h) denote the simulated time at which the benefit would be due if the
surrender option were never exercised;

- produce a simulated path of the stochastic term-structure of spot interest
rates for any possible maturity up to time T (h);

- produce a simulated path of the reference portfolio at times t1, t2, ..., T
(h).
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Remarks: All simulations must be performed under a risk-neutral measure
Q, taking into account all possible dependencies. For instance, a path for the
volatility of zero-coupon bond prices and of the reference portfolio has also to
be simulated if these volatilities are assumed to be stochastic. Moreover, if we
assume a diffusion process to describe the value of the reference portfolio, its
drift under the risk-neutral measure is given by the instantaneous spot rate,
and so on. Similarly, if future mortality trends are assumed to be stochastic,
the simulation of the remaining lifetime of the insured previously requires the
simulation of all variables on which it depends such as, e.g., the instantaneous
force of mortality.

Step 2. Let tmax = max
{
T (h) : h = 1, 2, ..., H

}
. Then, with reference to all itera-

tions (h) such that T (h) = tmax, determine the “final” payoff of the contract,

given by the simulated benefit at death or maturity, and denote it by P
(h)
tmax

.
Remark: If we are dealing with an endowment policy, it is very likely tmax = tN .

Step 3. Let n = max− 1, max− 2, ..., 1.

- With reference to all iterations (h) such that T (h) = tn, let P
(h)
tn

be given by
the corresponding simulated benefit.

- With reference to all iterations (h) such that T (h) > tn, use the Least Squares
method to estimate

EQ
tn

 ∑
j: tn<tj≤T

Ptj v (tn, tj)

 ,

where EQ
tn

denotes expectation, under the (chosen) risk-neutral measure Q,
conditioned to the information available up to time tn and to the event that
the contract is still in force at this time (i.e., insured still alive and contract
not surrendered yet), T denotes the stochastic date at which the benefit
would be due, Ptj denotes the stochastic future payoff of the contract at
time tj , v (tn, tj) denotes the stochastic discount factor from tj to tn at the
riskless rate.
Then, denoting by f

(h)
tn

the estimated conditional expectation, compare it

with the corresponding simulated surrender value R
(h)
tn

:

if R
(h)
tn

≤ f
(h)
tn

, let P
(h)
tn

= 0 and do not change the future payoffs P
(h)
tj

, j > n;

if R
(h)
tn

> f
(h)
tn

, let P
(h)
tn

= R
(h)
tn

and P
(h)
tj

= 0 for any j > n.

Remarks: This step requires to choose the basis functions whose linear combi-
nation defines the regression function, as well as all relevant variables (e.g., the
current value of the reference portfolio, the current spot rate, the current force
of mortality, ..., and their past values if the model assumed is not Markovian).
Note that, inside the Q-expectation, we have the sum of all future payoffs. Ac-
tually there is one and only one non-zero future payoff, because at any time tj

Ptj can be expressed as the benefit, at death or maturity, or as the surrender
value, multiplied for an indicator function that is equal to 1 only once, when the
benefit or the surrender value is paid. The data used in the regression are given
by the simulated discounted payoffs in all iterations (k) such that T (k) > tn, i.e.
by ∑

j: tn<tj≤T (k)

P
(k)
tj

v(k) (tn, tj) ,
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where v(k) denotes the simulated discount factor at the riskless rate in the k-
th iteration. As happens for the corresponding random variable, P

(k)
tj

≥ 0 for

any j > n and there exists a unique j such that P
(k)
tj

> 0. Finally, we observe

that in [LS01], with reference to a Bermudan-style put option, the authors rec-
ommend to limit the application of the regression step only to the simulated
paths in which the option is in-the-money. Here, instead, we have to consider
all paths because, first of all, we are valuing the whole contract and not simply
the surrender option and, secondly, it is not possible to establish if this option
is in-the-money since its underlying variable, the value of the residual contract,
is not observable but could only be estimated by means of the same procedure
under execution.

Step 4. The fair value of the whole contract at time 0, and hence the fair single
premium, is given by

U =
1

H

H∑
h=1

∑
j: t0<tj≤T (h)

P
(h)
tj

v(h) (t0, tj) .

Remark: The premium for the corresponding European version of the contract
can be simply computed as the average, over all iterations (h), of the simulated
benefit paid at time T (h) discounted up to time t0.

4 Tests of accuracy

The numerical accuracy of the method here proposed has been verified with reference
to the valuation framework assumed in [Bac05]. This is a very simple framework, in
which there is a single state-variable given by the value of the reference portfolio,
that follows the binomial model by [CRR79]. However this is the only one in which
we have exact analytic results to compare with those produced by the Monte Carlo
approach: that is why we have chosen it to check the accuracy of this approach.

We recall that the contract analysed in [Bac05] is an equity-linked endowment
policy. In particular, given a constant length ∆ for each time interval [tn−1, tn], we
let t0 = 0 and tn = n∆, n = 1, 2, ..., N . Then, conditionally to the current level
of the reference portfolio at time tn−1, given by Ftn−1 , its level at time tn can
take only two possible values, respectively given by Ftn−1u and Ftn−1d, with (risk-
neutral) probabilities q = (exp(r∆)− d) /(u−d) and 1−q = (u− exp(r∆)) /(u−d),
where r denotes the instantaneous riskless rate on an annual basis (deterministic and
constant), u = exp(σ

√
∆), d = 1/u, and σ represents the volatility of the reference

portfolio, once again on an annual basis.
We have made a very large amount of numerical experiments, following different

approaches to produce the simulated path of the reference portfolio, with different
sets of parameters and by using both pseudo-random numbers and multi-dimensional
low-discrepancy sequences. As basis functions we have employed either powers or
Laguerre polynomials.

Observe that in each iteration (h), once the stochastic date T at which the
benefit is due has been simulated, the simulated path of the reference portfolio can
be generated
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- forwards, from time t1 to T (h), by using the conditional distribution above recalled;
- backwards, by simulating first the value of the reference portfolio at time T (h)

from a binomial distribution, and after its values between times T (h) and t1
from the corresponding conditional distributions. To this end we recall that,
given T (h) = j∆, j = 1, 2, ..., N , the possible values of FT (h) are F0u

idj−i, i =
0, 1, ..., j, with (binomial) risk-neutral probability

(
j
i

)
qi(1−q)j−i. Given instead

the level at time tn of the reference portfolio, Fn∆ = F0u
idn−i, n = 2, 3, ..., N

and i = 0, 1, ..., n, its level at time tn−1 can take only two possible values, that
are Fn∆/u and Fn∆/d, with probabilities i/n and 1− i/n. Note that if i = 0 or
i = n it actually takes only one value, given respectively by Fn∆/d and Fn∆/u,
and hence in these cases no simulations are required.

In particular, the accuracy of the results obtained by following these two different
approaches has turned out to be

- the same, when pseudo-random numbers are employed,
- better backwards than forwards, when using low-discrepancy sequences (and for

some sequences, e.g. the Halton one, very much better).

However, since Monte Carlo methods have a very low convergence speed, compared
with quasi-Monte Carlo, and hence require a larger number of iterations in order to
achieve the desired precision, it is better to use the backward approach also with
them. In fact this approach does not require to keep track of all the entire simulated
paths of the state-variable but only of its last simulated values, so that the spared
allocated memory can be used in order to increase the number of iterations.

In Table 1 we show the results of some numerical examples. In all of them we
have fixed tN = 10 years, ∆ = 1/12, so that the length of each time interval is
one month and the relevant dates are tn = n/12, n = 0, 1, 2, ..., 120. The insured
is assumed to be 40-years old at time 0, and the mortality probabilities used to
simulate his(her) residual lifetime are extracted from the life table of the Italian
Statistics for Females Mortality in 2001, with values corresponding to non-integer
ages computed by linear interpolation. The initial value of the reference portfolio,
F0, is set equal to 1. Both the benefit paid at time t (death or maturity) and
the surrender value Rt are assumed to be given by max {Ft, F0 exp(gt)}, so that
g represents an instantaneous minimum interest rate guaranteed. We have chosen
a constant and a certain number of Laguerre polynomials as basis functions. This
number has been fixed in such a way to maximize the accuracy of the results, within
a maximum of 13. The number of iterations H, instead, has been fixed in such a way
that the premium for the corresponding European version of the contract computed
by means of the simplified valuation procedure described at the end of the previous
section coincides with the exact premium analytically computed (at least until the
4-th decimal digit): in this way the error inborn in the Monte Carlo method is quite
negligible and the residual error is mainly due to the regression. Finally, these results
are obtained by using the multi-dimensional Weyl low-discrepancy sequence, that
behaves very well although being the simplest one.

A few comments about our findings are in order. First of all note that, as ex-
pected, the number of iterations required to achieve the desired precision for the
European version of the contract increases with the volatility of the reference port-
folio. In particular, to produce the numerical results of Table 1 we have carried
out 100, 000 iterations when the volatility parameter σ equals 0.15 or 0.25, and
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Table 1. Numerical examples

r g σ number of number of estimated exact error
iterations H Lag. pol. premium U premium

0.03 0.00 0.15 100,000 9 1.0976 1.0976 0.0000
0.03 0.00 0.25 100,000 10 1.1971 1.1969 0.0002
0.03 0.00 0.35 1,000,000 13 1.2945 1.2956 −0.0011
0.03 0.02 0.15 100,000 11 1.1465 1.1464 0.0001
0.03 0.02 0.25 100,000 10 1.2604 1.2603 0.0001
0.03 0.02 0.35 1,000,000 13 1.3652 1.3674 −0.0022
0.05 0.00 0.15 100,000 9 1.0698 1.0700 −0.0002
0.05 0.00 0.25 100,000 9 1.1555 1.1555 0.0000
0.05 0.00 0.35 1,000,000 13 1.2444 1.2449 −0.0005
0.05 0.02 0.15 100,000 9 1.0975 1.0977 −0.0002
0.05 0.02 0.25 100,000 8 1.1964 1.1972 −0.0008
0.05 0.02 0.35 1,000,000 13 1.2938 1.2955 −0.0017
0.05 0.04 0.15 100,000 7 1.1458 1.1460 −0.0002
0.05 0.04 0.25 100,000 7 1.2599 1.2598 0.0001
0.05 0.04 0.35 1,000,000 13 1.3635 1.3673 −0.0038

1, 000, 000 iterations when σ = 0.35. The average absolute error is equal to 18.6
basis points (bp) when the volatility is high, to 2.4 bp when it is medium and only
to 1.4 bp when it is low. Moreover, the number of Laguerre polynomials required to
optimize the regression procedure is equal to 9 (on the average) when the volatility
parameter σ equals 0.15 or 0.25, and always to the maximum number here fixed,
13, when σ = 0.35. This indicates that, in case of high volatility, it would be better
to further increase the number of iterations and/or the number of basis functions.
Summing up, we can conclude that the results obtained are in general very good, so
that the methodological approach here proposed seems to be suitable for applica-
tion to more realistic valuation frameworks, with stochastic interest rates, stochastic
volatility, jumps, stochastic mortality trends, ... .

5 Summary and conclusions

In this paper we have proposed a method to extend the Longstaff-Schwartz Least
Squares Monte Carlo approach to the case of life insurance contracts embedding a
surrender option. Then we have applied it to a very simple framework, in which
there are exact analytic solutions, in order to verify its accuracy. The accuracy tests
indicate that this method performs very well, especially for low or medium-volatile
reference portfolios, and hence the next step is to apply it to more sophisticated
frameworks, even if there will be no way to compare the results obtained with exact
ones.
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