A Firm-Level Perspective on Migration

Giulia Bettin Alessia Lo Turco and Daniela Maggioni

Universitá Politecnica delle Marche, Ancona, Italy

Bari, 2nd July 2010

The literature and our contribution

- weak evidence of substitution between migrants and native workers;
- mostly sector level evidence, census and labour force data;
- our contribution: firm-level evidence on Italian manufacturing.

The Data

- IX wave CAPITALIA;
- WHIP database on Italian employees;

Results

Migrants in Italian Manufacturing by Sector and Size

% of Migrant labour

-	High Tech	Scale Intensive	Specialized	Traditional	Total
< 21	2.04	4.49	3.35	4.28	4.10
\geq 21& < 50	1.95	5.39	2.98	4.17	4.18
$\geq 50\& < 250$	2.93	5.73	2.49	3.93	3.99
\geq 250& $<$ 500	0.32	2.58	1.66	2.24	1.96
≥ 500	0.49	0.60	0.66	2.24	1.06
Total	1.95	4.92	2.61	3.97	

Migrants in Italian Manufacturing by International Status(%)

% of Migrant labour

	International	Exporter	Foreign Comp.	Domestic
High Tech	2.02	2.04	1.93	1.67
Scale Intensive	4.99	4.96	5.31	4.79
Specialized	2.53	2.52	2.47	3.09
Traditional	3.82	3.79	4.02	4.59
Total	3.67	3.65	3.69	4.34

Migrants in Italian Manufacturing by Location(%)

% of Migrant labour

	North-West	North-East	Centre	South	Total
High Tech	1.83	2.77	1.69	0.05	1.95
Scale Intensive	5.29	7.42	3.72	0.73	4.92
Specialized	2.60	3.53	1.33	0.32	2.61
Traditional	4.01	5.80	3.82	0.72	3.97
Total	3.87	5.50	3.27	0.66	3.83

The production function

$$InY_{f} = \alpha_{0} + \sum_{i} \alpha_{i} InX_{fi} + \frac{1}{2} * \sum_{i} \alpha_{ii} InX_{fi} InX_{fi} + \sum_{i=1} \sum_{j \neq i} \alpha_{ij} InX_{fi} InX_{fj}$$

$$S_{fL_{D}} = \alpha_{L_{D}} + \alpha_{L_{D}L_{D}} InX_{fL_{D}} + \sum_{j \neq L_{D}} \alpha_{L_{D}j} InX_{fj}$$

$$S_{fL_{M}} = \alpha_{L_{M}} + \alpha_{L_{M}L_{M}} InX_{fL_{M}} + \sum_{j \neq L_{M}} \alpha_{L_{M}j} InX_{fj}$$

$$S_{fl} = S_{fl_{D}} + S_{fl_{M}}$$

$$(1)$$

- Iterated SUR:
- controlling for sample selection (Inl=. when I=0);

(1)

Measures of complementarity/substitutability from the Production Function:

Technical Elasticity of Substitution:

$$TES_{ij} = \frac{\alpha_j + \alpha_{jj} \ln X_{fj} + \sum_{k \neq j} \alpha_k \ln X_{fk}}{\alpha_i + \alpha_{ii} \ln X_{fi} + \sum_{k \neq i} \alpha_k \ln X_{fk}}$$
(2)

Partial Price Elasticity - q-complements/substitutes:

$$\epsilon_{p_i x_j} = c_{ij} * S_j = \frac{\alpha_{ij} + S_i * S_j}{S_i}$$
(3)

The empirical strategy
Results

The cost function

$$InC_{f} = \beta_{0} + \sum_{i} \beta_{i} InP_{fi} + \frac{1}{2} * \sum_{i} \beta_{ii} InP_{fi} InP_{fi} + \sum_{i=1}^{n} \sum_{j \neq i} \beta_{ij} InP_{fi} InP_{fj} + \gamma_{k} InK + \sum_{i} \gamma_{ki} InK InP_{fi} + \gamma_{k} InY + \sum_{i} \gamma_{ki} InY InP_{fi}$$

$$(4)$$

$$S_{\mathit{fL}_D} = \beta_{\mathit{L}_D} + \beta_{\mathit{DD}} \mathit{InP}_{\mathit{fL}_D} + \sum_{j \neq \mathit{L}_D} \beta_{\mathit{L}_D j} \mathit{InP}_{\mathit{fj}}$$

$$\textit{S}_{\textit{fL}_{\textit{M}}} = \beta_{\textit{L}_{\textit{M}}} + \beta_{\textit{L}_{\textit{M}}} \textit{InP}_{\textit{fL}_{\textit{M}}} + \sum_{\textit{j} \neq \textit{L}_{\textit{M}}} \beta_{\textit{L}_{\textit{M}}} \textit{InP}_{\textit{fj}}$$

$$S_{fL} = S_{fL_D} + S_{fL_M}$$

Measures of complementarity/substitutability from the Cost Function:

Partial Demand Elasticity - p-complements/substitutes:

$$\eta_{X_i p_j} = \sigma_{ij} * S_j = \frac{\beta_{ij} + S_i * S_j}{S_i}$$
 (5)

 Morishima elasticity of Substitution MES-complements/substitutes:

$$MES_{ij} = \eta_{X_i p_j} - \eta_{X_j p_j} = \frac{\partial ln(X_i/X_j)}{\partial lnp_j}$$
 (6)

Regularity Conditions I:

	Product	ion Function	Cost F	unction	
Share	N	∕lean	Mean		
S_L	0.184		0.157		
$\hat{\mathcal{S}}_{L}$	0.185		0.158	0.75%	
S_{L_D}	0.151		0.162		
S _L Ŝ _L S _{LD} Ŝ _{LM} Ŝ _{IM} Ŝ _{IM}	0.150	1.25%	0.144	0.47%	
S_{L_M}	0.012		0.013		
\hat{S}_{L_M}	0.014	1.74%	0.014	16.22%	
S_{IM}^{N}	0.472		0.546		
\hat{S}_{lM}	0.521	0.31%	0.545	0.00%	
S_{IS}	0.246		0.297		
$\hat{\mathcal{S}}_{lS}$	0.277	0.67%	0.296	0.00%	
S_K	0.033				
S _{IS} Ŝ _{IS} S _K Ŝ _K	0.037	1.80%			
Observations:	3274		3199		

Regularity Conditions - II:

	Constant Returns to Scale Production Function										
		$\epsilon_{\mathcal{P}_i X_i}$ ba	sed on:								
	mean ϵ_{ij} across i	median ϵ_{ij} across i	estimated shares	calculated shares	Violations						
$\epsilon_{P_{L_D}x_{L_D}}$	-0.01	-0.43	-0.24	-0.32	12.10%						
$\epsilon_{P_{L_M} x_{L_M}}$	-0.72	-0.90	-0.89	-0.89	0.06%						
$\epsilon_{P_K} x_K$	-0.46	-0.77	-0.60	-0.59	2.72%						
$\epsilon_{PIM} x_{IM}$	-0.03	-0.11	-0.08	-0.09	10.90%						
€P _{IS} X _{IS}	0.12	-0.20	-0.12	-0.11	17.65%						
		Constant Returns to									
		$\eta_{X_i P_i}$ ba	sed on:								
	mean η_{ij} across i	median η_{ij} across i	estimated shares	calculated shares	Violations						
$\eta_{x_{L_D}p_{L_D}}$	-0.72	-0.75	-0.76	-0.75	0.00%						
$\eta_{x_{L_D}} \rho_{L_D} = \eta_{x_{L_M}} \rho_{L_M}$	-1.92	-1.23	-1.22	-1.24	0.00%						
$\eta_{X_IMP_IM}$	-0.55	-0.55	-0.55	-0.55	0.00%						
$\eta_{X_{\mid S} P \mid S}$	-0.61	-0.61	-0.61	-0.61	0.00%						

Output Elasticities

	All	High Tech&.	Traditional	Specialized	Exporters	Foreign	SMEs	North-West	Noth-East
		Scale		Suppliers		Competitor			
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
K	0.037	0.043	0.038	0.031	0.033	0.024	0.036	0.039	0.032
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	0.000	[0.000]	0.000	0.000
L_D	0.15	0.161	0.131	0.189	0.146	0.15	0.153	0.175	0.145
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
L_M	0.014	0.015	0.017	0.007	0.008	0.009	0.016	0.007	0.017
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
IM	0.521	0.503	0.54	0.486	0.531	0.524	0.518	0.505	0.531
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
IS	0.277	0.277	0.274	0.287	0.281	0.294	0.277	0.274	0.275
	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]

Technical Elasticities of Substitution

	All	High Tech&.	Traditional	Specialized	Exporters	Foreign	SMEs	North-West	Noth-East
		Scale		Suppliers		Competitor			
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
TES_{LDL_M}	0.097***	0.094***	0.131***	0.039***	0.057***	0.059***	0.103***	0.039***	0.117***
	[0.008]	[0.015]	[0.014]	[0.013]	[0.009]	[0.013]	[0.009]	[0.011]	[0.014]
TES_{L_DK}	0.248***	0.268***	0.292***	0.166***	0.226***	0.158***	0.237***	0.222***	0.223***
	[0.011]	[0.022]	[0.018]	[0.018]	[0.013]	[0.017]	[0.011]	[0.015]	[0.017]
TES_{L_DIM}	3.474***	3.113***	4.139***	2.574***	3.628***	3.495***	3.381***	2.886***	3.665***
	[0.050]	[0.078]	[0.091]	[0.072]	[0.058]	[0.079]	[0.049]	[0.056]	[0.077]
TES_{L_DIS}	1.846***	1.718***	2.098***	1.518***	1.924***	1.962***	1.804***	1.568***	1.897***
	[0.032]	[0.053]	[0.057]	[0.048]	[0.037]	[0.052]	[0.032]	[0.039]	[0.048]
TES_{KLD}	4.039***	3.729***	3.423***	6.008***	4.432***	6.310***	4.215***	4.503***	4.482***
	[0.187]	[0.306]	[0.212]	[0.646]	[0.251]	[0.679]	[0.203]	[0.305]	[0.342]
TES_{IMLD}	0.288***	0.321***	0.242***	0.388***	0.276***	0.286***	0.296***	0.346***	0.273***
	[0.004]	[0.008]	[0.005]	[0.011]	[0.004]	[0.006]	[0.004]	[0.007]	[0.006]
TES_{ISLD}	0.542***	0.582***	0.477***	0.659***	0.520***	0.510***	0.554***	0.638***	0.527***
	[0.009]	[0.018]	[0.013]	[0.021]	[0.010]	[0.014]	[0.010]	[0.016]	[0.013]
$TES_{L_ML_D}$	10.363***	10.598***	7.606***	25.835***	17.667***	17.075***	9.732***	25.444***	8.561***
	[0.910]	[1.670]	[0.839]	[8.983]	[2.868]	[3.668]	[0.860]	[7.014]	[0.999]
TES_{L_MK}	2.566***	2.842***	2.222***	4.300***	3.986***	2.706***	2.309***	5.651***	1.910***
	[0.238]	[0.451]	[0.263]	[1.542]	[0.653]	[0.611]	[0.218]	[1.562]	[0.253]
TES_{L_MIM}	36.005***	32.995***	31.485***	66.502***	64.089***	59.669***	32.903***	73.437***	31.374***
	[2.925]	[4.845]	[3.123]	[22.414]	[10.013]	[12.282]	[2.678]	[19.616]	[3.328]
$TES_{L_{M}IS}$	19.132***	18.208***	15.960***	39.223***	33.983***	33.495***	17.561***	39.887***	16.237***
	[1.567]	[2.694]	[1.591]	[13.308]	[5.318]	[6.932]	[1.443]	[10.685]	[1.752]
TES_{KL_M}	0.390***	0.352***	0.450***	0.233***	0.251***	0.370***	0.433***	0.177***	0.523***
	[0.036]	[0.056]	[0.053]	[0.083]	[0.041]	[0.083]	[0.041]	[0.049]	[0.069]
$TES_{IML_{M}}$	0.028***	0.030***	0.032***	0.015***	0.016***	0.017***	0.030***	0.014***	0.032***
	[0.002]	[0.004]	[0.003]	[0.005]	[0.002]	[0.003]	[0.002]	[0.004]	[0.003]
TES_{ISL_M}	0.052***	0.055***	0.063***	0.025***	0.029***	0.030***	0.057***	0.025***	0.062***
	[0.004]	[0.008]	[0.006]	[0.009]	[0.005]	[0.006]	[0.005]	[0.007]	[0.007]

1 U 2 1 U 2 1 1 2 2 1 1 2 2 1

Price, Demand and MES Elasticities of Substitution

	All	High Tech&.	Traditional	Specialized	Exporters	Foreign	SMEs	North-West	Noth-East
		Scale		Suppliers		Competitor			
	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
		Partia		ticities: Direc	ct Estimates	From the Pr	oduction Fu	nction	
$\epsilon_{p_{L_D} x_{L_M}}$	0.049***	0.075***	0.058***	0.036**	0.040***	0.043***	0.055***	0.025**	0.055***
-D -M	[0.006]	[0.009]	0.010	[0.016]	[0.006]	[0.008]	[0.007]	[0.010]	0.009
$\epsilon_{p_{L_M} x_{L_D}}$	0.510***	0.793***	0.438***	0.923**	0.711***	0.728***	0.537***	0.631**	0.471***
-M -D	[0.061]	[0.099]	[0.074]	[0.404]	[0.106]	[0.145]	[0.067]	[0.249]	0.077
		Par	tial Demand	Elasticities:		nates From th	ne Cost Func	tion	
$\eta_{x_{L_D}p_{L_M}}$	-0.0351**	-0.0863***	0.0261	-0.0827**	-0.0449***	-0.0308	-0.0425***	-0.0422*	-0.0518**
-D -M	0.0150	[0.0273]	[0.0214]	0.0367	0.0168	[0.0210]	[0.0162]	0.0243	[0.0225]
$\eta_{x_{L_M}} p_{L_D}$	-0.360**	-0.417***	0.359	-1.430**	-0.516***	-0.3	-0.476***	-0.395*	-0.681**
-MD	[0.153]	[0.132]	[0.294]	[0.635]	[0.193]	[0.205]	[0.181]	[0.227]	[0.296]
		Morishin	na Elasticitie	s of Substitu	tion: Direct	Estimates Fr	om the Cost	Function	
$mes_{L_DL_M}$	1.184***	0.912***	1.797***	0.257	1.209***	1.284***	1.058***	1.123***	0.802***
<i>D m</i>	[0.151]	[0.141]	[0.283]	[0.635]	[0.189]	[0.199]	[0.179]	[0.225]	0.293
$mes_{L_M L_D}$	0.398**	0.487***	1.073***	-0.853	0.218	0.456**	0.26	0.293	0.0924
	[0.162]	[0.157]	[0.307]	[0.676]	[0.204]	[0.217]	[0.191]	[0.248]	[0.311]

Conclusion

- small contribution of migrants in manufacturing production;
- TES involving a migrant labour change in response to a drop in the availability of the remaining inputs are always larger than the ones involving native labour;
- complementarity (both p- and q-complementarity)
 between migrants and natives;
- native labour q-complement with respect to the remaining factors of production;
- migrant labour q-complement with respect to capital;
- natives and migrants, especially, are p-substitute with respect to materials.
- domestic and foreign labour are MES-substitutes.

