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Endogenous prices in mathematical programming modslfor agricultural policy analysis
Filippo Arfini, Michele Donati

University of Parma, Italy

Abstract

This paper proposes a price endogenous model hgs®d positive mathematical programming
methodology for policy and market evaluations. Tiadel is developed preserving the competitive
character of farm decisions and considering theeggge supply response on market prices. The
method of aggregation allows one to use the toopfdicy evaluation at the sectoral or regional
level using individual farm data. The process ohudation adopts the positive mathematical
programming calibration property for evaluatingnidoehaviour dynamics and the estimation of the
inverse demand and supply functions for generatimdpgenous prices relayed on the aggregated

individual supply decisions.
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JEL: C61, Q11

1. Introduction

In recent decades, many policy-makers have encedragricultural economists to develop
guantitative models able to respond to policy eatddun needs. As a result, mathematical
programming (MP) models have assumed a primary molesupporting agricultural policy

evaluations. The straightforward interpretationtttd MP model outcomes and their capacity to



face, often in a poor information context, compsector prediction problems have determined the
MP model's success as tools for interpreting trandsgriculture influenced by agricultural policy

mechanisms.

Many researchers have proposed their own MP ingnisrfor evaluating agricultural policies: the
work of Buysse et al. (2007) uses a positive mattmal programming (PMP) model to assess the
effect of sugar CMO (Common Market Organizatioripma on Belgian farmers; while Cortignani
and Severini (2008) use an MP model to assessAlrer€form of farm decisions, with a particular
emphasis on potential additional crops. It is ieséing that all of these analyses have used MR tool
to assess the supply side of the problem, thdteiseffect of scenarios on production levels. Thus,
they have avoided providing results related to éfiects of policy changes on prices. The
simulations considered using such models are giypndrased on exogenous information about
output prices. If one considers the wide rangeeoént MP models used for policy evaluations that
are collected in the volume “Modelling Agricultu@blicies: State of the Art and New Challenges”
(Arfini, 2005), one may be very surprised to seat thost of the MP models presented therein are
strictly supply-oriented models and that the oupites are fixed. In recent scientific production,
the MP models, even when implemented at the sédaiottarritorial level, have failed to take into
account the important relationship among supplypaases and induced price changes. This
relationship seems to be commonly recognised ase@mometric issue to resolve using
econometric techniques.

Samuelson (1952), building on the seminal paperEbike (1951) about the famous “electric
analogue” specification for linear market functipagplores the ability of linear programming (LP)
to evaluate market behaviour using a maximisatiosblem in which the competitive market
conditions are guaranteed. Samuelson’s LP modehstaicts the supply and demand functions for
products with endogenous responses upon produleiars and output price levels. This study

spurred a great deal of scientific production, inest significant contribution from which were the
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fundamental papers by Takayama and Judge (1964&4b},9in which multi-product supply and
demand functions are internalised into a quad@bgramming model representing a given sector.
This model provides endogenous price solutionsnjouts and outputs, considering the substitution

and complementary relationships among activities.

Afterwards, Duloy and Norton (1975) propose a |lmiansformation of the Takayama and Judge
framework that will completely depict the farm pumtion system and incorporate product demand
functions into MP models. An LP model built on mdiual farm data should take into account that
in a competitive market context, producers actraegakers; thus, endogenous prices have to be
specified by a sectoral or aggregated objectivectfon able to avoid internal monopolistic
behaviour. On this basis, McCarl and Spreen (1@8@Jain how to appropriately develop price
endogenous mathematical programming models foruatiah alternative policy scenarios. The
aggregation process is a relevant issue in ordegabtsmit the information about the farm planning
allocation to the sector demand function. The aggfien issue as it relates to MP models is a
problem that several economists have consideredtifging fundamental criteria that will help to
minimise the loss of information during such a gex(Day, 1963; Paris and Rausser, 1973; Spreen
and Takayama, 1980).

It was not until 2005 that another significant depenent occurred when Rehman and Yates
introduced an advance in the integration of demfamdtions into MP models. In their work, a
large-scale LP model is proposed as an evolutioMantin’s stepped LP approximation (Martin,
1972), reaching an equilibrium solution that invadvthe endogenous estimation of supply and
prices but does not consider integrability condisicdor demand systems. This latter matter is
discussed in Spreen (2006) with reference to thepik@ans-Hitchcock transportation model, whose
use is extended to a multiproduct case. Spreerearat price endogenous models are diffused in
empirical practice, even if in the agricultural somics literature after 1990 the MP models

generally consider exogenous output prices excaphwising econometric techniques.



More recently, two other interesting approachesntarket behaviour evaluation using MP
methodology are presented. The first one was preddsy Onal et al. (2009), who further advance
the model by McCarl and Spreen, where crop mixgzhesion is considered inside policy analysis.
The second contribution was made by Arfini et 2008), who propose an approach based on the
PMP methodology for building a model able to regiécfarm behaviour using the estimation of
inverse demand and supply functions based on sedmn data. The latter is particularly
interesting because it is able to provide agricaltypolicy information that can inform farm
planning responses to agricultural policy modificas and related impacts on output market prices.
However, this model does not completely fit the pefitive market or the aggregating conditions
required for a farm planning model (McCarl and £prel980) providing an empirical framework
far from price-taker behaviour because of individlemand functions inserted inside the individual
objective function to maximise.

The purpose of this paper is to present a priceogermbus PMP model able to appropriately
represent farm planning decisions and simulate etapkice evolution within a framework of
market competition. The first section proposesasresion of the price endogenous MP approach,
the second section presents the PMP model with gambwus supply and prices, the third part
illustrates how the discussed model can be impléadewith a panel of farm data and the fourth

section concludes with some main remarks.

2. Mathematical programming with endogenous prices

The producer's objective is to obtain the best eaun result with the most limited use of
resources. This simple idea originated what Sarong]$952) called a “new” type of theory, linear
programming. Each economic agent may be, thugestid in obtaining from this theory the best
planning organization, among the different choigegen the available input, in order to gain more

than they would receive by a self-selection apgnoét a competitive framework, according to the
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theory, this objective should be reached when pragpial marginal costs, where prices constitute a
priori information owned, or perceived, by produser

In the real world, farmers make their decisionsrupgpected prices, which are determined using
their own knowledge about agricultural markets.sTkinowledge includes past price experience,
their own risk attitudes, information about theuliet environment and information concerning off-
market parameters like public rules and agricultawsidies. Overall farm planning for one large
geographical area or for a given large sector ldadsodifications in market prices, sometimes
inducing a relevant change in expected individaaifrevenue. MP models can reproduce the farm
system in detail (when information exists) and then behaviour to maximise a profit function
subjected to several constraints. In such an abgt@inction, prices are exogenous parameters and
frequently support the sensitive analysis of marketnario simulations. If the aim is to add
information about market responses in terms of ficadions to output prices, the model should use
an aggregated, rather than an individual, formthis case, the objective function becomes a
variable at endogenous prices (Duloy and Nortoi@519

Let us start with the usual maximisation producersblem in a framework of constant return to

scale where the production technology is assumée foced:

J J
max 3, pjXj =~ 2. CjXj
i j=1 j=1

st.

: ®
Zajin Sh Vi

j=1

Xj >0 V]

The objective function represents the farm grossgmao maximise with respect to the output

levels Xj for the different farm processg§=1,...,J; equal tok=1,... K). P; and Cj represent prices

and variable costs for each farm process. The twgedunction is submitted to a structural
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constraint according to which the sum of the faxtessed for the different activities should be less

than or equal to the factors available at the feaweli, fori=1,...,1). The parametes;; provides

information about the use of the factor to obtainumit of processx;. The Lagrangian

j .

transformation of problem (1) is as follows:

L=p'x—-Ccx +y'(b-Ax) (2)

where the vectoy represents the dual values associated with theetiniactorb.
The Karush-Kuhn-Tucker (KKT) conditions for obtaigi an internal optimal solution through

problem (1) are the following:

oL«

a—szziajiyi+cj—pj20 v (38.)

i=

25X =0 %20 (3b)
]

oL L .

—.=28jiXJ‘—h <0 Vi (4a)
m A

oL

L y=0 y20 (4b)

|

Equations (3) and (4) assure that producer’s proldan achieve an optimal solution. In particular,
the relation (3a) is the dual constraint of duablppem of (1) and reveals the competitive
equilibrium that is a necessary condition for progludecisional behaviour. Equation (3b) explains
how at the optimal level, the primal objective ftian must be equal to the dual one. Equation (4a)
returns the structural constraints in (1), whilea&gpn (4b) maintains the same meaning as (3b).
Assume, now, to dispose of information abbiufarms representative of a given sector (i.e.,larab
crops), so that it is possible to develop and sdlveP models like (1). Each farm will produce

results in terms of output quantitieg @nd input marginal valug/) in line with conditions (3)-(4).
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No individual farm cannot affect the product margdate, but the sectoral response determined by
farm plan allocations has an evident relationship ywrice dynamics. This implies that MP models
developed at the micro level for a representatarafge of farms should produce macro information
at the sectoral level.

To correctly aggregate individual farm planning ldeans, many authors, beginning with Day
(1963), have developed sufficient conditions foaexaggregation in MP. These conditions permit
one to convert a system Nfindividual producer problems into an aggregated without loss of
information and to guarantee that the sum of thgpuduresults obtaining solving N individual
problems is equal to the solution for the aggretyatgtputs. In other terms, the sum of the optimal
solutions for farms included in a given sample nigsequal to the aggregated model solution:

> %y =X (5)
n=1

where X? indicates the optimal solution for the aggregd® model. This condition permits one

to affirm that the total gross margin at aggregdés@| must be equal to the sum of the individual
gross margins (Day, 1963). Symmetrically, the tatakt of the constrained resources at the
aggregated level must be equal to the sum of ttwidual input total costs descending from the

solution of dual problem (1). Then, the dual coditfor an exact aggregation is as follows:
N x
> by, =BY Vi (6)
=1

where B, andY, indicate, respectively, the total available reseat for the given group of farms

and the marginal costs linked to such resources.pfimal (5) and dual (6) conditions contribute to
an exact aggregation assuming equality or propmatity among the technical and economic
coefficients inside the group ofN farms. Furthermore, according this formulatione th
dimensionality olN farms should be the same.

The purpose of an aggregated model is to providfernmation about the total output decision

process at the sectoral level and the related lefvptices imposing upon the market after product
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allocation (McCarl and Spreen, 1980). The assumpifcexogenous prices as stated in model (1) is
no longer acceptable, so that the sectoral modmildhconsider the linkage between aggregated
producer decisions and their effects on marketeprid&=or more insight, consider the following
inverse demand function:

Py = f(X,T) =a-DX 7)

and the inverse supply function:

Ps=(X,0) =p+QX (8)
where Py is the price vector of the outputs,the aggregated endogenous output responsdand
the vector of exogenous parameters including theraapt, a (Jx1), and the slope matrik®(IxK);

Ps is the price vector of variable factors measurederms of marginal cost per sectoral output

guantity, while ® is the vector of exogenous parameters for thedep, p (Jx1), and the slope

matrix Q(JIxK).
Given functions (7) and (8), it is possible to abt&amuelson’s Net Social Payoff (NSP) in a

definite integral form as follows:

=S po )-8 Sl poofza] @

The economic interpretation of the NSP is thatdifierence between the total value of the output
produced in a sector/region and the total coshefvariable inputs used by producers in the same
sector/region is equal to the net margin for thi@emy sector/region. In Takayama and Judge’s
(1964a) formulation, the NSP is composed of the mmments in (9) plus the total cost of
transportation supported by traders from supplyh®® demand points. In our proposal, this last
added value is substituted for by the total usiogt of fixed inputs, like land surface area, sa tha
represents the producer costs (in terms of constlaresources) of making total production
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available to markets. Furthermore, it represents apportunity cost of scarce factors at the
sector/regional level. Integral (9) combined witle tequation (6) provides a new aggregated result
that can be defined as the Net Aggregated Pay@&P)N

J 1 1. K I
NAP:Zajxj—ZZZx Djk Xk — Zﬂjx ——ZZXJijxk—ZlaYi (10)
1=

j=1 j=1k=1 j=k=1

The NAP can be used as an objective function toirmag into a sectoral/regional model, whére
farms producd activities for a market adoptiddgixed inputs. It is important to highlight thatca
farm acts as an economic agent in a perfect cotiygetharket, so that individual behaviour does
not affect the market price. This means that ifdeselop an aggregated model safeguarding the
competition market framework, conditions (3) anfigdould be considered.

According to the previous statements, the aggrdgatedel with endogenous prices can be

structured as follows:

max Zax ——ZZX Dk Xk - Z,BJX ——ZZX Qjk Xk — ZBiY (11a)

X Xoj i 25k 2iTk=1
S.t.
N .
2 Xnj =X vj (1] (11b)
n=1
N -
D bhivni = BY, vi [o] (11c)
n=1
J
D AvjiXnj < by vnvi [7nil (11d)
j=1
I -
2 Avji Yni = Prj —Cy vnv;j [6r] (11e)
Xpj» Yni =0 VnvjVi (111)



The objective function to maximise is the NAP sgbgd to two aggregating constraints, (11b) and
(11c), and the competitive conditions at individleels, (11d) and (11e); based on (11f), the
individual outputs and the marginal value of pragtumputs are stated to be non-negative. The

symbols in bracketsy i @iy I and Oy are shadow prices associated with the constralits)(

(11c), (11d) and (11e), respectively.
Let us define the Lagrangian transformation of nh@dl€) as follows:

L = NAP
2R
+Zi:wi[BiYi_Zn:bniyniJ

(12)
22 7ni | bri = 2 Anji X
n i j
+2. 2. 0nj —Pnj+0nj+z'°nji)’ni]
nj i
From (8) it is possible to obtain the KKT conditson
oL oL
X =Y _Zk:Djkxk_ﬂj ‘Zk:ijxk—ﬂj <0 and ijj =0 for X;20 (13)
oL oL
—~ = BitoB 20 — Y =0 Y, >0
o B +o;B and o for (14)
oL oL
oy ~ 2.7 Aji <0 and 7% =0 for Xy 20 (15)
J i nj
oL oL
-~ =—oby + Y. O Ayji <0 and Yni =0 for yy 20 (16)
n j ayni
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If one considers that the total production at thgragate level is positive, one can state thetstric

equality of the derivative in (13); this leads asaffirm that Pa - P; = ll* , Which corresponds to the

equivalence between Samuelson’s marginal NSP anoh#rginal values of the aggregated outputs.

Thus, 4 represents the increase in the NAP induced byirynincrease in sectoral/regional

output.

Conditions (14) reveals that for a positive aggteddixed input valuew; is equal to 1, thus

indicating thatenj is the dual depiction oknj according to equation (11d) at the aggregated.leve

However, it is not possible to derive the same nmegfor y,; and y,;. 7 represents Lagrangian

multipliers associated with the fixed resourcesilalsée for producing the) activities, and it is
strictly relayed on the marginal NSP defined by Ki€Tl derivative (13). This dual value indicates

that if one considers an increase of one unixrﬁ)f the variation at the aggregated level of the NAP

is equal to the marginal NSP,,; can be interpreted as a social resource valuejdtiae value of

the limited resources (land, water, etc.) assigatethe sectoral/regional level to produce a given
level of output. Actually, rearranging (15) througbmplementary slackness like relation, one

obtains the following:
DMK =D > i A Xy V] (17)
n n i

where the value of NSP per activity is equal tottital social resource cost incurred to produce the

aggregated level per activify’ x; .
n

Model (11) allows exact aggregation with a set Mflinear programming models, partially
contradicting the first theorem of Spreen and Takag (1980), according to which “given a set of
N linear programming models on aggregation of linpeypgramming models and an aggregate

model, then the aggregate model cannot satisfyteaggregation [...], but may be a semi-exact
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aggregation model”. Indeed, KKT conditions (13) dh8) state the equivalence between sectoral

prices and aggregated pricp§ for all of the farms considered.

The model proposed in this section is rather dgffierfrom what Samuelson and McCarl et al.
propose, but it achieves the same results, withathe@ntage that it can be used to simulate price

scenarios based on different expected prices fardes. Actually, the set opnj into equation (11e)

can be considered as the expected pndacing sectoral modification in prices based mahividual

planning decisions.

3. Endogenous prices in PMP

The model developed in the previous section peromes to simultaneously develop solutions for
individual and aggregated production plans withxad technology and expected prices for the
different activities and variable resources. Thedelooutcomes indicate possible allocation
scenarios at the farm and sectoral/regional lendltae induced price responses at the aggregated
level. However, the model (11) can be used for mbine purposes because the solutions that such
a model provides are prescriptions and not whatréa decision reaction should be, with the
relative problem of overspecialisation in the mpsifitable activities. Nevertheless, this type of
model may be more linked to the reality if the egsber knows the farm production system in great
detail, including the measure of the farmer’s asfitude. In regional models, built with the suppor
of individual information, it is very difficult ihot impossible to recover this detailed informatadn

a micro level because the time and costs assoaondtbdhis endeavour are often too high for such
broad information reconstruction. This is why falipy evaluation and micro-based analysis, the
classic normative mathematical programming modealuisstituted for with positive mathematical
programming models that allow the use of less idial information, remarkably expanding the

number of observed decision units (i.e., farmske PMP methodology used in agricultural analysis
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has evidently helped to enrich the support inforomator agricultural economists and decision-

makers.

Skipping the PMP methodology description that canfdund in papers such as Howitt (1995),

Paris and Howitt (1998) and Heckelei and Wolff (2P0in this section we propose the PMP

version of the model (11). The basic solution pded by this new model should replicate the

observed situation of each individual farm, ane#cts in term of production and price responses to
modifications in market conditions (expected prjcasd to changes in the public subsidy system,
maintaining a strict connection with the desigrloé farmers’ production plan as captured in the

observed situation.

3.1 Inverse demand and supply functions estimation

The estimation of the parameter s€tsand ® is a prerequisite for implementing model (11).sThi
estimation can be based on exogenous informatioatgiyices and output levels as obtained at the
farm level in the sample. In particular, the estiovaof the parameter s@ is a prerequisite for
calibrating the base situation, while knowledgewl®xogenous prices is not a sufficient condition
for achieving a calibrated result. The price of tlaiable input should be integrated using an
added-price component that into the observed farfiormation is latent but present in the farm
decision-making system. This added component isnasg to be a differential cost that includes all
those variable costs that the agricultural stagstio not catch: e.g., risk cost (Paris and Howitt,
1998). The added-differential cost is recoveredsblying an LP problem in which the observed
solution is forced, imposing the so-called calilmgtconstraint. The problem for farm can be
presented below as follows:

max p'x-c'x

x=0

Sst.
Ax<b [y]
X<X+& [A]

(18)

13



As one can see, problem (18) is very similar toltReproblem (1), except for the last constraint,
which indicates< to be less than or equal to the observed oupptus a very small terng *. The
most important term in this problem is the shadosicep ) associated with the calibrating
constraint: it is the differential cost that onesnhadd to the explicit costand includes all of the
economic information taken into accountrbfarmer in deciding to produce.
Adopting formulation (8), the total marginal cost ach sample farm that considers both explicit
and latent variable costs can be expressed irotloeving equation:

F)njs =f,(x,0)=c, +/1r:j =P, +ijx;j + Uy (19)

where Uy represents the deviation from the total margimast,cwhile the aggregated form can be
summarised as follows:

P°=f(X,0)=C,+A| =, +Q,X] (20)
Terms C; and Aj represent the value of explicit and latent maidgewsts in the aggregated
specification of model (18). The estimation of paeters Bi beta andek using the known

information about total marginal costs permits aigsntegrate the calibrating constraint in (18), so
that if they are inserted into the objective fuantiof a model similar to (18) without calibrating

constraints, the optimal solution reached is theesdahat is the observed production plan. When we
also consider the estimation of the parametershi@rnverse demand function, the objective is to

derive the parameters according to the following:

P, a|f [-D O|_ P
=l |+ X= (22)
P, ] 0 Q C+A
where P is the vector of output prices in the aggregatemtieh specification (18) an& is the

vector of aggregated observed quantities; parasmeterfp, D and Q must be estimated using

consistent techniques like OLS or maximum entrdgi). In the appendix, the ME specification is

! This term is introduced in order to avoid the dinelependency among structural and calibrating tcainss as
suggested by Paris and Howitt (1998).

14



proposed. The estimation should guarantee the ratédgy of the inverse demand and supply
functions, imposing the symmetry of matricBs and Q. This result can be obtained using
decomposition procedures in order to obtain a sytmengositive semi-definite matrix. This means
that matricedD andQ may contain non-zero parameters in off-diagonalitpms, establishing a

cross-relationship among different activities.
3.2 Calibrating model

To precisely reproduce the context at play (asceteid in the individual production plans and
micro agricultural statistics) and perform the opsation within a sectoral/regional partial market
equilibrium framework with endogenous prices, itsisfficient to substitute equation (11e) into

model (11) with the constraint presented below:
I ~ by ~ -
> Anjivni = Prj —{ 3 + Qi + 0y} vnvj [0r] (22)
)

It is clear that the only difference with respexieguation (11e) is the different specificatiortod
explicit marginal variable costs, which in this edake the form introduced in equation (19), where

the added cost componey; enters in as the explicit cost in the new modeé dutput pricepnj

remains defined as the exogenous variable, toteepmeted as the expected price for producers, so
that it is possible to remain in a price-taker eaiht
The KKT conditions for the model (11) undergo a cleafagy relation (15), which becomes:

oL A oL
—— ==+ 2 7ni A + 2 Qi 20 and - Xj=0 for X;=0 (23)
X i k OXpj

Rewriting the condition in (23) yields the follovgn

i <D i A +Zéjk‘9nj (24)
i k

15



where the left-hand side of (24) is the margindugamputed to each activity at the aggregated
level, while the right-hand side is the marginastcof the binding and variable resources necessary
for each farrm to produce one unit of each aggregated oytptlihus, (24) states that the marginal
value of the activity at the regional/sector lermlst be less than or equal to the total marginstl co
attributed to fixed and variable factors.

It is straightforward to identify the equivalencetWween the solutions obtained for the individual

farms in the LP model (18) and those obtained wblegm (11) modified using equation (22).

Actually, X6 =X amzz) @8Nd Yias = Yaamzzy Where the numbers in parenthesis refer to the

solution-related model, and the symba@h™ should be read as “modified with”.

The PMP model with endogenous prices as presemazgeasimulates competitive behaviour for
the group of farms under evaluation, preserving plenning and decision-making behaviour
observed in the statistics using individual totarginal cost (19). Because such a model provides
responses about quantities at the individual arudoss/regional level and about prices at the
sectoral/regional level, it may become a useful toopolicy and market analysis. Furthermore, the
integrability property of the demand and supplydiions offers information about the cross-price
effect in activities at the aggregated level, s th

dX. pd dXx.
== L and— = dxg forall j=k (25a)
dr® X, dRY dP

J

dX. ps dX.
. 9 R and—‘:ﬁfor all j 2k (25Db)
KTdRE X, dRe T dPr

j

where E® and E* are the demand and supply elasticity values, réispéc

One important property of the model is that thedpigers’ production planning responses take into
account the lag between the allocation decisiorcgs® and market price formation. Indeed,
producers generally consider as price signals tlwsehave arisen during the past agrarian year
and thus make their decisions based on informatiah generates production responses, which
lead to a final market price that is different frahat used in the decision-making process. The

16



competitive market design of the PMP model proposkolvs one to take this behaviour into
account.

The model can be adapted to specific policy scesamcluding constraints at the sectoral/regional
or farm level. The ability of the model to integrgiolicy restrictions (i.e., product quotas) and/or
public incentives (i.e., product and farm subsidipsovides policy-makers with information
regarding the likely impact of their decisions wispect to agricultural sectors.

However, the following two weaknesses of this mogleduld be addressed: its lack of statistical
properties (Norton and Schiefer, 1980; Paris andsBexr, 1973) and the difficulty of providing
representative information at the aggregated ldvedt of all, it is evident that statistical inérce

is not applicable to this class of model. Secondig,frequently lack the data that can prevent the
use of very long time series to estimate demandsapgly functions. Furthermore, the low quality
of agricultural information and the missing valuesagricultural databases make the target sample

insufficiently representative.

4. Empirical example

The aim of this section is to present a numerigahgle of the application of the aggregated PMP
methodology as detailed above. The examined cassideys a group of five farma\N£5)
producing three different commoditied=K=3); for the same of simplicity, the only binding
resource is the total agricultural land used bywéhfarms. As indicated in the previous section, the
procedure for building the aggregated policy analysodel consists of the following four phases:
the estimation of the inverse demand function, ¢h&bration of the observed farm planning
situation, the estimation of the inverse aggregaedply function and the calibration of the
aggregated model as in problem (11) modified usopgation (22).

In this example, the estimation of the inverse dainand supply functions uses only the cross-

sectional information derived from the sample aofnfa. It is important that the estimation of
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sectoral demand function using a panel of individaans should be avoided because the resulting
curve will reflect individual prices, which in turgenerally reflect the contractual relationship
between producer and purchaser. This is why twalywers providing the same commodity to a
market (i.e., soft wheat) could obtain a differgmice, and it is also why the price might not
necessarily be lower for the producer with thedatgyuantity. In fact, the producer with the bidges
guantity is frequently also the most specialisemtipcer and has the highest probability of obtaining
the highest-quality product (and, consequently, lthet price). Thus, if we estimate the output
demand curves using cross-section data, the megudtirves may link the price positively with the
guantity level, creating a huge problem in ternecdnomic theory satisfaction.

The parameters of the inverse demand and suppbtifunhave been estimated adopting the ME

approach, and we obtain the following values:

G =[1.827 1.700 1.90k

1.535 -0.239 — 1.50F
Djk=|-0.234 2194 0.2
-1.503 0.122 1.50

B; =[-0.266 1.373 — 0.2

0.038 -0.001 — 0.00F
Qjx=| -0.001 1.883 - 0.08
~0.003 —0.084 0.03

Matrices [3jk and ij are symmetric positive semi-definite as guarantégd Cholesky’s

decomposition method adopted in the estimation indal¢he inverse supply parameter estimation,
the cross-section data has been integrated usendul information associated with the calibrating
constraint derived using model (18). This economiformation, which captures the observed
production context, is used to obtain the identfaain allocation by solving the endogenous price

PMP model.

2 The probability distribution chosen for the pargéenestimation is set up using five probability msithat correspond
to same number of discretional support values.nkane details, see the appendix.
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The reconstruction of the inverse demand functilowa one to measure the change in the

purchased quantity of commodbt(yJ towards to a change in the price of another conityéyl

when j#k. This is the measure of demand cross-price eilys{ig5a) that one can obtain by
estimating equation (7):

o p WP O Py
dpy %, dpy X, dpy X ~0.023 0240 0.02
Eﬂ( = dxé H<O_| = d P, O P, 0% P, = 3.662 —6.552 - 6.23

dR; X dp, % dp, X, APy X3 | | 023 _0.468 - 0.02

dx, p; dx, p;  dX; P,

Ldp; X, dpy X, dpg X

The off-diagonal parameters show the cross-priestieity for each pair of products where the

positive values mean that produgt@and k are substitutes, while the negatives values espres
complementary relationships between the produdts. vialues on the diagonal indicate the own-
price elasticities for the three commodities.

The PMP model with endogenous prices is designegddlicy and market analysis simulations; its

equations can take into account the agriculturdicpesystem, so that farm behaviour can be
evaluated in the agricultural policy framework dmetbasis of which producers make their
decisions. In this example, the predictive aspé&th® model will be tested by simply varying the

market price of the first two commodities (1,2)demonstrate the type of information that can be
obtained. The same evaluation can be tested, fompbe, by modifying the coupled subsidy linked

to specific crops in a model with policy constrainfable 1 shows the results achieved in the Initia
situation, in which the model exactly reproduces tibserved situation and the modifications

involved in the three different market scenarios emnsidered. The information about output and

19



variable input pricestOI and Pjs, the information about the aggregated level ofpoutX i the

marginal value of the binding resour¥erepresent the primal solution of the mddel

Table 1

While Y represents tha priori aggregated responses in the binding resource ,ViU,&ij/B
j

represents tha posteriori aggregated responses in the binding resource.vBhi® means that the

latter is the value of the fixed input as a resdilthe farmer competitive behaviou; is the dual

solution of the aggregated model given constrairitb), the marginal value of each unit of

sectoral/regional output.
5. Conclusions

Leading up to the 1990s, several authors dealt thighproblem of integrating endogenous prices
into mathematical programming models to define tjtetive tools that would be able to provide

useful information on prices in addition to infortim@ about output levels. Endogenous price
mathematical programming models have since beeagnesed as a powerful instrument for

supporting policy-maker decisions and evaluatioasite involving econometric techniques that
require a huge amount of information that is fredlyenot available in agricultural statistics, this

class of mathematical programming models can bigyessed in the agricultural context because of
the flexibility involved in reproducing policy cotraints in such a sector.

The inclusion of prices in mathematical programmingdels must be based on the competitive
behaviour underlying farmer decisions. This is wthg model must guarantee the price-taker
condition during the optimisation process involvingut distribution to farm activities. As a result

prices are fixed at individual levels, while at ttegional or sectoral level, prices are endogenous.

® The developments of the model and its resolutmretbeen carried out using the GAMS software aeddiver
CONOPT.
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The mathematical programming models using endogepoaes involve two levels of analysis: the
micro level, which reflects the allocation choia#dseach farm, and the macro level, which is the
response in terms of sectoral or regional pricasegged by the aggregated response of all the
farms considered.

To evaluate farmer reactions with respect to pokcy/or market impulses, the mathematical
programming model proposed in this paper must e tabdescribe farm behaviour along with the
relative constraints on planning decisions. Thaitkxt reproduction of the farm system adopted by
each farm considered in a regional or sectoralyaisails completely unrealistic given the high costs
of information collection and systematisation. Onethodology that permits us to overcome this
issue and estimate, in an economic manner, tecgicaloand risk attitude constraints is positive
mathematical programming. This paper attempts tmdice endogenous prices into a positive
mathematical programming model in which the ecomoinformation about basic allocation
choices is used to predict farm behaviour in theugktion phase.

The positive mathematical programming model usimdgpgenous prices reproduces farm behaviour
in a competitive context and provides output anguinprices at an aggregated level. The net
aggregated pay-off objective function should notbesidered as indicating the difference between
producer and social surplus, but instead shoult iseen as reflecting the difference between the
value of agricultural production assigned by thekatand the total cost sustained by producers as
they seek to make their total production availablea given sector or in a given region. The
objective function value can be interpreted asghe of the output value that remains inside the
first agricultural chain. The PMP model using erelogus prices is clearly a partial equilibrium

model.
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Appendix A

Inverse demand function parameters estimation by ampting maximum entropy method

J P J J P

max Hd(p)= - > pd P Ingdjp_Zzzpln'p logPl;;.,

p(-) j=1 p=1 j=1lj=1p=1
J J' P J P
-2.2.2.Ph;, logPh, ZZZD 1 100 P,
j=1 j=1p=1 =lp=1

S.t.

p K (3 N
prjo=szjppdjp—Z{ZRjj.Rq}ZYnk V)

p=1 k=1 | j=1 n=1

P
nJ ZZ an penip +deJp pdip Z{Z RJJ R< }z X ,Van
p=1

k=1 (j=1

ii'p
p=1 p=1
P P
1= Z; Pd,., .V 1= pe,, Vnvj
p= p=

where:

Hd(p) : entropy function value;

pdjp . probability variables for the set of probabdgip (for p=1,2,...,5) linked to activity (j=1,2,...,])

concerning the intercept;

Pehjp - probability variables for the set of probabdgip linked to activityj and farmn (n=1,2,...N)

concerning the deviation terms;

zdjp : support values for the set of probabilifeelnked to activity] concerning the intercept;

Z&p : support values for the set of probabiliielinked to activityj concerning farm deviations;

Pl ii'p probability variables for the off-diagonal parters;
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Phjj 'p : probability variables for the diagonal paramster
Zl jkp : support values for the probabilitieR| jkp’
Zd i : support values for the probabilitieBh;y, ;

1/2

Rjk : Cholesky’s decomposition matrifjy = [ijDjk] ;
prjO : price for each activityrecovered at regional or sectoral level;

Pryj observed price for each activjtgollocated on the market by famm

Xnk : observed output level for each activktin each farmm.

23



Appendix B

Inverse supply function parameters estimation by adpting maximum entropy method

max He(p)= -2,
p(- -

P (K P
Ay +Cy = payzor, + ). Z(Tjkaj.)})_g1k +> pu,, zu, ,Vnvj, forX, >0
< ~

K P
Z(Tjkaj.)}Kk +> . pu,, 2u,, ,vnvj, forx, =0
p=1

p=1 j'=1 Lk=1
J P 12
T :Z; Z;(p¢jj'pz¢jj'p)2( pWJ'J"pZWJJ'p)
i=1 (p= p=

Z; pa, =1; Z;F;:l P, =1 ;Z; pw, =1 ;Zi=lpu(‘) =

where:

Hc(p) : entropy function value;

pa,, : probability variables for the set of probabégip (for p=1,2,...,5) linked to activity (j=1,2,...,J)
concerning the intercept;

Py,., : probability variables for the off-diagonal pareters;
Pw,., : probability variables for the diagonal paramster

pu,, : probability variables for the set of probabilitipslinked to activityj and farmn (n=1,2,...N)

concerning the deviation terms;

zo,, : support values for the set of probabiliteelinked to activity] concerning the intercept;
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2u, : support values for the set of probabilitpetinked to activity] concerning farm deviations;

zp,., - support values for the probabilitieBy,. ;

2w, :support values for the probabilitieBw, . ;

., . - 1/2
T, : Cholesky’s decomposition matrli';jk =[|—jijk} ;

Ajo + cjO : total marginal cost for activityrelated to the entire sample of farm;
A +c_ :total marginal cost for activityrelated to each farmincluded inside the sample;

n n

X, - observed output level for each activityn each farmn.
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Tables

Table 1. Solutions of the PMP model with endogenoysices

Market Scenarios

Outcomes Initial value
S1 S2 S3

pld 130.1 91.094 108.632 91.099
|32d 215.3 232.788 239.188 232.625
P3d 135.6 172.315 155.608 172.157
|:>lS 105.5 107.554 105.927 107.756
|325 153.8 144.246 135.838 144.462
PgS 89.1 90.533 89.870 90.708
X, 374.31 379.95 375.42 380.52
X, 17.77 17.41 16.81 17.44
X, 376.06 379.28 375.92 379.86
Y 243.149 329.291 239.482 327.089

Zj:'uj X j /B 247.721 234.586 244.924 233.102

Description of scenarios:

S1: commodity 1 price increased by 10% with resgeds initial value;

S2: commodity 2 price decreased by 10% with restoeits initial value;

S3: commodity 1 price increased by 10% and commdjirice decreased by 10% with

respect their initial value
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