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Endogenous prices in mathematical programming models for agricultural policy analysis 

Filippo Arfini, Michele Donati 

University of Parma, Italy 

 

Abstract 

This paper proposes a price endogenous model based upon positive mathematical programming 

methodology for policy and market evaluations. The model is developed preserving the competitive 

character of farm decisions and considering the aggregate supply response on market prices. The 

method of aggregation allows one to use the tool for policy evaluation at the sectoral or regional 

level using individual farm data. The process of simulation adopts the positive mathematical 

programming calibration property for evaluating farm behaviour dynamics and the estimation of the 

inverse demand and supply functions for generating endogenous prices relayed on the aggregated 

individual supply decisions.  
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1. Introduction 

 

In recent decades, many policy-makers have encouraged agricultural economists to develop 

quantitative models able to respond to policy evaluation needs. As a result, mathematical 

programming (MP) models have assumed a primary role in supporting agricultural policy 

evaluations. The straightforward interpretation of the MP model outcomes and their capacity to 
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face, often in a poor information context, complex sector prediction problems have determined the 

MP model’s success as tools for interpreting trends in agriculture influenced by agricultural policy 

mechanisms. 

 

Many researchers have proposed their own MP instruments for evaluating agricultural policies: the 

work of Buysse et al. (2007) uses a positive mathematical programming (PMP) model to assess the 

effect of sugar CMO (Common Market Organization) reform on Belgian farmers; while Cortignani 

and Severini (2008) use an MP model to assess the CAP reform of farm decisions, with a particular 

emphasis on potential additional crops. It is interesting that all of these analyses have used MP tools 

to assess the supply side of the problem, that is the effect of scenarios on production levels. Thus, 

they have avoided providing results related to the effects of policy changes on prices. The 

simulations considered using such models are generally based on exogenous information about 

output prices. If one considers the wide range of recent MP models used for policy evaluations that 

are collected in the volume “Modelling Agricultural Policies: State of the Art and New Challenges” 

(Arfini, 2005), one may be very surprised to see that most of the MP models presented therein are 

strictly supply-oriented models and that the output prices are fixed. In recent scientific production, 

the MP models, even when implemented at the sectoral or territorial level, have failed to take into 

account the important relationship among supply responses and induced price changes. This 

relationship seems to be commonly recognised as an econometric issue to resolve using 

econometric techniques. 

Samuelson (1952), building on the seminal paper by Enke (1951) about the famous “electric 

analogue” specification for linear market functions, explores the ability of linear programming (LP) 

to evaluate market behaviour using a maximisation problem in which the competitive market 

conditions are guaranteed. Samuelson’s LP model reconstructs the supply and demand functions for 

products with endogenous responses upon production levels and output price levels. This study 

spurred a great deal of scientific production, the most significant contribution from which were the 
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fundamental papers by Takayama and Judge (1964a, 1964b), in which multi-product supply and 

demand functions are internalised into a quadratic programming model representing a given sector. 

This model provides endogenous price solutions for inputs and outputs, considering the substitution 

and complementary relationships among activities.  

 

Afterwards, Duloy and Norton (1975) propose a linear transformation of the Takayama and Judge 

framework that will completely depict the farm production system and incorporate product demand 

functions into MP models. An LP model built on individual farm data should take into account that 

in a competitive market context, producers act as price-takers; thus, endogenous prices have to be 

specified by a sectoral or aggregated objective function able to avoid internal monopolistic 

behaviour. On this basis, McCarl and Spreen (1980) explain how to appropriately develop price 

endogenous mathematical programming models for evaluating alternative policy scenarios. The 

aggregation process is a relevant issue in order to transmit the information about the farm planning 

allocation to the sector demand function. The aggregation issue as it relates to MP models is a 

problem that several economists have considered, identifying fundamental criteria that will help to 

minimise the loss of information during such a process (Day, 1963; Paris and Rausser, 1973; Spreen 

and Takayama, 1980). 

It was not until 2005 that another significant development occurred when Rehman and Yates 

introduced an advance in the integration of demand functions into MP models. In their work, a 

large-scale LP model is proposed as an evolution of Martin’s stepped LP approximation (Martin, 

1972), reaching an equilibrium solution that involves the endogenous estimation of supply and 

prices but does not consider integrability conditions for demand systems. This latter matter is 

discussed in Spreen (2006) with reference to the Koopmans-Hitchcock transportation model, whose 

use is extended to a multiproduct case. Spreen argues that price endogenous models are diffused in 

empirical practice, even if in the agricultural economics literature after 1990 the MP models 

generally consider exogenous output prices except when using econometric techniques. 
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More recently, two other interesting approaches to market behaviour evaluation using MP 

methodology are presented. The first one was presented by Önal et al. (2009), who further advance 

the model by McCarl and Spreen, where crop mixed expansion is considered inside policy analysis.  

The second contribution was made by Arfini et al. (2008), who propose an approach based on the 

PMP methodology for building a model able to replicate farm behaviour using the estimation of 

inverse demand and supply functions based on cross-section data. The latter is particularly 

interesting because it is able to provide agricultural policy information that can inform farm 

planning responses to agricultural policy modifications and related impacts on output market prices. 

However, this model does not completely fit the competitive market or the aggregating conditions 

required for a farm planning model (McCarl and Spreen, 1980) providing an empirical framework 

far from price-taker behaviour because of individual demand functions inserted inside the individual 

objective function to maximise. 

The purpose of this paper is to present a price endogenous PMP model able to appropriately 

represent farm planning decisions and simulate market price evolution within a framework of 

market competition. The first section proposes an extension of the price endogenous MP approach, 

the second section presents the PMP model with endogenous supply and prices, the third part 

illustrates how the discussed model can be implemented with a panel of farm data and the fourth 

section concludes with some main remarks. 

 

2. Mathematical programming with endogenous prices 

 

The producer’s objective is to obtain the best economic result with the most limited use of 

resources. This simple idea originated what Samuelson (1952) called a “new” type of theory, linear 

programming. Each economic agent may be, thus, interested in obtaining from this theory the best 

planning organization, among the different choices, given the available input, in order to gain more 

than they would receive by a self-selection approach. In a competitive framework, according to the 
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theory, this objective should be reached when prices equal marginal costs, where prices constitute a 

priori information owned, or perceived, by producers.  

In the real world, farmers make their decisions upon expected prices, which are determined using 

their own knowledge about agricultural markets. This knowledge includes past price experience, 

their own risk attitudes, information about the future environment and information concerning off-

market parameters like public rules and agricultural subsidies. Overall farm planning for one large 

geographical area or for a given large sector leads to modifications in market prices, sometimes 

inducing a relevant change in expected individual farm revenue. MP models can reproduce the farm 

system in detail (when information exists) and the farm behaviour to maximise a profit function 

subjected to several constraints. In such an objective function, prices are exogenous parameters and 

frequently support the sensitive analysis of market scenario simulations. If the aim is to add 

information about market responses in terms of modifications to output prices, the model should use 

an aggregated, rather than an individual, form. In this case, the objective function becomes a 

variable at endogenous prices (Duloy and Norton, 1975). 

Let us start with the usual maximisation producer’s problem in a framework of constant return to 

scale where the production technology is assumed to be fixed: 

 

1 1

1

max

. .

0

j

J J

j j j j
x j j

J

ji j i
j

j

p x c x

s t

a x b i

x j

= =

=

−

≤ ∀

≥ ∀

∑ ∑

∑
     (1) 

 

The objective function represents the farm gross margin to maximise with respect to the output 

levels jx  for the different farm processes j (j=1,...,J; equal to k=1,…,K). jp and jc represent prices 

and variable costs for each farm process. The objective function is submitted to a structural 
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constraint according to which the sum of the factors used for the different activities should be less 

than or equal to the factors available at the farm level i, for i=1,…, I). The parameter jia provides 

information about the use of the factor to obtain a unit of process jx . The Lagrangian 

transformation of problem (1) is as follows: 

 

L = − +p'x c'x y'(b - Ax)        (2) 

 

where the vector y represents the dual values associated with the limited factor b. 

The Karush-Kuhn-Tucker (KKT) conditions for obtaining an internal optimal solution through 

problem (1) are the following: 

1

0    
I

ji i j j
j i

L
a y c p j

x
=

∂ = + − ≥ ∀
∂ ∑      (3a) 

0 0j j
j

L
x x

x

∂ = ≥
∂

       (3b) 

1

0    
J

ji j i
i j

L
a x b i

y
=

∂ = − ≤ ∀
∂ ∑       (4a) 

0 0i i
i

L
y y

y

∂ = ≥
∂

       (4b) 

Equations (3) and (4) assure that producer’s problem can achieve an optimal solution. In particular, 

the relation (3a) is the dual constraint of dual problem of (1) and reveals the competitive 

equilibrium that is a necessary condition for producer decisional behaviour. Equation (3b) explains 

how at the optimal level, the primal objective function must be equal to the dual one. Equation (4a) 

returns the structural constraints in (1), while equation (4b) maintains the same meaning as (3b). 

Assume, now, to dispose of information about N farms representative of a given sector (i.e., arable 

crops), so that it is possible to develop and solve N LP models like (1). Each farm will produce 

results in terms of output quantities (x) and input marginal value (y) in line with conditions (3)-(4). 
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No individual farm cannot affect the product market price, but the sectoral response determined by 

farm plan allocations has an evident relationship with price dynamics. This implies that MP models 

developed at the micro level for a representative sample of farms should produce macro information 

at the sectoral level. 

To correctly aggregate individual farm planning problems, many authors, beginning with Day 

(1963), have developed sufficient conditions for exact aggregation in MP. These conditions permit 

one to convert a system of N individual producer problems into an aggregated one without loss of 

information and to guarantee that the sum of the output results obtaining solving N individual 

problems is equal to the solution for the aggregated outputs. In other terms, the sum of the optimal 

solutions for farms included in a given sample must be equal to the aggregated model solution: 

* *

1

N

nj j
n

x X
=

=∑         (5) 

where *
jX  indicates the optimal solution for the aggregated MP model. This condition permits one 

to affirm that the total gross margin at aggregated level must be equal to the sum of the individual 

gross margins (Day, 1963). Symmetrically, the total cost of the constrained resources at the 

aggregated level must be equal to the sum of the individual input total costs descending from the 

solution of dual problem (1). Then, the dual condition for an exact aggregation is as follows: 

* *

1

N

ni ni i i
n

b y BY i
=

= ∀∑       (6) 

where iB  and iY  indicate, respectively, the total available resources I for the given group of farms 

and the marginal costs linked to such resources. The primal (5) and dual (6) conditions contribute to 

an exact aggregation assuming equality or proportionality among the technical and economic 

coefficients inside the group of N farms. Furthermore, according this formulation, the 

dimensionality of N farms should be the same. 

The purpose of an aggregated model is to provide information about the total output decision 

process at the sectoral level and the related level of prices imposing upon the market after product 
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allocation (McCarl and Spreen, 1980). The assumption of exogenous prices as stated in model (1) is 

no longer acceptable, so that the sectoral model should consider the linkage between aggregated 

producer decisions and their effects on market prices. For more insight, consider the following 

inverse demand function: 

( )d f= =P X,Γ α - DX        (7) 

 

and the inverse supply function: 

 

( )s f= = +P X,Θ β QX      (8) 

where dP  is the price vector of the outputs, X the aggregated endogenous output response and Γ  

the vector of exogenous parameters including the intercept, α (Jx1), and the slope matrix D(JxK); 

sP  is the price vector of variable factors measured in terms of marginal cost per sectoral output 

quantity, while Θ  is the vector of exogenous parameters for the intercept, β (Jx1), and the slope 

matrix Q(JxK). 

Given functions (7) and (8), it is possible to obtain Samuelson’s Net Social Payoff (NSP) in a 

definite integral form as follows: 

1 10 0

x xnj nj
n nJ J

j jk k nj j jk k nj
j k n j k n

NSP D X d x Q X d xα β
∑ ∑

= =

             = − − +                              
∑ ∑ ∑ ∑ ∑ ∑∫ ∫  (9) 

 The economic interpretation of the NSP is that the difference between the total value of the output 

produced in a sector/region and the total cost of the variable inputs used by producers in the same 

sector/region is equal to the net margin for that given sector/region. In Takayama and Judge’s 

(1964a) formulation, the NSP is composed of the components in (9) plus the total cost of 

transportation supported by traders from supply to the demand points. In our proposal, this last 

added value is substituted for by the total using cost of fixed inputs, like land surface area, so that it 

represents the producer costs (in terms of constrained resources) of making total production 
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available to markets. Furthermore, it represents the opportunity cost of scarce factors at the 

sector/regional level. Integral (9) combined with the equation (6) provides a new aggregated result 

that can be defined as the Net Aggregated Payoff (NAP):    

1 1 1 1 1 1 1

1 1

2 2

J J K J J K I

j j j jk k j j j jk k i i
j j k j j k i

NAP X X D X X X Q X B Yα β
= = = = = = =

= − − − −∑ ∑∑ ∑ ∑∑ ∑  (10) 

 

The NAP can be used as an objective function to maximise into a sectoral/regional model, where N 

farms produce J activities for a market adopting I fixed inputs. It is important to highlight that each 

farm acts as an economic agent in a perfect competitive market, so that individual behaviour does 

not affect the market price. This means that if we develop an aggregated model safeguarding the 

competition market framework, conditions (3) and (4) should be considered.  

According to the previous statements, the aggregated model with endogenous prices can be 

structured as follows:   

, , , 1 1 1 1 1 1 1

1 1
max

2 2j nj i ni

J J K J J K I

j j j jk k j j j jk k i i
X x Y y j j k j j k i

X X D X X X Q X B Yα β
= = = = = = =

− − − −∑ ∑∑ ∑ ∑∑ ∑  (11a) 

  s.t. 

1

N

nj j
n
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=
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1

N
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n
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=
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1

J

nji nj ni
j
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=
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1

I
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, 0nj nix y ≥    n j i∀ ∀ ∀    (11f) 
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The objective function to maximise is the NAP subjected to two aggregating constraints, (11b) and 

(11c), and the competitive conditions at individual levels, (11d) and (11e); based on (11f), the 

individual outputs and the marginal value of producer inputs are stated to be non-negative. The 

symbols in brackets, jµ , iω , niγ  and njθ are shadow prices associated with the constraints (11b), 

(11c), (11d) and (11e), respectively.   

 

Let us define the Lagrangian transformation of model (11) as follows: 

 

j j nj
j n

i i i ni ni
i n

ni ni nji nj
n i j

nj nj nj nji ni
n j i
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 + − +   
 + −   

  + −  
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∑ ∑

∑ ∑

∑∑ ∑

∑∑ ∑

     (12) 

From (8) it is possible to obtain the KKT conditions: 

0  j jk k j jk k j
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If one considers that the total production at the aggregate level is positive, one can state the strict 

equality of the derivative in (13); this leads us to affirm that * * *
d s− =P P µ , which corresponds to the 

equivalence between Samuelson’s marginal NSP and the marginal values of the aggregated outputs. 

Thus, jµ  represents the increase in the NAP induced by a unitary increase in sectoral/regional 

output.  

Conditions (14) reveals that for a positive aggregated fixed input value, iω  is equal to 1, thus 

indicating that njθ is the dual depiction of njx  according to equation (11d) at the aggregated level. 

However, it is not possible to derive the same meaning for niγ  and niy . niγ  represents Lagrangian 

multipliers associated with the fixed resources available for producing the J activities, and it is 

strictly relayed on the marginal NSP defined by the KKT derivative (13). This dual value indicates 

that if one considers an increase of one unit of njx , the variation at the aggregated level of the NAP 

is equal to the marginal NSP. niγ can be interpreted as a social resource value, that is the value of 

the limited resources (land, water, etc.) assigned at the sectoral/regional level to produce a given 

level of output. Actually, rearranging (15) through complementary slackness like relation, one 

obtains the following:  

j nj ni nji nj
n n i

x A xµ γ=∑ ∑∑   j∀     (17) 

where the value of NSP per activity is equal to the total social resource cost incurred to produce the 

aggregated level per activity nj
n

x∑ .    

Model (11) allows exact aggregation with a set of N linear programming models, partially 

contradicting the first theorem of Spreen and Takayama (1980), according to which “given a set of 

N linear programming models on aggregation of linear programming models and an aggregate 

model, then the aggregate model cannot satisfy exact aggregation […], but may be a semi-exact 
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aggregation model”. Indeed, KKT conditions (13) and (15) state the equivalence between sectoral 

prices and aggregated prices jµ  for all of the farms considered.  

The model proposed in this section is rather different from what Samuelson and McCarl et al. 

propose, but it achieves the same results, with the advantage that it can be used to simulate price 

scenarios based on different expected prices for farmers. Actually, the set of njp into equation (11e) 

can be considered as the expected price inducing sectoral modification in prices based on individual 

planning decisions. 

 

3. Endogenous prices in PMP 

 

The model developed in the previous section permits one to simultaneously develop solutions for 

individual and aggregated production plans with a fixed technology and expected prices for the 

different activities and variable resources. The model outcomes indicate possible allocation 

scenarios at the farm and sectoral/regional level and the induced price responses at the aggregated 

level. However, the model (11) can be used for normative purposes because the solutions that such 

a model provides are prescriptions and not what the real decision reaction should be, with the 

relative problem of overspecialisation in the most profitable activities. Nevertheless, this type of 

model may be more linked to the reality if the researcher knows the farm production system in great 

detail, including the measure of the farmer’s risk attitude. In regional models, built with the support 

of individual information, it is very difficult if not impossible to recover this detailed information at 

a micro level because the time and costs associated with this endeavour are often too high for such 

broad information reconstruction. This is why for policy evaluation and micro-based analysis, the 

classic normative mathematical programming model is substituted for with positive mathematical 

programming models that allow the use of less individual information, remarkably expanding the 

number of observed decision units (i.e., farms). The PMP methodology used in agricultural analysis 



 13 

has evidently helped to enrich the support information for agricultural economists and decision-

makers.     

Skipping the PMP methodology description that can be found in papers such as Howitt (1995), 

Paris and Howitt (1998) and Heckelei and Wolff (2003), in this section we propose the PMP 

version of the model (11). The basic solution provided by this new model should replicate the 

observed situation of each individual farm, and it reacts in term of production and price responses to 

modifications in market conditions (expected prices) and to changes in the public subsidy system, 

maintaining a strict connection with the design of the farmers’ production plan as captured in the 

observed situation. 

 

3.1 Inverse demand and supply functions estimation 

 

The estimation of the parameter sets Γ  and Θ  is a prerequisite for implementing model (11). This 

estimation can be based on exogenous information about prices and output levels as obtained at the 

farm level in the sample. In particular, the estimation of the parameter set Θ  is a prerequisite for 

calibrating the base situation, while knowledge about exogenous prices is not a sufficient condition 

for achieving a calibrated result. The price of the variable input should be integrated using an 

added-price component that into the observed farm information is latent but present in the farm 

decision-making system. This added component is assumed to be a differential cost that includes all 

those variable costs that the agricultural statistics do not catch: e.g., risk cost (Paris and Howitt, 

1998). The added-differential cost is recovered by solving an LP problem in which the observed 

solution is forced, imposing the so-called calibrating constraint. The problem for n farm can be 

presented below as follows: 

0
max

. .

[ ]

[ ]

s t

ε

≥

≤
≤ +

x
p'x -c'x

Ax b y

x x λ

      (18) 
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As one can see, problem (18) is very similar to the LP problem (1), except for the last constraint, 

which indicates x to be less than or equal to the observed output x  plus a very small term ε 1. The 

most important term in this problem is the shadow price λ  associated with the calibrating 

constraint: it is the differential cost that one must add to the explicit cost c and includes all of the 

economic information taken into account by n farmer in deciding to produce x . 

Adopting formulation (8), the total marginal cost for each sample farm that considers both explicit 

and latent variable costs can be expressed in the following equation: 

* *( )s
nj n nj nj j jk nj njP f c Q x uλ β= = + = + +x,Θ     (19) 

where nju  represents the deviation from the total marginal cost, while the aggregated form can be 

summarised as follows: 

 * *( )s
j j j j jk jP f C Q Xβ= = + Λ = +X,Θ     (20) 

Terms jC  and jΛ  represent the value of explicit and latent marginal costs in the aggregated 

specification of model (18). The estimation of parameters jβ beta and jkQ  using the known 

information about total marginal costs permits us to integrate the calibrating constraint in (18), so 

that if they are inserted into the objective function of a model similar to (18) without calibrating 

constraints, the optimal solution reached is the same, that is the observed production plan. When we 

also consider the estimation of the parameters for the inverse demand function, the objective is to 

derive the parameters according to the following:  

0

0
d

s

−       = + =       +      
P α D P

X
P β Q C Λ      (21) 

where P is the vector of output prices in the aggregated model specification (18) and X  is the 

vector of aggregated observed quantities; parameters α , β , D and Q must be estimated using 

consistent techniques like OLS or maximum entropy (ME). In the appendix, the ME specification is 

                                                 
1 This term is introduced in order to avoid the linear dependency among structural and calibrating constraints as 
suggested by Paris and Howitt (1998). 
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proposed. The estimation should guarantee the integrability of the inverse demand and supply 

functions, imposing the symmetry of matrices D and Q. This result can be obtained using 

decomposition procedures in order to obtain a symmetric positive semi-definite matrix. This means 

that matrices D and Q may contain non-zero parameters in off-diagonal positions, establishing a 

cross-relationship among different activities.    

 

3.2 Calibrating model 

 

To precisely reproduce the context at play (as indicated in the individual production plans and 

micro agricultural statistics) and perform the optimisation within a sectoral/regional partial market 

equilibrium framework with endogenous prices, it is sufficient to substitute equation (11e) into 

model (11) with the constraint presented below: 

{ }
1

ˆ ˆ ˆ
I

nji ni nj j jk nj nj
i

A y p Q x uβ
=

≥ − + +∑   n j∀ ∀   [ ]njθ   (22) 

It is clear that the only difference with respect to equation (11e) is the different specification of the 

explicit marginal variable costs, which in this case take the form introduced in equation (19), where 

the added cost component njλ  enters in as the explicit cost in the new model. The output price njp  

remains defined as the exogenous variable, to be interpreted as the expected price for producers, so 

that it is possible to remain in a price-taker context.  

The KKT conditions for the model (11) undergo a change for relation (15), which becomes: 

ˆ 0j ni nji jk nj
nj i k

L
A Q

x
µ γ θ∂ = − + + ≥

∂ ∑ ∑  and 0nj
nj

L
x

x

∂ =
∂

 for 0njx ≥  (23) 

 

Rewriting the condition in (23) yields the following: 

 ˆ
j ni nji jk nj

i k

A Qµ γ θ≤ +∑ ∑       (24) 
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where the left-hand side of (24) is the marginal value imputed to each activity at the aggregated 

level, while the right-hand side is the marginal cost of the binding and variable resources necessary 

for each farm n to produce one unit of each aggregated output j. Thus, (24) states that the marginal 

value of the activity at the regional/sector level must be less than or equal to the total marginal cost 

attributed to fixed and variable factors. 

It is straightforward to identify the equivalence between the solutions obtained for the individual 

farms in the LP model (18) and those obtained in problem (11) modified using equation (22). 

Actually, * *
(18) (11 22)nj nj mx x=

�
 and * *

(18) (11 22)ni ni my y=
�

 where the numbers in parenthesis refer to the 

solution-related model, and the symbol “m� ” should be read as “modified with”. 

The PMP model with endogenous prices as presented above simulates competitive behaviour for 

the group of farms under evaluation, preserving the planning and decision-making behaviour 

observed in the statistics using individual total marginal cost (19). Because such a model provides 

responses about quantities at the individual and sectoral/regional level and about prices at the 

sectoral/regional level, it may become a useful tool for policy and market analysis. Furthermore, the 

integrability property of the demand and supply functions offers information about the cross-price 

effect in activities at the aggregated level, so that 

d
jd k

jk d
k j

dX P
E

dP X
=  and j k

d d
k j

dX dX

dP dP
=  for all j k≠     (25a) 

s
js k

jk s
k j

dX P
E

dP X
=  and j k

s s
k j

dX dX

dP dP
= for all j k≠     (25b) 

where dE and sE are the demand and supply elasticity values, respectively. 

One important property of the model is that the producers’ production planning responses take into 

account the lag between the allocation decision process and market price formation. Indeed, 

producers generally consider as price signals those that have arisen during the past agrarian year 

and thus make their decisions based on information that generates production responses, which  

lead to a final market price that is different from that used in the decision-making process. The 
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competitive market design of the PMP model proposed allows one to take this behaviour into 

account.  

The model can be adapted to specific policy scenarios, including constraints at the sectoral/regional 

or farm level. The ability of the model to integrate policy restrictions (i.e., product quotas) and/or 

public incentives (i.e., product and farm subsidies) provides policy-makers with information 

regarding the likely impact of their decisions with respect to agricultural sectors. 

However, the following two weaknesses of this model should be addressed: its lack of statistical 

properties (Norton and Schiefer, 1980; Paris and Rausser, 1973) and the difficulty of providing 

representative information at the aggregated level. First of all, it is evident that statistical inference 

is not applicable to this class of model. Secondly, we frequently lack the data that can prevent the 

use of very long time series to estimate demand and supply functions. Furthermore, the low quality 

of agricultural information and the missing values in agricultural databases make the target sample 

insufficiently representative. 

 

4. Empirical example 

 

The aim of this section is to present a numerical example of the application of the aggregated PMP 

methodology as detailed above. The examined case considers a group of five farms (N=5) 

producing three different commodities (J=K=3); for the same of simplicity, the only binding 

resource is the total agricultural land used by those farms. As indicated in the previous section, the 

procedure for building the aggregated policy analysis model consists of the following four phases: 

the estimation of the inverse demand function, the calibration of the observed farm planning 

situation, the estimation of the inverse aggregated supply function and the calibration of the 

aggregated model as in problem (11) modified using equation (22). 

In this example, the estimation of the inverse demand and supply functions uses only the cross-

sectional information derived from the sample of farms. It is important that the estimation of 
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sectoral demand function using a panel of individual farms should be avoided because the resulting 

curve will reflect individual prices, which in turn generally reflect the contractual relationship 

between producer and purchaser. This is why two producers providing the same commodity to a 

market (i.e., soft wheat) could obtain a different price, and it is also why the price might not 

necessarily be lower for the producer with the largest quantity. In fact, the producer with the biggest 

quantity is frequently also the most specialised producer and has the highest probability of obtaining 

the highest-quality product (and, consequently, the best price). Thus, if we estimate the output 

demand curves using cross-section data, the resulting curves may link the price positively with the 

quantity level, creating a huge problem in term of economic theory satisfaction. 

The parameters of the inverse demand and supply function have been estimated adopting the ME 

approach2, and we obtain the following values: 

[ ]ˆ 1.827 1.700 1.905jα =  

1.535 0.239 1.503
ˆ 0.234 2.194 0.122

1.503 0.122 1.505
jkD

− −  = −  − 
 

[ ]ˆ 0.266 1.373 0.298jβ = − −  

0.038 0.001 0.003
ˆ 0.001 1.883 0.084

0.003 0.084 0.038
jkQ

− −  = − −  − − 
 

Matrices ˆ
jkD  and ˆ

jkQ  are symmetric positive semi-definite as guaranteed by Cholesky’s 

decomposition method adopted in the estimation model. In the inverse supply parameter estimation, 

the cross-section data has been integrated using the dual information associated with the calibrating 

constraint derived using model (18). This economic information, which captures the observed 

production context, is used to obtain the identical farm allocation by solving the endogenous price 

PMP model. 

                                                 
2 The probability distribution chosen for the parameter estimation is set up using five probability points that correspond 
to same number of discretional support values. For more details, see the appendix. 
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The reconstruction of the inverse demand function allows one to measure the change in the 

purchased quantity of commodityjX  towards to a change in the price of another commodity kP  

when j k≠ . This is the measure of demand cross-price elasticity (25a) that one can obtain by 

estimating equation (7): 

31 1 2 1 1

1 1 1 2 1 3

31 2 2 2 2

2 1 2 2 2 3

3 3 3 31 2

3 1 3 2 3 3

0.023 0.240 0.024

3.062 0.552 6.238

0.023 0.468 0.024

d
jd k

jk d
jk

dxdx p dx p p

dp x dp x dp x
dX P dxdx p dx p p

E
X dp x dp x dp xdP

p p dx pdx dx

dp x dp x dp x

−

− −

− −

        = = =         

 

The off-diagonal parameters show the cross-price elasticity for each pair of products where the 

positive values mean that products j and k are substitutes, while the negatives values express 

complementary relationships between the products. The values on the diagonal indicate the own-

price elasticities for the three commodities.   

The PMP model with endogenous prices is designed for policy and market analysis simulations; its 

equations can take into account the agricultural policy system, so that farm behaviour can be 

evaluated in the agricultural policy framework on the basis of which producers make their 

decisions. In this example, the predictive aspect of the model will be tested by simply varying the 

market price of the first two commodities (1,2) to demonstrate the type of information that can be 

obtained. The same evaluation can be tested, for example, by modifying the coupled subsidy linked 

to specific crops in a model with policy constraints. Table 1 shows the results achieved in the initial 

situation, in which the model exactly reproduces the observed situation and the modifications 

involved in the three different market scenarios are considered. The information about output and 
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variable input prices d
jP and s

jP , the information about the aggregated level of output jX , the 

marginal value of the binding resource Y  represent the primal solution of the model3.   

Table 1 

While Y represents the a priori aggregated responses in the binding resource value, j j
j

X Bµ∑  

represents the a posteriori aggregated responses in the binding resource value. This means that the 

latter is the value of the fixed input as a result of the farmer competitive behaviour. jµ  is the dual 

solution of the aggregated model given constraint (11b), the marginal value of each unit of 

sectoral/regional output. 

 

5. Conclusions 

 

Leading up to the 1990s, several authors dealt with the problem of integrating endogenous prices 

into mathematical programming models to define quantitative tools that would be able to provide 

useful information on prices in addition to information about output levels. Endogenous price 

mathematical programming models have since been recognised as a powerful instrument for 

supporting policy-maker decisions and evaluation. Despite involving econometric techniques that 

require a huge amount of information that is frequently not available in agricultural statistics, this 

class of mathematical programming models can be easily used in the agricultural context because of 

the flexibility involved in reproducing policy constraints in such a sector.  

The inclusion of prices in mathematical programming models must be based on the competitive 

behaviour underlying farmer decisions. This is why the model must guarantee the price-taker 

condition during the optimisation process involving input distribution to farm activities. As a result, 

prices are fixed at individual levels, while at the regional or sectoral level, prices are endogenous. 

                                                 
3 The developments of the model and its resolution have been carried out using the GAMS software and the solver 
CONOPT. 
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The mathematical programming models using endogenous prices involve two levels of analysis: the 

micro level, which reflects the allocation choices of each farm, and the macro level, which is the 

response in terms of sectoral or regional prices generated by the aggregated response of all the 

farms considered. 

To evaluate farmer reactions with respect to policy and/or market impulses, the mathematical 

programming model proposed in this paper must be able to describe farm behaviour along with the 

relative constraints on planning decisions. The detailed reproduction of the farm system adopted by 

each farm considered in a regional or sectoral analysis is completely unrealistic given the high costs 

of information collection and systematisation. One methodology that permits us to overcome this 

issue and estimate, in an economic manner, technological and risk attitude constraints is positive 

mathematical programming. This paper attempts to introduce endogenous prices into a positive 

mathematical programming model in which the economic information about basic allocation 

choices is used to predict farm behaviour in the simulation phase. 

The positive mathematical programming model using endogenous prices reproduces farm behaviour 

in a competitive context and provides output and input prices at an aggregated level. The net 

aggregated pay-off objective function should not be considered as indicating the difference between 

producer and social surplus, but instead should it be seen as reflecting the difference between the 

value of agricultural production assigned by the market and the total cost sustained by producers as 

they seek to make their total production available in a given sector or in a given region. The 

objective function value can be interpreted as the part of the output value that remains inside the 

first agricultural chain. The PMP model using endogenous prices is clearly a partial equilibrium 

model.  
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Appendix A  

Inverse demand function parameters estimation by adopting maximum entropy method 
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where: 

( )Hd p  : entropy function value;  

jppd  : probability variables for the set of probabilities p (for p=1,2,…,5) linked to activity j (j=1,2,…,J) 

concerning the intercept; 

njppe  : probability variables for the set of probabilities p linked to activity j and farm n (n=1,2,…,N) 

concerning the deviation terms; 

jpzd  : support values for the set of probabilities p linked to activity j concerning the intercept; 

njpze  : support values for the set of probabilities p linked to activity j concerning farm deviations; 

'jj pPl  : probability variables for the off-diagonal parameters;   
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'jj pPh  : probability variables for the diagonal parameters;   

jkpZl  : support values for the probabilities  jkpPl ; 

jkpZd  : support values for the probabilities  jkpPh ; 

jkR  : Cholesky’s decomposition matrix; 
1/ 2

jk jk jkR L D =   ; 

jpr○  : price for each activity j recovered at regional or sectoral level;  

njpr  : observed price for each activity j collocated on the market by farm n; 

nkx  : observed output level for each activity k in each farm n. 
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Appendix B  

Inverse supply function parameters estimation by adopting maximum entropy method 
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where: 

( )Hc p  : entropy function value;  

jppα  : probability variables for the set of probabilities p (for p=1,2,…,5) linked to activity j (j=1,2,…,J) 

concerning the intercept; 

'jj pPϕ  : probability variables for the off-diagonal parameters;  

'jj pPw  : probability variables for the diagonal parameters;   

njppu  : probability variables for the set of probabilities p linked to activity j and farm n (n=1,2,…,N) 

concerning the deviation terms; 

jpzα  : support values for the set of probabilities p linked to activity j concerning the intercept; 
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njpzu  : support values for the set of probabilities p linked to activity j concerning farm deviations; 

'jj pzϕ  : support values for the probabilities  'jj pPϕ ; 

'jj pzw  : support values for the probabilities  'jj pPw ; 

jkT  : Cholesky’s decomposition matrix; 
1/ 2

jk jk jkT L D =   ; 

j jcλ +○ ○  : total marginal cost for activity j related to the entire sample of farm; 

nj njcλ +  : total marginal cost for activity j related to each farm n included inside the sample; 

nkx  : observed output level for each activity k in each farm n.     
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Tables 

 

 

Table 1. Solutions of the PMP model with endogenous prices 

Market Scenarios 
Outcomes Initial value 

S1 S2 S3 

1
dP  130.1 91.094 108.632 91.099 

2
dP  215.3 232.788 239.188 232.625 

3
dP  135.6 172.315 155.608 172.157 

1
sP  105.5 107.554 105.927 107.756 

2
sP  153.8 144.246 135.838 144.462 

3
sP  89.1 90.533 89.870 90.708 

1X  374.31 379.95 375.42 380.52 

2X  17.77 17.41 16.81 17.44 

3X  376.06 379.28 375.92 379.86 

Y  243.149 329.291 239.482 327.089 

j j
j

X Bµ∑  
247.721 234.586 244.924 233.102 

Description of scenarios: 

S1: commodity 1 price increased by 10% with respect to its initial value; 

S2: commodity 2 price decreased by 10% with respect to its initial value; 

S3: commodity 1 price increased by 10% and commodity 2 price decreased by 10% with 

respect their initial value 

 

 

 


